嘉兴市重点中学2024届数学八年级第二学期期末考试模拟试题含解析_第1页
嘉兴市重点中学2024届数学八年级第二学期期末考试模拟试题含解析_第2页
嘉兴市重点中学2024届数学八年级第二学期期末考试模拟试题含解析_第3页
嘉兴市重点中学2024届数学八年级第二学期期末考试模拟试题含解析_第4页
嘉兴市重点中学2024届数学八年级第二学期期末考试模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

嘉兴市重点中学2024届数学八年级第二学期期末考试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.已知菱形的边长和一条对角线的长均为2cm,则菱形的面积为()A.3cm2 B.4cm2 C.3cm2 D.23cm22.如图,正方形的边长为3,点在正方形.内若四边形恰是菱形,连结,且,则菱形的边长为(

).A. B. C.2 D.3.如图,四边形ABCD中,对角线相交于点O,E、F、G、H分别是AD、BD、BC、AC的中点,要使四边形EFGH是矩形,则四边形ABCD需要满足的条件是A. B. C. D.4.为了参加我市组织的“我爱家乡美”系列活动,某校准备从九年级四个班中选出一个班的7名学生组建舞蹈队,要求各班选出的学生身高较为整齐,且平均身高约为1.6m.根据各班选出的学生,测量其身高,计算得到的数据如右表所示,学校应选择()学生平均身高(单位:m)标准差九(1)班1.570.3九(2)班1.570.7九(3)班1.60.3九(4)班1.60.7A.九(1)班 B.九(2)班 C.九(3)班 D.九(4)班5.一次函数y=2x+1的图象不经过下列哪个象限()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.正方形的一个内角度数是A. B. C. D.7.如图,一次函数的图象与轴的交点坐标为,则下列说法正确的有()①随的增大而减小;②;③关于的方程的解为;④当时,.A.1个 B.2个 C.3个 D.4个8.若平行四边形中两个邻角的度数比为1:3,则其中较小的内角是()A.30° B.45° C.60° D.75°9.下列各式中,不是最简二次根式的是()A. B. C. D.10.如图,一同学在湖边看到一棵树,他目测出自己与树的距离为20m,树的顶端在水中的倒影距自己5m远,该同学的身高为1.7m,则树高为().A.3.4m B.4.7m C.5.1m D.6.8m11.直角三角形的两条直角边分别是6,8,则此直角三角形三条中线的和是()A. B.C. D.12.已知平行四边形中,一个内角,那么它的邻角().A. B. C. D.二、填空题(每题4分,共24分)13.如图,函数y=3x和y=ax+4的图象相交于点A(1,3),则不等式3x<ax+4的解集为____________.14.若一组数据1,3,,5,4,6的平均数是4,则这组数据的中位数是__________.15.如图,在平行四边形ABCD中,对角线AC⊥BD,AC=10,BD=24,则AD=____________16.如图,折线A﹣B﹣C是我市区出租车所收费用y(元)与出租车行驶路程x(km)之间的函数关系图象,某人支付车费15.6元,则出租车走了______km.17.多项式x2+mx+5因式分解得(x+5)(x+n),则m=_____,n=_____.18.若一个正多边形的每一个外角都是,则这个正多边形的边数为__________.三、解答题(共78分)19.(8分)如图,直线y=kx+b(k≠0)与两坐标轴分别交于点B、C,点A的坐标为(﹣2,0),点D的坐标为(1,0).(1)求直线BC的函数解析式.(2)若P(x,y)是直线BC在第一象限内的一个动点,试求出△ADP的面积S与x的函数关系式,并写出自变量x的取值范围.(3)在直线BC上是否存在一点P,使得△ADP的面积为3?若存在,请直接写出此时点P的坐标,若不存在,请说明理由.20.(8分)如图,点在同一直线上,,,.求证:.21.(8分)自中央出台“厉行节约、反对浪费”八项规定后,某品牌高档酒销量锐减,进入四月份后,经销商为扩大销量,每瓶酒比三月份降价500元,如果卖出相同数量的高档酒,三月份销售额为4.5万元,四月份销售额只有3万元.(1)求三月份每瓶高档酒售价为多少元?(2)为了提高利润,该经销商计划五月份购进部分大众化的中低档酒销售.已知高档酒每瓶进价为800元,中低档酒每瓶进价为400元.现用不超过5.5万元的预算资金购进,两种酒共100瓶,且高档酒至少购进35瓶,请计算说明有几种进货方案?(3)该商场计划五月对高档酒进行促销活动,决定在四月售价基础上每售出一瓶高档酒再送顾客价值元的代金券,而中低档酒销售价为550元/瓶.要使(2)中所有方案获利恰好相同,请确定的值,并说明此时哪种方案对经销商更有利?22.(10分)某学校组织了“热爱宪法,捍卫宪法”的知识竞赛,赛后发现所有学生的成绩(总分100分)均不低于50分,为了解本次竞赛的成绩分布情况,随机抽取若干名学生的成绩作为样本进行整理,并绘制了不完整的统计图表,请你根据统计图表解答下列问题.(1)此次抽样调查的样本容量是_________;(2)写出表中的a=_____,b=______,c=________;(3)补全学生成绩分布直方图;(4)比赛按照分数由高到低共设置一、二、三等奖,若有25%的参赛学生能获得一等奖,则一等奖的分数线是多少?23.(10分)为了参加“仙桃市中小学生首届诗词大会”,某校八年级的两班学生进行了预选,其中班上前5名学生的成绩(百分制)分别为:八(l)班86,85,77,92,85;八(2)班79,85,92,85,1.通过数据分析,列表如下:(1)直接写出表中a,b,c,d的值;(2)根据以上数据分析,你认为哪个班前5名同学的成绩较好?说明理由.24.(10分)如图,在△ABC中,∠ACB=90°,D为AB边上一点,连接CD,E为CD的中点,连接BE并延长至点F,使得EF=EB,连接DF交AC于点G,连接CF,(1)求证:四边形DBCF是平行四边形(2)若∠A=30°,BC=4,CF=6,求CD的长25.(12分)图(a)、图(b)、图(c)是三张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1.请在图图(a)、图(b)、图(c)中分别画出符合要求的图形,所画图形各顶点必须与方格纸中的小正方形顶点重合.(1)画一个底边长为4,面积为8的等腰三角形.(2)画一个面积为10的等腰直角三角形.(3)画一个一边长为,面积为6的等腰三角形.26.某区举行“庆祝改革开放40周年”征文比赛,已知每篇参赛征文成绩记分,组委会从1000篇征文中随机抽取了部分参赛征文,统计了他们的成绩,并绘制了如下不完整的两幅统计图表:征文比赛成绩频数分布表分数段频数频率380.380.32100.1合计1请根据以上信息,解决下列问题:(1)征文比赛成绩频数分布表中的值是;(2)补全征文比赛成绩频数分布直方图;(3)若80分以上(含80分)的征文将被评为一等奖,试估计全市获得一等奖征文的篇数.

参考答案一、选择题(每题4分,共48分)1、D【解题分析】

由四边形ABCD是菱形,可得菱形的四条边都相等AB=BC=CD=AD,菱形的对角线互相平分且相等即AC⊥BD,OA=OC,OB=OD,又因为菱形的边长和一条对角线的长均为2,易求得OB=1,则可得AC的值,根据菱形的面积等于积的一半,即可求得菱形的面积.【题目详解】解:根据题意画出图形,如图所示:

∵四边形ABCD是菱形,

∴AB=BC=CD=AD=2cm,AC⊥BD,OA=OC,OB=OD,

又∵菱形的边长和一条对角线的长均为2,

∴AB=AD=BD=2,

∴OB=1,

∴OA=AB2-BO2=3,

∴AC=23,

∴菱形的面积为2【题目点拨】本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;菱形的面积等于对角线乘积的一半.2、D【解题分析】

过点F作FM⊥AB,则FM=BM,BF2=2FM2,由AF2﹣FB2=3可得AM﹣BM=1,可求出AM=2,BM=1,则AF的长可求出.【题目详解】如图,过点F作FM⊥AB,∵∠ABF=45°,∴FM=BM,∴BF2=2FM2,∴AF2﹣BF2=AF2﹣FM2﹣BM2=3∴AM2﹣BM2=3,∵AM+BM=3,∴AM﹣BM=1,∴AM=2,BM=1,∴.故选:D.【题目点拨】此题考查菱形的性质,正方形的性质,勾股定理,等腰直角三角形的性质,注意构造直角三角形是解决问题的关键.3、B【解题分析】

根据“有一内角为直角的平行四边形是矩形”来推断由三角形中位线定理和平行四边形的判定定理易推知四边形EFGH是平行四边形,若或者就可以判定四边形EFGH是矩形.【题目详解】当时,四边形EFGH是矩形,,,,,即,四边形EFGH是矩形;故选:B.【题目点拨】此题考查了中点四边形的性质、矩形的判定以及三角形中位线的性质此题难度适中,注意掌握数形结合思想的应用.4、C【解题分析】根据标准差的意义,标准差越小数据越稳定,由于选的是学生身高较为整齐的,故要选取标准差小的,应从九(1)和九(3)里面选,再根据平均身高约为1.6m可知只有九(3)符合要求,故选C.5、D【解题分析】

先根据一次函数y=2x+1中k=2,b=1判断出函数图象经过的象限,进而可得出结论.【题目详解】∵,根据一次函数的图像即可判断函数所经过一、二、三象限,不经过第四象限,故选D.考点:一次函数的图象.6、D【解题分析】

正方形的内角和为,正方形内角相等,.【题目详解】解:根据多边形内角和公式:可得:正方形内角和,正方形四个内角相等正方形一个内角度数.故选:.【题目点拨】本题考查了多边形内角和定理、正多边形每个内角都相等的性质应用,是一道基础几何计算题.7、B【解题分析】

根据一次函数的性质,一次函数与一元一次方程的关系对各个小项分析判断即可得解.【题目详解】图象过第一、二、三象限,∴,,故①②错误;又∵图象与轴交于,∴的解为,③正确.当时,图象在轴上方,,故④正确.综上可得③④正确故选:B.【题目点拨】本题考查了一次函数与一元一次方程,利用一次函数的性质、一次函数与一元一次方程的关系是解题关键.8、B【解题分析】

根据平行四边形的性质,可设较小的角为x,较大的角是3x,列式子即可得出结果.【题目详解】设较小的角为x,较大的是3x,x+3x=180,x=45°.故选B.【题目点拨】本题考查平行四边形的性质,比较简单.9、D【解题分析】

根据最简二次根式的条件:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式进行分析即可.【题目详解】解:A、是最简二次根式,不符合题意;B、是最简二次根式,不符合题意;C、是最简二次根式,不符合题意;D、不是最简二次根式,符合题意;故选:D.【题目点拨】此题主要考查了最简二次根式,关键是掌握最简二次根式的条件.10、C【解题分析】

由入射光线和反射光线与镜面的夹角相等,可得两个相似三角形,根据相似三角形的性质解答即可.【题目详解】解:由题意可得:∠BCA=∠EDA=90°,∠BAC=∠EAD,

故△ABC∽△AED,由相似三角形的性质,设树高x米,

则,

∴x=5.1m.

故选:C.【题目点拨】本题考查相似三角形的应用,关键是由入射光线和反射光线与镜面的夹角相等,得出两个相似三角形.11、C【解题分析】

利用勾股定理,根据中线的定义计算即可.【题目详解】解:∵直角三角形的两条直角边分别是6,8,∴斜边=10,∴此直角三角形三条中线的和=,故选:C.【题目点拨】此题考查了勾股定理的运用以及中线的定义,比较基础,注意数据的计算.12、C【解题分析】

根据平行四边形的性质:邻角互补,求解即可.【题目详解】∵四边形ABCD是平行四边形,∴∠A+∠B=180°,∵∠A=60°,∴∠B=120°,故选C.【题目点拨】本题考查了平行四边形的性质:邻角互补,属于基础性题目.二、填空题(每题4分,共24分)13、【解题分析】

由题意结合图象可以知道,当x=1时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式的解集.【题目详解】解:两个条直线的交点坐标为A(1,3),当x<1时,直线y=ax+4在直线y=3x的上方,当x>1时,直线y=ax+4在直线y=3x的下方,故不等式3x<ax+4即直线y=ax+4在直线y=3x的上方的解集为x<1.故答案为:x<1.【题目点拨】本题主要考查正比例函数、一次函数和一元一次不等式的知识点,本题是借助一次函数的图象解一元一次不等式,两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.14、4.5【解题分析】

根据题意可以求得x的值,从而可以求的这组数据的中位数.【题目详解】解:∵数据1、3、x、5、4、6的平均数是4,∴解得:x=5,则这组数据按照从小到大的顺序排列为:1,3,4,5,5,6则中位数为故答案为:4.5【题目点拨】本题考查了中位数和平均数的知识,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数;平均数是指在一组数据中所有数据之和再除以数据的个数.15、13【解题分析】

根据平行四边形对角线互相平分先求出AO、OD的长,再根据AC⊥BD,在Rt△AOD中利用勾股定理进行求解即可.【题目详解】∵四边形ABCD是平行四边形,∴OA=AC=×10=5,OD=BD=×24=12,又∵AC⊥BD,∴∠AOD=90°,∴AD==13,故答案为:13.【题目点拨】本题考查了平行四边形的性质,勾股定理,熟练掌握平行四边形的性质是解题的关键.16、1【解题分析】

根据函数图象中的数据可以求得BC段对应的函数解析式,然后令y=15.6求出相应的x的值,即可解答本题.【题目详解】解:设BC段对应的函数解析式为y=kx+b,,得,∴BC段对应的函数解析式为y=1.2x+3.6,当y=15.6时,15.6=1.2x+3.6,解得,x=1,故答案为1.【题目点拨】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.17、61【解题分析】

将(x+5)(x+n)展开,得到,使得x2+(n+5)x+5n与x2+mx+5的系数对应相等即可.【题目详解】解:∵(x+5)(x+n)=x2+(n+5)x+5n,∴x2+mx+5=x2+(n+5)x+5n.∴.故答案为:6;1.18、1【解题分析】

根据正多边形的每一个外角都相等以及多边形的外角和为360°,多边形的边数=360°÷30°,计算即可求解.【题目详解】解:这个正多边形的边数:360°÷30°=1,

故答案为:1.【题目点拨】本题考查了多边形的内角与外角的关系,熟记正多边形的边数与外角的关系是解题的关键.三、解答题(共78分)19、(1);(2)S=﹣x+6(0<x<6);(3)点P的坐标是(3,2),P′(9,﹣2).【解题分析】

(1)设直线BC的函数关系式为y=kx+b(k≠0),把B、C的坐标代入求出即可;(2)求出y=﹣x+4和AD=3,根据三角形面积公式求出即可;(3)把S=3代入函数解析式,求出x,再求出y即可.【题目详解】解:(1)设直线BC的函数关系式为y=kx+b(k≠0),由图象可知:点C坐标是(0,4),点B坐标是(6,0),代入得:,解得:k=﹣,b=4,所以直线BC的函数关系式是y=﹣x+4;(2)∵点P(x,y)是直线BC在第一象限内的点,∴y>0,y=﹣x+4,0<x<6,∵点A的坐标为(﹣2,0),点D的坐标为(1,0),∴AD=3,∴S△ADP=×3×(﹣x+4)=﹣x+6,即S=﹣x+6(0<x<6);(3)当S=3时,﹣x+6=3,解得:x=3,y=﹣×3+4=2,即此时点P的坐标是(3,2),根据对称性可知当当P在x轴下方时,可得满足条件的点P′(9,﹣2).【题目点拨】本题考查了用待定系数法求一次函数的解析式和一次函数图象上点的坐标特征,能正确求出直线BC的解析式是解此题的关键.20、详见解析【解题分析】

先证出,由证明Rt△ABC≌Rt△DFE,得出对应边相等即可.【题目详解】解:证明:,∴△ABC和△DEF都是直角三角形,,即,在Rt△ABC和Rt△DFE中,,∴Rt△ABC≌Rt△DFE(HL),∴.【题目点拨】本题考查了全等三角形的判定与性质;熟练掌握直角三角形全等的判定方法是解决问题的关键.21、(1)三月份每瓶高档酒售价为1500元;(2)有三种进货方案,分别为:①购进种酒35瓶,种酒65瓶,②购进种酒36瓶,种酒64瓶,③购进种酒37瓶,种酒63瓶;(3),种酒越少,所用进货款就越少,在利润相同的情况下,选择方案①对经销商更有利.【解题分析】

(1)设三月份每瓶高档酒A售价为x元,然后根据三、四月卖出相同数量列出方程,求解即可;(2)设购进A种酒y瓶,表示出B种酒为(100-y)瓶,再根据预算资金列出不等式组,然后求出y的取值范围,再根据y是正整数设计方案;(3)设购进A种酒y瓶时利润为w元,然后列式整理得到获利表达式,再根据所有方案获利相等列式计算即可得解.【题目详解】解:(1)设三月份每瓶高档酒售价为元,由题意得,解得,经检验,是原方程的解,且符合题意,答:三月份每瓶高档酒售价为1500元;(2)设购进种酒瓶,则购进种酒为(100-y)瓶,由题意得,解得,∵为正整数,∴、、,∴有三种进货方案,分别为:①购进种酒35瓶,种酒65瓶,②购进种酒36瓶,种酒64瓶,③购进种酒37瓶,种酒63瓶;(3)设购进种酒瓶时利润为元,则四月份每瓶高档酒售价为元,,,∵(2)中所有方案获利恰好相同∴,解得.∵∴种酒越少,所用进货款就越少,在利润相同的情况下,选择方案①对经销商更有利.【题目点拨】此题考查二元一次方程组的应用,一元一次不等式组的应用,解题关键在于列出方程22、(1)200;(2)62,0.06,38;(3)见解析;(4)1【解题分析】

(1)根据统计图中的数据可以求得此次抽样调查的样本容量;(2)根据统计图中的数据可以求得a、b、c的值;(3)根据(2)中a、c的值可以将统计图补充完整;(4)根据表格中的数据可以求得一等奖的分数线.【题目详解】解:(1)16÷0.08=200,故答案为:200;(2)a=200×0.31=62,b=12÷200=0.06,c=200-16-62-72-12=38,故答案为:62,0.06,38;(3)由(2)知a=62,c=38,补全的条形统计图如右图所示;(4)d=38÷200=0.19,∵b=0.06,0.06+0.19=0.25=25%,∴一等奖的分数线是1.【题目点拨】根据频数分布直方图、样本容量、频数分布表,解答本题的关键是明确题意,利用数形结合的思想解答.23、(1)a=86,b=2,c=2,d=22.8;(2)八(2)班前5名同学的成绩较好,理由见解析【解题分析】

(1)根据平均数、中位数、众数的概念解答,根据方差计算公式,求出八(1)班的方差即可;(2)先根据方差计算公式,求出八(1)班的方差,结合平均数、中位数、众数与方差的意义求解即可;【题目详解】(1)八(2)班的平均分a=(79+2+92+2+1)÷5=86,将八(1)班的前5名学生的成绩按从小到大的顺序排列为:77,2,2,86,92,第三个数是2,所以中位数b=2,2出现了2次,次数最多,所以众数c=2.八(1)班的方差d=[(86-2)2+(2-2)2+(77-2)2+(92-2)2+(2-2)2]÷5=22.8;故答案为86,2,2,22.8;(2)∵由数据可知,两班成绩中位数,众数相同,而八(2)班平均成绩更高,且方差更小,成绩更稳定,∴八(2)班前5名同学的成绩较好;【题目点拨】考查方差、平均数、众数和中位数,平均数表示一组数据的平均程度.一组数据中出现次数最多的数据叫做众数.中位数是将一组数据

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论