河北保定雄县2023年数学九上期末统考模拟试题含解析_第1页
河北保定雄县2023年数学九上期末统考模拟试题含解析_第2页
河北保定雄县2023年数学九上期末统考模拟试题含解析_第3页
河北保定雄县2023年数学九上期末统考模拟试题含解析_第4页
河北保定雄县2023年数学九上期末统考模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北保定雄县2023年数学九上期末统考模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.二次函数的图象可以由二次函数的图象平移而得到,下列平移正确的是()A.先向右平移2个单位,再向上平移1个单位B.先向右平移2个单位,再向下平移1个单位C.先向左平移2个单位,再向上平移1个单位D.先向左平移2个单位,再向下平移1个单位2.下列图形中,是中心对称图形的是()A. B. C. D.3.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000,这个数用科学记数法表示()A. B. C. D.4.一个等腰梯形的两底之差为12,高为6,则等腰梯形的锐角为()A.30° B.45° C.60° D.75°5.某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为()A.144(1﹣x)2=100 B.100(1﹣x)2=144 C.144(1+x)2=100 D.100(1+x)2=1446.如图,一张矩形纸片ABCD的长AB=xcm,宽BC=ycm,把这张纸片沿一组对边AB和D的中点连线EF对折,对折后所得矩形AEFD与原矩形ADCB相似,则x:y的值为()A.2 B. C. D.7.如图,四边形ABCD内接于⊙O,已知∠A=80°,则∠C的度数是()A.40° B.80° C.100° D.120°8.在平面直角坐标系中,抛物线经过变换后得到抛物线,则这个变换可以是()A.向左平移2个单位 B.向右平移2个单位C.向左平移8个单位 D.向右平移8个单位9.在△ABC中,若cosA=,tanB=,则这个三角形一定是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形10.共享单车为市民出行带来了方便,某单车公司第一季度投放1万辆单车,计划第三季度投放单车的数量比第一季度多4400辆,设该公司第二、三季度投放单车数量的平均增长率均为,则所列方程正确的是()A. B.C. D.11.已知现有的10瓶饮料中有2瓶已过了保质期,从这10瓶饮料中任取1瓶,恰好取到已过了保质期的饮料的概率是()A. B. C. D.12.对于一元二次方程来说,当时,方程有两个相等的实数根:若将的值在的基础上减小,则此时方程根的情况是()A.没有实数根 B.两个相等的实数根C.两个不相等的实数根 D.一个实数根二、填空题(每题4分,共24分)13.点在抛物线上,则__________.(填“>”,“<”或“=”).14.做任意抛掷一只纸杯的重复实验,部分数据如下表抛掷次数50100500800150030005000杯口朝上的频率0.10.150.20.210.220.220.22根据上表,可估计任意抛掷一只纸杯,杯口朝上的概率约为__________.15.方程的根是__________.16.已知实数m,n满足,,且,则=.17.点P(3,﹣4)关于原点对称的点的坐标是_____.18.抛物线的顶点坐标是___________.三、解答题(共78分)19.(8分)一名大学毕业生利用“互联网+”自主创业,销售一种产品,这种产品的成本价为80元/件,经市场调查发现,该产品的日销售量(单位:件)与销售单价(单位:元/件)之间满足一次函数关系,如图所示.(1)求与之间的函数解析式,并写出自变量的取值范围;(2)求每天的销售利润(单位:元)与销售单价之间的函数关系式,并求出每件销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)这名大学生计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?20.(8分)如图①,是平行四边形的边上的一点,且,交于点.(1)若,求的长;(2)如图②,若延长和交于点,,能否求出的长?若能,求出的长;若不能,说明理由.21.(8分)如图,在中,,矩形的顶点、分别在边、上,、在边上.(1)求证:∽;(2)若,则面积与面积的比为.22.(10分)综合与探究:三角形旋转中的数学问题.实验与操作:

Rt△ABC中,∠ABC=90°,∠ACB=30°.将Rt△ABC绕点A按顺时针方向旋转得到Rt△AB′C′(点B′,C′分别是点B,C的对应点).设旋转角为α(0°<α<180°),旋转过程中直线B′B和线段CC′相交于点D.猜想与证明:(1)如图1,当AC′经过点B时,探究下列问题:①此时,旋转角α的度数为°;②判断此时四边形AB′DC的形状,并证明你的猜想;(2)如图2,当旋转角α=90°时,求证:CD=C′D;(3)如图3,当旋转角α在0°<α<180°范围内时,连接AD,直接写出线段AD与C之间的位置关系(不必证明).23.(10分)如图,AB是⊙O的直径,CD是⊙O的一条弦,且CD⊥AB于点E.(1)求证:∠BCO=∠D;(2)若CD=,AE=2,求⊙O的半径.24.(10分)为了庆祝中华人民共和国成立70周年,某市决定开展“我和祖国共成长”主题演讲比赛,某中学将参加本校选拔赛的40名选手的成绩(满分为100分,得分为正整数且无满分,最低为75分)分成五组,并绘制了下列不完整的统计图表.分数段频数频率74.5~79.520.0579.5~84.5m0.284.5~89.5120.389.5~94.514n94.5~99.540.1(1)表中m=__________,n=____________;(2)请在图中补全频数直方图;(3)甲同学的比赛成绩是40位参赛选手成绩的中位数,据此推测他的成绩落在_________分数段内;(4)选拔赛中,成绩在94.5分以上的选手,男生和女生各占一半,学校从中随机确定2名选手参加全市决赛,请用列举法或树状图法求恰好是一名男生和一名女生的概率.25.(12分)(1)计算:计算:6cos45°+()﹣1+(﹣1.73)0+|5﹣3|+42017×(﹣0.25)2017;(2)先化简,再求值:÷,其中满足.26.关于x的方程的解为正数,且关于y的不等式组有解,求符合题意的整数m.

参考答案一、选择题(每题4分,共48分)1、C【解析】二次函数平移都是通过顶点式体现,将转化为顶点式,与原式对比,利用口诀左加右减,上加下减,即可得到答案【详解】解:∵,∴的图形是由的图形,向左平移2个单位,然后向上平移1个单位【点睛】本题主要考查二次函数图形的平移问题,学生熟练掌握左加右减,上加下减即可解决这类题目2、D【分析】根据中心对称图形的定义:把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,逐一判断即可.【详解】解:A选项不是中心对称图形,故本选项不符合题意;B选项不是中心对称图形,故本选项不符合题意;C选项不是中心对称图形,故本选项不符合题意;D选项是中心对称图形,故本选项符合题意;故选D.【点睛】此题考查的是中心对称图形的识别,掌握中心对称图形的定义是解决此题的关键.3、C【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:将4400000000用科学记数法表示为4.4×109.

故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4、B【解析】作梯形的两条高线,证明△ABE≌△DCF,则有BE=FC,然后判断△ABE为等腰直角三角形求解.【详解】如图,作AE⊥BC、DF⊥BC,四边形ABCD为等腰梯形,AD∥BC,BC−AD=12,AE=6,∵四边形ABCD为等腰梯形,∴AB=DC,∠B=∠C,∵AD∥BC,AE⊥BC,DF⊥BC,∴AEFD为矩形,∴AE=DF,AD=EF,∴△ABE≌△DCF,∴BE=FC,∴BC−AD=BC−EF=2BE=12,∴BE=6,∵AE=6,∴△ABE为等腰直角三角形,∴∠B=∠C=45°.故选B.【点睛】此题考查等腰梯形的性质,解题关键在于画出图形.5、D【解析】试题分析:2013年的产量=2011年的产量×(1+年平均增长率)2,把相关数值代入即可.解:2012年的产量为100(1+x),2013年的产量为100(1+x)(1+x)=100(1+x)2,即所列的方程为100(1+x)2=144,故选D.点评:考查列一元二次方程;得到2013年产量的等量关系是解决本题的关键.6、B【分析】根据相似多边形对应边的比相等,可得到一个方程,解方程即可求得.【详解】解:∵四边形ABCD是矩形,宽BC=ycm,

∴AD=BC=ycm,

由折叠的性质得:AE=AB=x,

∵矩形AEFD与原矩形ADCB相似,

∴,即,

∴x2=2y2,

∴x=y,

∴.

故选:B.【点睛】本题考查了相似多边形的性质、矩形的性质、翻折变换的性质;根据相似多边形对应边的比相等得出方程是解决本题的关键.7、C【分析】根据圆内接四边形的性质得出∠C+∠A=180°,代入求出即可.【详解】解:∵四边形ABCD内接于⊙O,

∴∠C+∠A=180°,

∵∠A=80°,

∴∠C=100°,

故选:C.【点睛】本题考查了圆内接四边形的性质的应用.熟记圆内接四边形对角互补是解决此题的关键.8、B【分析】根据变换前后的两抛物线的顶点坐标找变换规律.【详解】y=(x+5)(x-3)=(x+1)2-16,顶点坐标是(-1,-16).y=(x+3)(x-5)=(x-1)2-16,顶点坐标是(1,-16).所以将抛物线y=(x+5)(x-3)向右平移2个单位长度得到抛物线y=(x+3)(x-5),故选B.【点睛】此题主要考查了次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.9、A【解析】试题解析:∵cosA=,tanB=,∴∠A=45°,∠B=60°.∴∠C=180°-45°-60°=75°.∴△ABC为锐角三角形.故选A.10、B【解析】直接根据题意得出第三季度投放单车的数量为:(1+x)2=1+0.1,进而得出答案.【详解】解:设该公司第二、三季度投放单车数量的平均增长率为x,根据题意可得:(1+x)2=1.1.故选:B.【点睛】此题主要考查了根据实际问题抽象出一元二次方程,求平均变化率的方法为:若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.11、C【分析】直接利用概率公式求解.【详解】∵10瓶饮料中有2瓶已过了保质期,∴从这10瓶饮料中任取1瓶,恰好取到已过了保质期的饮料的概率是.故选C.【点睛】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.12、C【分析】根据根的判别式,可得答案.【详解】解:a=1,b=-3,c=,

Δ=b2−4ac=9−4×1×=0∴当的值在的基础上减小时,即c﹤,Δ=b2−4ac>0∴一元二次方程有两个不相等的实数根,

故选C.【点睛】本题考查了根的判别式的应用,能熟记根的判别式的内容是解此题的关键.二、填空题(每题4分,共24分)13、>【分析】把A、B两点的坐标代入抛物线的解析式,求出的值即得答案.【详解】解:把A、B两点的坐标代入抛物线的解析式,得:,,∴>.故答案为:>.【点睛】本题考查了二次函数的性质和二次函数图象上点的坐标特征,属于基本题型,掌握比较的方法是解答关键.14、0.1【解析】观察表格的数据可以得到杯口朝上的频率,然后用频率估计概率即可求解.【详解】解:依题意得杯口朝上频率逐渐稳定在0.1左右,

估计任意抛掷一只纸杯,杯口朝上的概率约为0.1.

故答案为:0.1.【点睛】本题考查利用频率估计概率,首先通过实验得到事件的频率,然后用频率估计概率即可解决问题.15、【分析】由题意根据直接开平方法的步骤求出x的解即可.【详解】解:∵,∴x=±2,∴.故答案为:.【点睛】本题考查解一元二次方程-直接开平方法,根据法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”来求解.16、.【解析】试题分析:由时,得到m,n是方程的两个不等的根,根据根与系数的关系进行求解.试题解析:∵时,则m,n是方程3x2﹣6x﹣5=0的两个不相等的根,∴,.∴原式===,故答案为.考点:根与系数的关系.17、(﹣3,4).【分析】根据关于关于原点对称的点,横坐标与纵坐标都互为相反数.填空即可.【详解】解:点P(3,﹣4)关于原点对称的点的坐标是(﹣3,4),故答案为(﹣3,4).【点睛】解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.18、(1,﹣4).【解析】解:∵原抛物线可化为:y=(x﹣1)2﹣4,∴其顶点坐标为(1,﹣4).故答案为(1,﹣4).三、解答题(共78分)19、(1)();(2),每件销售单价为100元时,每天的销售利润最大,最大利润为2000元;(3)该产品的成本单价应不超过65元.【分析】(1)设y与x之间的函数解析式为:y=kx+b,根据题意列方程组即可得到结论;(2)根据题意得到合适解析式,然后根据二次函数的性质即可得到结论;(3)设产品的成本单价为b元,根据题意列不等式即可得到结论.【详解】(1)设关于的函数解析式为.由图象,得解得即关于的函数解析式是().(2)根据题意,得,∴当时,取得最大值,此时.即每件销售单价为100元时,每天的销售利润最大,最大利润为2000元.(3)设科技创新后成本为元.当时,.解得.答:该产品的成本单价应不超过65元.【点睛】此题主要考查了二次函数和一次函数的应用以及一元二次方程的应用,正确得出函数解析式是解题关键.20、(1);(2)能,【分析】(1)由DE∥BC,可得,由此即可解决问题;

(2)由PB∥DC,可得,可得PA的长.【详解】(1)∵为平行四边形∴,,又∵∴又∵∴,∴.(2)能∵为平行四边形,∴,,∴∴∴【点睛】本题考查了相似三角形的判定与性质、平行四边形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.21、(1)见解析;(2)1.【分析】(1)先证∠AGD=∠B,再根据∠ADG=∠BEF=90°,即可证明;(2)由(1)得∽,则△ADG面积与△BEF面积的比==1.【详解】(1)证:在矩形中,=90°∴=90°∵=90°∴=90°∴在和中∵,=90°∴∽(2)解:∵四边形DEFG为矩形,∴GD=EF,∵△ADG∽△FEB,∴故答案为1.【点睛】本题考查了相似三角形的判定与性质,根据题意证得△ADG∽△FEB是解答本题的关键.22、(1)①60;②四边形AB′DC是平行四边形,证明见解析.(2)证明见解析;(3)【分析】(1)①根据矩形的性质、旋转的性质、等边三角形的判定方法解题;②根据两组对边分别平行的四边形是平行四边形解题;(2)过点作的垂线,交于点E,由旋转的性质得到对应边、对应角相等,进而证明△CDB≌△,即可解题;(3)先证明,再由相似三角形的性质解题,进而证明即可证明.【详解】解:(1)①60;②四边形AB′DC是平行四边形.证明:∵∠ABC=90°,∠ACB=30°,∴∠CAB=90°-30°=60°.∵Rt△AB′C′是由Rt△ABC绕点A顺时针旋转得到的,∴∠C′AB′=∠CAB=60°,,.与都是等边三角形.∴∠ACC′=∠AB′B=60°.∵∠CAB′=∠CAB+∠C′AB′=120°,∴∠ACC′+∠CAB′=180°,∠CAB′+∠ABB′=180°.∴AB′//CD,AC//B′D.∴四边形AB′DC是平行四边形.(2)证明:过点作的垂线,交于点E,∴∠B′C′E=90°.∵Rt△AB′C′是由Rt△ABC绕点A顺时针旋转90°得到的,∴∠CAC′=∠BAB′=∠B′C′E=90°,,.∴∠AB=∠AB=45°,BC∥AB′∥C′E∵∠AC=∠ABC=90°,∴∠B=∠CBE=45°.∴∠=90°-45°=45°=∠B.∴.在△CBD和△ED中,∴△CDB≌△DE.∴CD=D.(3)AD⊥C,理由如下:设AC与D交于点O,连接AD,∴∠ADC′=180°-∠DAO-∠AC′C=180°-∠OB′C′-∠AB′B,,

【点睛】本题考查几何综合,其中涉及三角形的旋转、等边三角形的判定与性质、平行线的判定、平行四边形的判定、全等三角形的判定等知识,综合性较强,是常见考点,掌握相关知识、学会作适当辅助线是解题关键.23、(1)见解析;(2)1.【解析】试题分析:根据OC=OB得到∠BCO=∠B,根据弧相等得到∠B=∠D,从而得到答案;根据题意得出CE的长度,设半径为r,则OC=r,OE=r-2,根据Rt△OCE的勾股定理得出半径.试题解析:(1)证明:∵OC=OB,∴∠BCO=∠B∵,∴∠B=∠D,∴∠BCO=∠D.(2)解:∵AB是⊙O的直径,CD⊥AB,∴CE=.在Rt△OCE中,OC2=CE2+OE2,设⊙O的半径为r,则OC=r,OE=OA-AE=r-2,∴,解得:r=1,∴⊙O的半径为1考点:圆的基本性质24、(1)8,0.35;(2)见解析;(3)89.5~94.5;(4).【分析】(1)根据频数=总数×频率可求得m的值,利用频率=频数÷总数可求得n的值;(2)根据m的值补全直方图即可;(3)根据中位数的概念进行求解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论