




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届内蒙古呼伦贝尔满洲里市数学八年级第二学期期末联考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.某校八年级(3)班体训队员的身高(单位:cm)如下:169,165,166,164,169,167,166,169,166,165,获得这组数据方法是()A.直接观察 B.查阅文献资料 C.互联网查询 D.测量2.如图,在中,,,,以点为圆心,长为半径画弧,交于点,则()A.2.5 B.3 C.2 D.3.53.如图1,在等边△ABC中,点E、D分别是AC,BC边的中点,点P为AB边上的一个动点,连接PE,PD,PC,DE,设,图1中某条线段的长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是图1中的()(提示:过点E、C、D作AB的垂线)A.线段PD B.线段PC C.线段DE D.线段PE4.如图,,矩形在的内部,顶点,分别在射线,上,,,则点到点的最大距离是()A. B. C. D.5.《代数学》中记载,形如x2+10x=39的方程,求正数解的几何方法是:“如图1,先构造一个面积为x2的正方形,再以正方形的边长为一边向外构造四个面积为52x的矩形,得到大正方形的面积为39+25=64,则该方程的正数解为8-5=3”,小聪按此方法解关于x的方程x2+6x+m=0时,构造出如图2所示的图形,己知阴影部分的面积为36A.6 B.35-3 C.35-2 D.35-36.如图,的周长为,,和相交于点,交于点,则的周长是()A. B. C. D.7.已知等腰三角形的底角为65°,则其顶角为()A.50° B.65° C.115° D.50°或65°8.如图,已知四边形ABCD是平行四边形,要使它成为菱形,那么需要添加的条件可以是()A.AC=BD B.AB=AC C.∠ABC=90° D.AC⊥BD9.如图,已知一次函数的图象与x轴,y轴分别交于点(2,0),点(0,3).有下列结论:①关于x的方程的解为;②关于x的方程的解为;③当时,;④当时,.其中正确的是()A.①②③ B.①③④ C.②③④ D.①②④10.如图,在△ABC中,点D、E分别是AB、AC的中点,下列结论不正确的是()A.DE∥BC B.BC=2DE C.DE=2BC D.∠ADE=∠B二、填空题(每小题3分,共24分)11.如图,在正方形ABCD中,H为AD上一点,∠ABH=∠DBH,BH交AC于点G.若HD=2,则线段AD的长为_____.12.若正n边形的内角和等于它的外角和,则边数n为_____.13.已知实数a在数轴上的位置如图所示,化简:+|a﹣1|=_____.14.如图,在矩形内放入四个小正方形和两个小长方形后成中心对称图形,其中顶点,分别在边,上,小长方形的长与宽的比值为,则的值为_____.15.一个不透明的袋中装有3个红球,2个黄球,1个白球,每个球除颜色外都相同,从袋中任意摸出一球,则摸到__________球的可能性最大。(填“红色”、“黄色”或“白色”)16.如图,边长为1的菱形ABCD中,∠DAB=60°.连结对角线AC,以AC为边作第二个菱形ACEF,使∠FAC=60°.连结AE,再以AE为边作第三个菱形AEGH使∠HAE=60°…按此规律所作的第n个菱形的边长是.17.已知函数y=-3x的图象经过点A(1,y1),点B(﹣2,y2),则y1_____y2(填“>”“<”或“=”)18.如图,△ABC中,AD是中线,AE是角平分线,CF⊥AE于F,AB=5,AC=2,则DF的长为_________.三、解答题(共66分)19.(10分)甲、乙两车分别从、两地同时出发,甲车匀速前往地,到达地后立即以另一速度按原路匀速返回到地;乙车匀速前往地,设甲、乙两车距地的路程为(千米),甲车行驶的时间为时),与之间的函数图象如图所示(1)甲车从地到地的速度是__________千米/时,乙车的速度是__________千米/时;(2)求甲车从地到达地的行驶时间;(3)求甲车返回时与之间的函数关系式,并写出自变量的取值范围;(4)求乙车到达地时甲车距地的路程.20.(6分)分解因式(1)20a3-30a2(2)25(x+y)2-9(x-y)221.(6分)七巧板是我国祖先的一项卓越创造.下列两幅图中有一幅是小明用如图所示的七巧板拼成的,另一幅则不是.请选出不是小明拼成的那幅图,并说明选择的理由.22.(8分)如图,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园(围墙最长可利用),现在已备足可以砌长的墙的材料,恰好用完,试求的长,使矩形花园的面积为.23.(8分)解不等式组:,并把解集表示在数轴上.24.(8分)学校为了提高学生跳远科目的成绩,对全校500名九年级学生开展了为期一个月的跳远科目强化训练.王老师为了了解学生的训练情况,强化训练前,随机抽取了该年级部分学生进行跳远测试,经过一个月的强化训练后,再次测得这部分学生的成绩,将两次测得的成绩制作成如图所示的统计图和不完整的统计表训练后学生成绩统计表成绩/分数6分7分8分9分10分人数/人1385n根据以上信息回答下列问题(1)训练后学生成绩统计表中n=,并补充完成下表:平均分中位数众数训练前7.58训练后8(2)若跳远成绩9分及以上为优秀,估计该校九年级学生训练后比训练前达到优秀的人数增加了多少?25.(10分)如图,某一时刻垂直于地面的大楼的影子一部分在地上,另一部分在斜坡上.已知坡角,米,米,且同一时刻竖直于地面长1米的标杆的影长恰好也为1米,求大楼的高度.26.(10分)某市计划修建一条长60千米的地铁,根据甲,乙两个地铁修建公司标书数据发现:甲,乙两公司每天修建地铁长度之比为3:5;甲公司单独完成此项工程比乙公司单独完成此项工程要多用240天.(1)求甲,乙两个公司每天分别修建地铁多少千米?(2)该市规定:“该工程由甲,乙两个公司轮流施工完成,工期不超过450天,且甲公司工作天数不少于乙公司工作天数的”.设甲公司工作a天,乙公司工作b天.①请求出b与a的函数关系式及a的取值范围;②设完成此项工程的工期为W天,请求出W的最小值.
参考答案一、选择题(每小题3分,共30分)1、D【解题分析】本题考查的是调查收集数据的过程与方法根据八某校年级(3)班体训队员的身高即可判断获得这组数据的方法.由题意得,获得这组数据方法是测量,故选D.思路拓展:解答本题的关键是掌握好调查收集数据的过程与方法.2、C【解题分析】
首先利用勾股定理可以算出AB的长,再根据题意可得到AD=AC,根据BD=AB-AD即可算出答案.【题目详解】∵AC=3,BC=4,
∴AB==5,
∵以点A为圆心,AC长为半径画弧,交AB于点D,
∴AD=AC,
∴AD=3,
∴BD=AB-AD=5-3=1.
故选:C.【题目点拨】此题考查勾股定理,解题关键是熟练掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.3、D【解题分析】
先设等边三角形的边长为1个单位长度,再根据等边三角形的性质确定各线段取最小值时x的取值,再结合函数图像得到结论.【题目详解】设等边三角形的边长为1,则0≤x≤1,如图1,分别过点E,C,D作垂线,垂足分别为F,G,H,∵点E、D分别是AC,BC边的中点,根据等边三角形的性质可得,当x=时,线段PE有最小值;当x=时,线段PC有最小值;当x=时,线段PD有最小值;又DE是△ABC的中位线为定值,由图2可知,当x=时,函数有最小值,故这条线段为PE,故选D.【题目点拨】此题主要考查函数图像,解题的关键是熟知等边三角形、三角形中位线的性质.4、B【解题分析】
取DC的中点E,连接OE、DE、OD,根据三角形的任意两边之和大于第三边可知当O、E、D三点共线时,点D到点O的距离最大,再根据勾股定理求出DE的长,根据直角三角形斜边上的中线等于斜边的一半求出OE的长,两者相加即可得解.【题目详解】取中点,连接、、,,.在中,利用勾股定理可得.在中,根据三角形三边关系可知,当、、三点共线时,最大为.故选:.【题目点拨】本题考查了直角三角形斜边上的中线等于斜边的一半得到性质,三角形的三边关系,矩形的性质,勾股定理,根据三角形的三边关系判断出点O、E、D三点共线时,点D到点O的距离最大是解题的关键.5、B【解题分析】
根据题意列方程,即x2+6x就是阴影部分的面积,用配方法解二次方程,取正数解即可.【题目详解】解:由题意得:x2+6x=36,
解方程得:x2+2×3x+9=45,
(x+3)2=45∴x+3=35,或x+3=-35,∴x=35-3,或x=-35-3<0,∴该方程的正数解为:35-3,故答案为:B【题目点拨】本题考查了解一元二次方程,属于模仿题型,正确理解题意是解题的关键.6、B【解题分析】
根据平行四边形的性质,两组对边分别平行且相等,对角线相互平分,OE⊥BD可说明E0是线段BD的中垂线,中垂线上任意一点到线段两端点的距离相等,则BE-DE,再利用平行四边形ABCD的周长为16cm可得AB+AD=8cm,进而可得△ABE的周长.【题目详解】解:∵四边形ABCD是平行四边形∴AB=CD,AD=BC,OB=OD又∵OE⊥BD∴OE是线段BD的中垂线,∴BE=DE∴AE+ED-AE+BE,∵平行四边形ABCD的周长为16cm∴AB+AD=8cm∴△ABE的周长=AB+AD=AB+AE+BE=8cm.故选:B.【题目点拨】本题主要考查了平行四边形的性质,中垂线的判定及性质,关键是掌握平行四边形平行四边形的对边相等,平行四边形的对角线互相平分.7、A【解题分析】
等腰三角形的一个底角是65°,则另一个底角也是65°,据此用三角形内角和减去两个底角的度数,就是顶角的度数.【题目详解】解:180°65°65°=50°,∴它的顶角是50°.故选:A.【题目点拨】此题考查等腰三角形的性质和三角形内角和定理的灵活应用.8、D【解题分析】
根据菱形的判定方法有四种:①定义:一组邻边相等的平行四边形是菱形;②四边相等;③对角线互相垂直平分的四边形是菱形,④对角线平分对角,作出选择即可.【题目详解】A.∵四边形ABCD是平行四边形,AC=BD,∴四边形ABCD是矩形,不是菱形,故本选项错误;B.∵四边形ABCD是平行四边形,AB=AC≠BC,∴平行四边形ABCD不是菱形,故本选项错误;C.∵四边形ABCD是平行四边形,∠ABC=90°,∴四边形ABCD是矩形,不能推出平行四边形ABCD是菱形,故本选项错误;D.∵四边形ABCD是平行四边形,AC⊥BD,∴平行四边形ABCD是菱形,故本选项正确.故选D.【题目点拨】本题考查了平行四边形的性质,菱形的判定方法;注意:菱形的判定定理有:①有一组邻边相等的平行四边形是菱形,②四条边都相等的四边形是菱形,③对角线互相垂直的平行四边形是菱形.9、A【解题分析】
根据一次函数的性质及一次函数与一元一次方程的关系对各结论逐一判断即可得答案.【题目详解】∵一次函数的图象与x轴,y轴分别交于点(2,0),点(0,3),∴x=2时,y=0,x=0时,y=3,∴关于x的方程的解为;关于x的方程的解为,∴①②正确,由图象可知:x>2时,y<0,故③正确,x<0时,y>3,故④错误,综上所述:正确的结论有①②③,故选A.【题目点拨】本题考查一次函数图象上点的坐标特征及一次函数与一元一次方程的关系,利用数形结合的思想是解题关键.10、C【解题分析】
根据三角形的中位线定理得出DE是△ABC的中位线,再由中位线的性质得出结论.【题目详解】解:∵在△ABC中,点D、E分别是边AB、AC的中点,∴DE//BC,DE=BC,∴BC=2DE,∠ADE=∠B,故选C.【题目点拨】本题考查了三角形的中位线定理,根据三角形的中位线的定义得出DE是△ABC的中位线是解答此题的关键.二、填空题(每小题3分,共24分)11、【解题分析】
作HE⊥BD交BD于点E,在等腰直角三角形DEH中求出HE的长,由角平分线的性质可得HE=AH,即可求出AD的长.【题目详解】作HE⊥BD交BD于点E,∵四边形ABCD是正方形,∴∠BAD=90°,∠ADB=45°,∴△DEH是等腰直角三角形,∴HE=DE,∵HE2+DE2=DH2,∴HE=,∵∠ABH=∠DBH,∠BAD=90°,∠BEH=90°,∴HE=AH=,∴.AD=.故答案为.【题目点拨】本题考查了正方形的性质,角平分线的性质,勾股定理,等腰直角三角形的判定与性质,熟练掌握正方形的性质是解答本题的关键.12、1【解题分析】
设这个多边形的边数为n,则依题意可列出方程(n﹣2)×180°=360°,从得出答案.【题目详解】解:设这个多边形的边数为n,则依题意可得:(n﹣2)×180°=360°,解得,n=1.故答案为:1.【题目点拨】本题考查的知识点是正多边形的内角和与外角和,熟记正多边形内角和的计算公式是解此题的关键.13、1﹣2a.【解题分析】
利用数轴上a的位置,进而得出a和a-1的取值范围,进而化简即可.【题目详解】由数轴可得:﹣1<a<0,则+|a﹣1|=﹣a+1﹣a=1﹣2a.故答案为1﹣2a.【题目点拨】此题主要考查了二次根式的性质与化简,绝对值得意义,正确化简二次根式是解题关键.14、【解题分析】
连结,作于,根据中心对称图形的定义和相似三角形的性质可得两直角边的比是,进一步得到长与宽的比即可.【题目详解】解:连结,作于,在矩形内放入四个小正方形和两个小长方形后成中心对称图形,,,,长与宽的比为,即,故答案为:.【题目点拨】此题考查了中心对称图形、相似三角形的性质、全等三角形的性质、矩形的性质、正方形的性质等知识,关键是理解直角三角形两直角边的比是.15、红色【解题分析】
可根据概率公式计算出红球、黄球、白球摸到的概率,然后比较即可【题目详解】解:总共有3+2+1=6个球,摸到红球的概率为:,摸到黄球的概率为:,摸到白球的概率为:,所以红色球的可能性最大.【题目点拨】本题考查可能性的大小,可根据随机等可能事件的概率计算公式分别计算出它们的概率,然后比较即可,也可以列举出所有可能的结果,比较即可.16、【解题分析】
试题分析:连接DB,BD与AC相交于点M,∵四边形ABCD是菱形,∴AD=AB.AC⊥DB.∵∠DAB=60°,∴△ADB是等边三角形.∴DB=AD=1,∴BM=∴AM=∴AC=.同理可得AE=AC=()2,AG=AE=()3,…按此规律所作的第n个菱形的边长为()n-117、<.【解题分析】
分别把点A(-1,y1),点B(-2,y2)代入函数y=-3x,求出y1,y2的值,并比较出其大小即可.【题目详解】∵点A(-1,y1),点B(-2,y2)是函数y=-3x上的点,∴y1=3,y2=6,∵6>3,∴y2>y1.考点:一次函数图象上点的坐标特征.18、【解题分析】
解:如图,延长CF交AB于点G,∵在△AFG和△AFC中,∠GAF=∠CAF,AF=AF,∠AFG=∠AFC,∴△AFG≌△AFC(ASA).∴AC=AG,GF=CF.又∵点D是BC中点,∴DF是△CBG的中位线.∴DF=BG=(AB﹣AG)=(AB﹣AC)=.故答案为:.三、解答题(共66分)19、(1);(2)甲车从地到达地的行驶时间是2.5小时;(3)甲车返回时与之间的函数关系式是;(4)乙车到达地时甲车距地的路程是175千米.【解题分析】
(1)根据题意列算式计算即可得到结论;(2)根据题意列算式计算即可得到结论;(3)设甲车返回时与之间的函数关系式为y=kt+b,根据题意列方程组求解即可得到结论;(4)根据题意列算式计算即可得到结论.【题目详解】解:(1)甲车从A地开往B地时的速度是:180÷1.5=120千米/时,乙车从B地开往A地的速度是:(300-180)÷1.5=80千米/时,
故答案为:120;80;(2)(小时)答:甲车从地到达地的行驶时间是2.5小时(3)设甲车返回时与之间的函数关系式为,则有解得:,∴甲车返回时与之间的函数关系式是(4)小时,把代入得:答:乙车到达地时甲车距地的路程是175千米.【题目点拨】本题考查了待定系数法及一次函数的解析式的运用,行程问题的数量关系的运用,解答时正确看图理解题意和求出一次函数的解析式是关键.20、(1)10a2(2a﹣3)(2)4(4x+y)(x+4y)【解题分析】分析:(1)利用提公因式法,找到并提取公因式10a2即可;(2)利用平方差公式进行因式分解,然后整理化简即可.详解:(1)解:20a3﹣30a2=10a2(2a﹣3)(2)解:25(x+y)2﹣9(x﹣y)2=[5(x+y)+3(x﹣y)][5(x+y)﹣3(x﹣y)]=(8x+2y)(2x+8y);=4(4x+y)(x+4y).点睛:因式分解是把一个多项式化为几个因式积的形式.根据因式分解的一般步骤:一提(公因式)、二套(平方差公式,完全平方公式)、三检查(彻底分解).21、图2不是,图2不满足勾股定理,见解析【解题分析】
七巧板有5个等腰直角三角形;有大、小两对全等三角形;一个正方形;一个平行四边形,根据这些图形的性质可解答.【题目详解】解:图1是由七巧板拼成的,图2不是,图2中上面的等腰直角三角形和①②不同.【题目点拨】本题运用了等腰直角三角形、全等三角形、正方形、平行四边形的性质,关键是把握好每一块中边的特征.22、的长为15米【解题分析】
设AB=xm,列方程解答即可.【题目详解】解:设AB=xm,则BC=(50-2x)m,根据题意可得,,解得:,当时,,故(不合题意舍去),答:的长为15米.【题目点拨】此题考查一元二次方程的实际应用,正确理解题意是列方程的关键.23、-2≤x<2【解题分析】
先求出不等式的解集,再求出不等式组的解集,最后在数轴上表示出来即可.【题目详解】解:∵解不等式①得:x<2,解不等式②得:x≥-2,∴不等式组的解集为-2≤x<2,在数轴上表示为:【题目点拨】本题考查了解一元一次不等式组,在数轴上表示不等式组的解集等知识点,能求出不等式组的解集是解此题的关键.24、(1)3;7.5;8.3;8;(2)估计该校九年级学生训练后比训练前达到优秀的人数增加了125
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年农业用地长期租赁合同样本
- 2025年已签订解除劳动合同是否还需开具离职证明
- 管理理论萌芽时期
- 护理风险防范意识
- 河南省TOP20二十名校2024-2025学年高二下学期5月调研考试历史试卷
- 2025年贵州省贵阳市青岩贵璜中学中考一模数学试题
- 2025年年财务管理试题及答案
- 2024年-2025年学年度第二学期小班德育工作总结模版
- 煤矿安全生产活动月工作总结模版
- 湖南省部分学校2024-2025学年高二下学期4月期中联考生物试题 含解析
- 2023-2024学年上海市宝山区八年级(下)期末数学试卷 (含答案)
- 2025年中考数学模拟考试卷(附答案)
- 汽车合伙合同协议书
- 四川省九师联盟2025届高三仿真模拟卷物理试卷及答案(HG)
- 2025年保密法基础知识考试题库带答案(预热题)参考答案详解
- 乙状结肠癌试题及答案
- 2025夏季安徽蚌埠市东方人力资源有限劳务派遣人员招聘30人笔试参考题库附带答案详解
- 2024年贵州铜仁公开招聘社区工作者考试试题答案解析
- 2025年中央民族大学辅导员招聘考试笔试试题(含答案)
- 江苏苏州国家历史文化名城保护区、苏州市姑苏区区属国资集团招聘笔试题库2025
- 2025届山东济南市下学期高三数学试题5月(第三次)模拟考试试卷
评论
0/150
提交评论