安徽省亳州一中学南学校国际部2024届数学八年级第二学期期末联考模拟试题含解析_第1页
安徽省亳州一中学南学校国际部2024届数学八年级第二学期期末联考模拟试题含解析_第2页
安徽省亳州一中学南学校国际部2024届数学八年级第二学期期末联考模拟试题含解析_第3页
安徽省亳州一中学南学校国际部2024届数学八年级第二学期期末联考模拟试题含解析_第4页
安徽省亳州一中学南学校国际部2024届数学八年级第二学期期末联考模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省亳州一中学南学校国际部2024届数学八年级第二学期期末联考模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.从-3、-2、-1、1、2、3六个数中任选一个数记为k,若数k使得关于x的分式方程k-1x+1=k-2有解,且使关于x的一次函数y=k+2x+1不经过第四象限A.4 B.3 C.2 D.12.下列调查中,适合采用普查的是()A.了解一批电视机的使用寿命B.了解全省学生的家庭1周内丢弃塑料袋的数量C.了解某校八(2)班学生每天用于课外阅读的时间D.了解苏州市中学生的近视率3.如图,直线y=kx+b交坐标轴于A(-3,0)、B(0,1)两点,则不等式-kx-b<0的解集为()A.x<-3 B.x>-3 C.x<3 D.x>34.若平行四边形中两个邻角的度数比为1:3,则其中较小的内角是()A.30° B.45° C.60° D.75°5.经过多边形一个角的两边剪掉这个角,则得到的新多边形的外角和()A.比原多边形多 B.比原多边形少 C.与原多边形外角和相等 D.不确定6.若直线y=x+1与y=-2x+a的交点在第一象限,则a的取值可以是A.-1 B.0 C.1 D.27.若y=(m﹣2)x+(m2﹣4)是正比例函数,则m的取值是()A.2 B.﹣2 C.±2 D.任意实数8.20190的值等于()A.-2019 B.0 C.1 D.20199.将若干个小菱形按如图所示的规律排列:第一个图形有5个菱形,第二个图形有9个菱形第三个图形有13个菱形,…,则第9个图形有()个菱形.A.33 B.36 C.37 D.4110.如果关于x的一次函数y=(a+1)x+(a﹣4)的图象不经过第二象限,且关于x的分式方程有整数解,那么整数a值不可能是()A.0 B.1 C.3 D.4二、填空题(每小题3分,共24分)11.如图,是直线上的一点,已知的面积为,则的面积为________.12.化简的结果为________.13.已知y与x+1成正比例,且x=1时,y=2.则x=-1时,y的值是______.14.如图,在中,,且把的面积三等分,那么_____.15.一组数据:24,58,45,36,75,48,80,则这组数据的中位数是_____.16.如图,点A是x轴上的一个动点,点C在y轴上,以AC为对角线画正方形ABCD,已知点C的坐标是,设点A的坐标为.当时,正方形ABCD的边长______.连结OD,当时,______.17.将函数y=12x-2的图象向上平移_____个单位后,所得图象经过点(0,18.如图,矩形纸片ABCD的边长AB=4,AD=2,将矩形纸片沿EF折叠,使点A与点C重合,折叠后在其一面着色(如图),着色部分的面积为______________.三、解答题(共66分)19.(10分)我市晶泰星公司安排名工人生产甲、乙两种产品,每人每天生产件甲产品或件乙产品.根据市场行情测得,甲产品每件可获利元,乙产品每件可获利元.而实际生产中,生产乙产品需要数外支出一定的费用,经过核算,每生产件乙产品,当天每件乙产品平均荻利减少元,设每天安排人生产乙产品.(1)根据信息填表:产品种类每天工人数(人)每天产量(件)每件产品可获利润(元)甲乙(2)若每天生产甲产品可获得的利润比生产乙产品可获得的利润多元,试问:该企业每天生产甲、乙产品可获得总利润是多少元?20.(6分)如图,直线AB与x轴交于点A(1,0),与y轴交于点B(0,﹣2).(1)求直线AB的解析式;(2)若直线AB上的点C在第一象限,且S△BOC=2,求点C的坐标.21.(6分)已知:直线y=与x轴、y轴分别相交于点A和点B,点C在线段AO上.将△CBO沿BC折叠后,点O恰好落在AB边上点D处.(1)直接写出点A、点B的坐标:(2)求AC的长;(3)点P为平面内一动点,且满足以A、B、C、P为顶点的四边形为平行四边形,请直接回答:①符合要求的P点有几个?②写出一个符合要求的P点坐标.22.(8分)如图,已知点E,C在线段BF上,BE=EC=CF,AB∥DE,∠ACB=∠F.(1)求证:△ABC≌△DEF;(2)求证:四边形ACFD为平行四边形.23.(8分)如图,直线与直线,两直线与轴的交点分别为、.(1)求两直线交点的坐标;(2)求的面积.24.(8分)为了更好的治理西流湖水质,保护环境,市治污公司决定购买10台污水处理设备.现有A、B两种型号的设备,其中每台的价格,月处理污水量如下表:A型B型价格(万元/台)ab处理污水量(吨/月)240200经调查:购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元.(1)求a,b的值;(2)经预算:市治污公司购买污水处理设备的资金不超过105万元,你认为该公司有哪几种购买方案;(3)在(2)问的条件下,若每月要求处理西流湖的污水量不低于2040吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.25.(10分)如图,△ABC的三个顶点的坐标分别为A(﹣2,3)、B(﹣6,0)、C(﹣1,0).(1)画出把△ABC向下平移4个单位后的图形.(2)画出将△ABC绕原点O按顺时针方向旋转90°后的图形.(3)写出符合条件的以A、B、C、D为顶点的平行四边形的第四个顶点D的坐标.26.(10分)在平面直角坐标系中,四边形AOBC是矩形,点O(0,0),点A(5,0),点B(0,3).以点A为中心,顺时针旋转矩形AOBC,得到矩形ADEF,点O,B,C的对应点分别为D,E,F.(1)如图①,当点D落在BC边上时,求点D的坐标;(2)如图②,当点D落在线段BE上时,AD与BC交于点H.①求证△ADB≌△AOB;②求点H的坐标.(3)记K为矩形AOBC对角线的交点,S为△KDE的面积,求S的取值范围(直接写出结果即可).

参考答案一、选择题(每小题3分,共30分)1、C【解题分析】

根据题意可以求得k的值,从而可以解答本题.【题目详解】解:∵关于x的一次函数y=(k+2)x+1不经过第四象限,∴k+2>0,解得:k>-2,∵关于x的分式方程:k-1∴当k=-1时,分式方程k-1x+1=k-2当k=1时,分式方程k-1x当k=2时,分式方程k-1x当k=3时,分式方程k-1x+1=k-2∴符合要求的k的值为-1和3,∴所有满足条件的k的个数是2个,故选:C.【题目点拨】本题考查一次函数的性质、分式方程的解,解答本题的关键是明确题意,求出相应的k的值.2、C【解题分析】

由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【题目详解】A、了解一批电视机的使用寿命适合抽样调查;B、了解全省学生的家庭1周内丢弃塑料袋的数量适合抽样调查;C、了解某校八(2)班学生每天用于课外阅读的时间适合全面调查;D、了解苏州市中学生的近视率适合抽样调查;故选C.【题目点拨】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查,事关重大的调查往往选用普查.3、B【解题分析】

求-kx-b<0的解集,即为kx+b>0,就是求函数值大于0时,x的取值范围.【题目详解】∵要求−kx−b<0的解集,即为求kx+b>0的解集,∴从图象上可以看出等y>0时,x>−3.故选:B【题目点拨】此题考查一次函数与一元一次不等式,解题关键在于结合函数图象进行解答.4、B【解题分析】

根据平行四边形的性质,可设较小的角为x,较大的角是3x,列式子即可得出结果.【题目详解】设较小的角为x,较大的是3x,x+3x=180,x=45°.故选B.【题目点拨】本题考查平行四边形的性质,比较简单.5、C【解题分析】

根据外角和的定义即可得出答案.【题目详解】多边形外角和均为360°,故答案选择C.【题目点拨】本题考查的是多边形的外角和,比较简单,记住多边形的外角和均为360°.6、D【解题分析】

联立两直线解析式,解关于x、y的二元一次方程组,然后根据交点在第一象限,横坐标是正数,纵坐标是正数,列出不等式组求解即可.【题目详解】解:联立,解得:,∵交点在第一象限,∴,解得:a>1.故选D.【题目点拨】本题考查了两直线相交的问题,第一象限内点的横坐标是正数,纵坐标是正数,以及一元一次不等式组的解法,把a看作常数表示出x、y是解题的关键.7、B【解题分析】

正比例函数的一般式y=kx,k≠0,所以使m2-4=0,m-2≠0即可得解.【题目详解】由正比例函数的定义可得:m2-4=0,且m-2≠0,解得,m=-2;故选B.8、C【解题分析】

根据任何非0数的0次幂都等于1即可得出结论.【题目详解】解:20190=1.故选:C.【题目点拨】此题考查的是零指数幂的性质,掌握任何非0数的0次幂都等于1是解决此题的关键.9、C【解题分析】

设第n个图形有an个菱形(n为正整数),观察图形,根据各图形中菱形个数的变化可得出变化规律“an=4n+1(n为正整数)”,再代入n=9即可求出结论.【题目详解】解:设第n个图形有an个菱形(n为正整数).观察图形,可知:a1=5=4+1,a2=9=4×2+1,a3=13=4×3+1,a4=17=4×4+1,∴an=4n+1(n为正整数),∴a9=4×9+1=1.故选:C.【题目点拨】本题考查了规律型:图形的变化类,根据各图形中菱形个数的变化找出变化规律“an=4n+1(n为正整数)”是解题的关键.10、B【解题分析】

依据关于x的一次函数y=(a+2)x+(a-2)的图象不经过第二象限的数,求得a的取值范围,依据关于x的分式方程有整数解,即可得到整数a的取值.【题目详解】解:∵关于x的一次函数y=(a+2)x+(a-2)的图象不经过第二象限,

∴a+2>0,a-2≤0,

解得-2<a≤2.

∵+2=,

∴x=,

∵关于x的分式方程+2=有整数解,

∴整数a=0,2,3,2,

∵a=2时,x=2是增根,

∴a=0,3,2

综上,可得,满足题意的a的值有3个:0,3,2,

∴整数a值不可能是2.

故选B.【题目点拨】本题考查了一次函数的图象与系数的关系以及分式方程的解.注意根据题意求得使得关于x的分式方程有整数解,且关于x的一次函数y=(a+2)x+(a-2)的图象不经过第二象限的a的值是关键.二、填空题(每小题3分,共24分)11、【解题分析】

根据平行四边形面积的表示形式及三角形的面积表达式可得出△ABE的面积为平行四边形的面积的一半.【题目详解】根据图形可得:△ABE的面积为平行四边形的面积的一半,又∵▱ABCD的面积为52cm2,∴△ABE的面积为26cm2.故答案为:26.【题目点拨】本题考查平行四边形的性质,解题关键在于熟练掌握三角形的面积公式.12、【解题分析】

首先把分子、分母分解因式,然后约分即可.【题目详解】解:==【题目点拨】本题主要考查了分式的化简,正确进行因式分解是解题的关键.13、2【解题分析】

设y=k(x+1),把x=1,y=2代入,求的k,确定x,y的关系式,然后把x=-1,代入解析式求对应的函数值即可.【题目详解】解:∵y与x+1成正比例,∴设y=k(x+1),∵x=1时,y=2,∴2=k×2,即k=1,所以y=x+1.则当x=-1时,y=-1+1=2.故答案为2.【题目点拨】本题考查了正比例函数关系式为:y=kx(k≠2)),只需一组对应量就可确定解析式.也考查了给定自变量会求对应的函数值.14、【解题分析】

根据相似三角形的判定及其性质,求出线段DE,MN,BC之间的数量关系,即可解决问题.【题目详解】将的面积三等分,设的面积分别为,,,,故答案为:.【题目点拨】本题考查相似三角形的性质,熟练掌握相似三角形的面积比等于相似比的平方是解决问题的关键.15、1【解题分析】

把给出的此组数据中的数按一定的顺序排列,由于数据个数是7,7是奇数,所以处于最中间的数,就是此组数据的中位数;【题目详解】按从小到大的顺序排列为:2436451587580;

所以此组数据的中位数是1.【题目点拨】此题主要考查了中位数的意义与求解方法.16、;4或6【解题分析】

(4)在RtAOC中,利用勾股定理求出AC的长度,然后再求得正方形的边长即可;(4)先求得OD与y轴的夹角为45〬,然后依据OD的长,可求得点D的坐标,过D作DM⊥y轴,DN⊥x轴,接下来,再证明△DNA≌△DMC,从而可得到CM=AM,从而可得到点A的坐标.【题目详解】解:(4)当n=4时,OA=4,

在Rt△COA中,AC4=CO4+AO4=4.

∵ABCD为正方形,

∴AB=CB.

∴AC4=AB4+CB4=4AB4=4,

∴AB=.

故答案为.

(4)如图所示:过点D作DM⊥y轴,DN⊥x轴.

∵ABCD为正方形,

∴A、B、C、D四点共圆,∠DAC=45°.

又∵∠COA=90°,

∴点O也在这个圆上,

∴∠COD=∠CAD=45°.

又∵OD=,

∴DN=DM=4.

∴D(-4,4).

在Rt△DNA和Rt△DMC中,DC=AD,DM=DN,

∴△DNA≌△DMC.

∴CM=AN=OC-MO=3.

∵D(-4,4),

∴A(4,0).

∴n=4.

如下图所示:过点D作DM⊥y轴,DN⊥x轴.

∵ABCD为正方形,

∴A、B、C、D四点共圆,∠DAC=45°.

又∵∠COA=90°,

∴点O也在这个圆上,

∴∠AOD=∠ACD=45°.

又∵OD=,

∴DN=DM=4.

∴D(4,-4).

同理:△DNA≌△DMC,则AN=CM=5.

∴OA=ON+AN=4+5=6.

∴A(6,0).

∴n=6.

综上所述,n的值为4或6.

故答案为4或6.【题目点拨】本题考核知识点:正方形性质、全等三角形性质,圆等.解题关键点:熟记相关知识点.17、3【解题分析】

根据一次函数平移“上加下减”,即可求出.【题目详解】解:函数y=12图象需要向上平移1-(-2)=3个单位才能经过点(0,1).故答案为:3.【题目点拨】本题考查了一次函数的平移,将直线的平移转化成点的平移是解题的关键.18、【解题分析】设BE=x,则AE=EC=CF=4-x,在Rt△ECB中,CE2=BE2+BC2,∴(4-x)2=x2+22,∴x=,CF=.S着色部分=S矩形ABCD-S△ECF=4×2-××2=三、解答题(共66分)19、(1);;;(2)该企业每天生产甲、乙产品可获得总利润是元.【解题分析】

(1)设每天安排x人生产乙产品,则每天安排(65-x)人生产甲产品,每天可生产x件乙产品,每件的利润为(120-2x)元,每天可生产2(65-x)件甲产品,此问得解;(2)由总利润=每件产品的利润×生产数量结合每天生产甲产品可获得的利润比生产乙产品可获得的利润多650元,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【题目详解】解:(1)设每天安排x人生产乙产品,则每天安排(65-x)人生产甲产品,每天可生产x件乙产品,每件的利润为(120-2x)元,每天可生产2(65-x)件甲产品.故答案为:;;;(2)依题意,得:15×2(65-x)-(120-2x)•x=650,整理,得:x2-75x+650=0,解得:x1=10,x2=65(不合题意,舍去),∴15×2(65-x)+(120-2x)•x=2650,答:该企业每天生产甲、乙产品可获得总利润是2650元.【题目点拨】本题考查了一元二次方程的应用以及列代数式,解题的关键是:(1)根据各数量之间的关系,用含x的代数式表示出每天生产甲产品的数量及每件乙产品的利润;(2)找准等量关系,正确列出一元二次方程.20、(1)直线AB的解析式为y=1x﹣1,(1)点C的坐标是(1,1).【解题分析】

待定系数法,直线上点的坐标与方程的.(1)设直线AB的解析式为y=kx+b,将点A(1,0)、点B(0,﹣1)分别代入解析式即可组成方程组,从而得到AB的解析式.(1)设点C的坐标为(x,y),根据三角形面积公式以及S△BOC=1求出C的横坐标,再代入直线即可求出y的值,从而得到其坐标.【题目详解】解:(1)设直线AB的解析式为y=kx+b,∵直线AB过点A(1,0)、点B(0,﹣1),∴{k+b∴直线AB的解析式为y=1x﹣1.(1)设点C的坐标为(x,y),∵S△BOC=1,∴12•1•x=1,解得x=1∴y=1×1﹣1=1.∴点C的坐标是(1,1).21、(1)B(0,6),A(﹣8,0).(2)1;(3)①3个;②P1(﹣1,6),P2(﹣11,﹣6),P3(1,6).【解题分析】

(1)利用待定系数法解决问题即可.(2)由翻折不变性可知,OC=CD,OB=BD=6,∠CDB=∠BOC=90°,推出AD=AB-BD=4,设CD=OC=x,在Rt△ADC中,根据AD2+CD2=AC2,构建方程即可解决问题.(3)①根据平行四边形的定义画出图形即可判断.②利用平行四边形的性质求解即可解决问题.【题目详解】(1)对于直线y=x+6,令x=0,得到y=6,∴B(0,6),令y=0,得到x=﹣8,∴A(﹣8,0).(2)∵A(﹣8,0).B(0,6),∴OA=8,OB=6,∵∠AOB=90°,∴AB===10,由翻折不变性可知,OC=CD,OB=BD=6,∠CDB=∠BOC=90°,∴AD=AB﹣BD=4,设CD=OC=x,在Rt△ADC中,∵∠ADC=90°,∴AD2+CD2=AC2,∴42+x2=(8﹣x)2,解得x=3,∴OC=3,AC=OA﹣OC=8﹣3=1.(3)①符合条件的点P有3个如图所示.②∵A(﹣8,0),C(﹣3,0),B(0,6),可得P1(﹣1,6),P2(﹣11,﹣6),P3(1,6).【题目点拨】本题属于一次函数综合题,考查了待定系数法,解直角三角形,平行四边形的判定和性质等知识,解题的关键是熟练掌握基本知识,学会用分类讨论的思想思考问题22、(1)证明见解析;(2)证明见解析.【解题分析】试题分析:(1)根据平行线得出∠B=∠DEF,求出BC=EF,根据ASA推出两三角形全等即可;(2)根据全等得出AC=DF,推出AC∥DF,得出平行四边形ACFD,推出AD∥CF,MAD=CF,推出AD=CE,AD∥CE,根据平行四边形的判定推出即可.试题解析:(1)证明:∵AB∥DE,∴∠B=∠DEF,∵BE=EC=CF,∴BC=EF,在△ABC和△DEF中∴△ABC≌△DEF.(2)证明:∵△ABC≌△DEF,∴AC=DF,∵∠ACB=∠F,∴AC∥DF,∴四边形ACFD是平行四边形,∴AD∥CF,AD=CF,∵EC=CF,∴AD∥EC,AD=CE,∴四边形AECD是平行四边形.23、(1)A(1,0),B(3,0);(2)1【解题分析】分析:(1)通过解方程组组可得到C点坐标;(2)先确定A点和B点坐标,然后根据三角形面积公式求解.详解:(1)由得∴.(2)在中,当时,∴在中,当时,∴∴∴.点睛:本题考查了两直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.24、(1);(2)①A型设备0台,B型设备10台;②A型设备1台,B型设备9台;③A型设备2台,B型设备8台.;(3)为了节约资金,应选购A型设备1台,B型设备9台.【解题分析】

(1)根据“购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元”即可列出方程组,继而进行求解;(2)可设购买污水处理设备A型设备x台,B型设备(10-x)台,则有12x+10(10-x)≤105,解之确定x的值,即可确定方案;(3)因为每月要求处理流溪河两岸的污水量不低于2040吨,所以有240x+200(10-x)≥2040,解之即可由x的值确定方案,然后进行比较,作出选择.【题目详解】(1)根据题意得:,∴;(2)设购买污水处理设备A型设备x台,B型设备(10−x)台,则:12x+10(10−x)⩽105,∴x⩽2.5,∵x取非负整数,∴x=0,1,2,∴有三种购买方案:①A型设备0台,B型设备10台;②A型设备1台,B型设备9台;③A型设备2台,B型设备8台.(3)由题意:240x+200(10−x)⩾2040,∴x⩾1,又∵x⩽2.5,x取非负整数,∴x为1,2.当x=1时,购买资金为:12×1+10×9=102(万元),当x=2时,购买资金为:12×2+10×8=104(万元),∴为了节约资金,应选购A型设备1台,B型设备9台.【题目点拨】此题考查一元一次不等式的应用,二元一次方程组的应用,解题关键在于理解题意列出方程.25、(1)见解析;(2)见解析;(3)D1(3,3)、D2(-7,3)、D3(-5,-3).【解题分析】

(1)直接利用平移的性质得出对应点位置进而得出答案;(2)首先确定A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论