




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江西省新余第四中学高二数学第二学期期末教学质量检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设集合,若,则()A. B. C. D.2.设,随机变量的分布列如图,则当在内增大时,()A.减小 B.增大C.先减小后增大 D.先增大后减小3.的展开式的各项系数之和为3,则该展开式中项的系数为()A.2 B.8 C. D.-174.在空间给出下列四个命题:①如果平面内的一条直线垂直于平面内的任意一条直线,则⊥;②如果直线与平面内的一条直线平行,则∥;③如果直线与平面内的两条直线都垂直,则⊥;④如果平面内的两条直线都平行于平面,则∥.其中正确的个数是A. B. C. D.5.一个篮球运动员投篮一次得3分的概率为,得2分的概率为,得0分的概率为0.5(投篮一次得分只能3分、2分、1分或0分),其中、,已知他投篮一次得分的数学期望为1,则的最大值为A. B. C. D.6.正方体中,直线与平面所成角正弦值为()A. B. C. D.7.设函数的定义域为R,满足,且当时.则当,的最小值是()A. B. C. D.8.“”是“函数为奇函数”的()A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件9.已知两个复数,的实部和虚部都是正整数,关于代数式有以下判断:①最大值为2;②无最大值;③最小值为;④无最小值.其中正确判断的序号是()A.①③ B.①④ C.②④ D.②③10.如图,在菱形ABCD中,,线段AD,BD,BC的中点分别为E,F,K,连接EF,FK.现将绕对角线BD旋转,令二面角A-BD-C的平面角为,则在旋转过程中有()A. B. C. D.11.已知函数,,若在上有且只有一个零点,则的范围是()A. B.C. D.12.设,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.用一块半径为2分米的半圆形薄铁皮制作一个无盖的圆锥形容器,若衔接部分忽略不计,则该容器的容积为________立方分米.14.在的二项式中,常数项等于_______(结果用数值表示).15.下列随机变量中不是离散型随机变量的是__________(填序号).①某宾馆每天入住的旅客数量是;②某水文站观测到一天中珠江的水位;③西部影视城一日接待游客的数量;④阅海大桥一天经过的车辆数是.16.已知为抛物线的焦点,为其标准线与轴的交点,过的直线交抛物线于,两点,为线段的中点,且,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)若,求的最小值,并指出此时的取值范围;(2)若,求的取值范围.18.(12分)已知曲线的参数方程为(为参数),以原点为极点,以轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的极坐标方程和曲线的直角坐标方程;(2)射线与曲线交点为、两点,射线与曲线交于点,求的最大值.19.(12分)在直角坐标系中,曲线的参数方程为(为参数),以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求和的直角坐标方程;(2)设M,N分别为,上的动点,求的取值范围.20.(12分)把6本不同的书,全部分给甲,乙,丙三人,在下列不同情形下,各有多少种分法?(用数字作答)(Ⅰ)甲得2本;(Ⅱ)每人2本;(Ⅲ)有1人4本,其余两人各1本.21.(12分)如图,直角梯形中,,,,,底面,底面且有.(1)求证:;(2)若线段的中点为,求直线与平面所成角的正弦值.22.(10分)已知曲线的参数方程(为参数),在同一直角坐标系中,将曲线上的点按坐标变换得到曲线.(1)求曲线的普通方程;(2)若点在曲线上,已知点,求直线倾斜角的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】分析:先根据得到=1即得a=2,再根据求出b的值,再求则.详解:因为,所以=1,所以a=2.又因为,所以b=1,所以Q={2,1},所以.故答案为:B.点睛:(1)本题主要考查集合的交集补集运算,意在考查学生对这些知识的掌握水平和分析推理能力.(2)解答集合中的参数问题,要注意检验,一是检验是否满足集合元素的互异性,二是检验是否满足每一个条件.2、D【解题分析】
先求数学期望,再求方差,最后根据方差函数确定单调性.【题目详解】,,,∴先增后减,因此选D.【题目点拨】3、D【解题分析】
令得各项系数和,可求得,再由二项式定理求得的系数,注意多项式乘法法则的应用.【题目详解】令,可得,,在的展开式中的系数为:.故选D.【题目点拨】本题考查二项式定理,在二项展开式中,通过对变量适当的赋值可以求出一些特定的系数,如令可得展开式中所有项的系数和,再令可得展开式中偶数次项系数和与奇数次项系数和的差,两者结合可得奇数项系数和以及偶数项系数和.4、A【解题分析】本题考查空间线面关系的判定和性质.解答:命题①正确,符合面面垂直的判定定理.命题②不正确,缺少条件.命题③不正确,缺少两条相交直线都垂直的条件.命题④不正确,缺少两条相交直线的条件.5、D【解题分析】
设这个篮球运动员得1分的概率为c,由题设知
,解得2a+b=0.5,再由均值定理能求出ab的最大值.【题目详解】设这个篮球运动员得1分的概率为c,
∵这个篮球运动员投篮一次得3分的概率为a,得2分的概率为b,得0分的概率为0.5,
投篮一次得分只能3分、2分、1分或0分,他投篮一次得分的数学期望为1,
∴
,
解得2a+b=0.5,
∵a、b∈(0,1),
∴
=
=
,
∴ab
,
当且仅当2a=b=
时,ab取最大值
.
故选D.
点评:本题考查离散型随机变量的分布列和数学期的应用,是基础题.解题时要认真审题,仔细解答,注意均值定理的灵活运用.6、C【解题分析】
作出相关图形,设正方体边长为1,求出与平面所成角正弦值即为答案.【题目详解】如图所示,正方体中,直线与平行,则直线与平面所成角正弦值即为与平面所成角正弦值.因为为等边三角形,则在平面即为的中心,则为与平面所成角.可设正方体边长为1,显然,因此,则,故答案选C.【题目点拨】本题主要考查线面所成角的正弦值,意在考查学生的转化能力,计算能力和空间想象能力.7、D【解题分析】
先求出函数在区间上的解析式,利用二次函数的性质可求出函数在区间上的最小值.【题目详解】由题意可知,函数是以为周期的周期函数,设,则,则,即当时,,可知函数在处取得最小值,且最小值为,故选D.【题目点拨】本题考查函数的周期性以及函数的最值,解决本题的关键就是根据周期性求出函数的解析式,并结合二次函数的基本性质求解,考查计算能力,属于中等题.8、B【解题分析】时,,当时,,函数为奇函数;当时,,函数不是奇函数时,不一定奇函数,当是奇函数时,由可得,所以“”是“函数为奇函数”的必要不充分条件,故选B.9、C【解题分析】
设两个复数,,在复平面内对应点,利用平面向量的加法的几何意义以及平面向量的数量积可以判断出的最值情况.【题目详解】设两个复数,,在复平面内对应点,因此有:因为,复数,的实部和虚部都是正整数,所以,(当且仅当),故,假设有最小值,则,显然对于也成立,于是有这与相矛盾,故不存在最小值;对任意正整数,,,,故没有最大值,因此②④说法正确.故选:C【题目点拨】本题考查了复数的向量表示,考查了平面向量的数量积的计算,考查了数学运算能力.10、B【解题分析】
首先根据旋转前后的几何体,表示和,转化为在两个有公共底边的等腰三角形比较顶角的问题,还需考虑和两种特殊情况.【题目详解】如图,绕旋转形成以圆为底面的两个圆锥,(为圆心,为半径,为的中点),,,当且时,与等腰中,为公共边,,,.当时,,当时,,综上,。C.D选项比较与的大小关系,如图即比较与的大小关系,根据特殊值验证:又当时,,当时,,都不正确.故选B.【题目点拨】本题考查了二面角的相关知识,考查空间想象能力,难度较大,本题的难点是在动态的旋转过程中,如何转化和,从而达到比较的目的,或考查和两种特殊情况,可快速排除选项.11、B【解题分析】
将问题转化为在有且仅有一个根,考虑函数,的单调性即可得解.【题目详解】由题,所以不是函数的零点;当,有且只有一个零点,即在有且仅有一个根,即在有且仅有一个根,考虑函数,由得:,由得:所以函数在单调递减,单调递增,,,,,要使在有且仅有一个根,即或则的范围是故选:B【题目点拨】此题考查根据函数零点求参数的取值范围,关键在于等价转化,利用函数单调性解决问题,常用分离参数处理问题.12、B【解题分析】
分别将两个不等式解出来即可【题目详解】由得由得所以“”是“”的必要不充分条件故选:B【题目点拨】设命题p对应的集合为A,命题q对应的集合为B,若AB,则p是q的充分不必要条件,若AB,则p是q的必要不充分条件,若A=B,则p是q的充要条件.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
先由题意得到半圆形的弧长为,设制作的圆锥形容器的底面半径为,求出底面半径与圆锥的高,从而可求出结果.【题目详解】半径为2分米的半圆形的弧长为,设制作的圆锥形容器的底面半径为,则,则;则圆锥形容器的高为,所以容器的容积为.故答案为:【题目点拨】本题主要考查求圆锥的体积,熟记圆锥的体积公式即可,属于常考题型.14、140【解题分析】
写出二项展开式的通项,由的指数为0求得r值,则答案可求.【题目详解】由得由6-3r=0,得r=1.
∴常数项等于,故答案为140.【题目点拨】本题考查了二项式系数的性质,关键是对二项展开式通项的记忆与运用,是基础题.15、②【解题分析】
利用离散型随机变量的定义直接求解.【题目详解】①③④中的随机变量的所有取值,我们都可以按照一定的次序一一列出,因此它们是离散型随机变量;②中随机变量可以取某一区间内的一切值,但无法按一定次序一一列出,故不是离散型随机变量.故答案为:②【题目点拨】本题考查离散型随机变量的判断,是基础题,解题时要认真审题,注意离散型随机变量的定义的合理运用,比较基础.16、8.【解题分析】分析:求得抛物线的焦点和准线方程,可得E的坐标,设过F的直线为y=k(x-1),代入抛物线方程y2=4x,运用韦达定理和中点坐标公式,可得M的坐标,运用两点的距离公式可得k,再由抛物线的焦点弦公式,计算可得所求值.详解:F(1,0)为抛物线C:y2=4x的焦点,
E(-1,0)为其准线与x轴的交点,
设过F的直线为y=k(x-1),
代入抛物线方程y2=4x,可得
k2x2-(2k2+4)x+k2=0,
设A(x1,y1),B(x2,y2),则中点解得k2=1,则x1+x2=6,由抛物线的定义可得|AB|=x1+x2+2=8,故答案为8.点睛:本题考查抛物线的定义、方程和性质,考查联立直线方程和抛物线的方程,运用韦达定理和中点坐标公式,考查运算能力,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2).【解题分析】
(1)根据绝对值的意义求出的范围即可;(2)问题转化为当时,,结合函数的性质得到关于的不等式,解出即可.【题目详解】(1),当且仅当时取等号,故的最小值为,此时的取值范围是.(2)时,显然成立,所以此时;时,由,得.由及的图象可得且,解得或.综上所述,的取值范围是【题目点拨】该题考查的是有关绝对值不等式的问题,涉及到的知识点有绝对值的意义,绝对值三角不等式,分类讨论思想,灵活掌握基础知识是解题的关键.18、(1),;(2)【解题分析】
(1)先将曲线的参数方程化为普通方程,再由转化为极坐标方程,将曲线的极坐标利用两角差的正弦公式展开,由转化为直角坐标方程;(2)点和点的极坐标分别为,,将点、的极坐标分别代入曲线、的极坐标方程,得出、的表达式,再利用辅助角公式计算出的最大值。【题目详解】(1)由曲线的参数方程(为参数)得:,即曲线的普通方程为,又,曲线的极坐标方程为,曲线的极坐标方程可化为,故曲线的直角方程为;(2)由已知,设点和点的极坐标分别为,,其中则,,于是其中,由于,当时,的最大值是【题目点拨】本题考查参数方程、极坐标方程与普通方程之间的互化,以及利用极坐标方程求解最值问题,解题时要充分理解极坐标方程所适用的基本条件,熟悉极坐标方程求解的基本步骤,考查计算能力,属于中等题。19、(1):,:;(2)【解题分析】
(1)参数方程消参即可得普通方程,极坐标方程利用变形可得普通方程;(2)设,,利用距离公式求出,再求最值即可.【题目详解】解:(1)由题意得,所以的直角坐标方程,由得所以的直角坐标方程为;(2)设,,所以,所以,由知,所以的取值范围是.【题目点拨】本题考查参数方程,极坐标方程化为普通方程,考查参数方程的应用,对于最值问题应用参数方程来解决比较方便,是基础题.20、(Ⅰ)240种(Ⅱ)90种(Ⅲ)90种【解题分析】
(Ⅰ)根据题意,分2步进行分析:①,在6本书中任选2本,分给甲,②,将剩下的4本分给乙、丙,由分步计数原理计算可得答案;(Ⅱ)根据题意,分2步进行分析:①,将6本书平均分成3组,②,将分好的3组全排列,分给甲乙丙三人,由分步计数原理计算可得答案;(Ⅲ)根据题意,分2步进行分析:①,在6本书中任选4本,分给三人中1人,②,将剩下的2本全排列,安排给剩下的2人,由分步计数原理计算可得答案;【题目详解】(Ⅰ)根据题意,分2步进行分析:①,在6本书中任选2本,分给甲,有C62=15种选法,②,将剩下的4本分给乙、丙,每本书都有2种分法,则有2×2×2×2=16种分法,则甲得2本的分法有15×16=240种;(Ⅱ)根据题意,分2步进行分析:①,将6本书平均分成3组,有15种分组方法,②,将分好的3组全排列,分给甲乙丙三人,有A33=6种情况,则有15×
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 村土地承包协议书
- 舞蹈室会员协议书
- 拼多多购物协议书
- 应急砂供应协议书
- 高空字安装协议书
- 幼儿园大班科学《动物怎样睡觉》教案
- 高端巧克力礼品盒定制行业跨境出海项目商业计划书
- 乡村手工艺展销会企业制定与实施新质生产力项目商业计划书
- 立遗嘱财产协议书
- 高清网络摄像头直播设备行业跨境出海项目商业计划书
- 应征公民政治考核表(含各种附表)
- 2024年高考历史试卷(浙江)(1月)(解析卷)
- (高清版)JTG D50-2017 公路沥青路面设计规范
- 草籽播撒劳务合同
- GB/T 43657.1-2024工业车辆能效试验方法第1部分:总则
- 物业秩序部工作计划与整改措施
- 化粪池应急预案
- 2023年-2024年职业卫生检测考试题库及答案
- 2024年全国行业职业技能竞赛(电力交易员)备考试题库大全(浓缩800题)
- 急性ST段抬高型心肌梗死溶栓治疗的合理用药指南
- 《新闻学概论》试题及参考答案
评论
0/150
提交评论