2024届河南省许昌地区数学八年级第二学期期末学业水平测试模拟试题含解析_第1页
2024届河南省许昌地区数学八年级第二学期期末学业水平测试模拟试题含解析_第2页
2024届河南省许昌地区数学八年级第二学期期末学业水平测试模拟试题含解析_第3页
2024届河南省许昌地区数学八年级第二学期期末学业水平测试模拟试题含解析_第4页
2024届河南省许昌地区数学八年级第二学期期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届河南省许昌地区数学八年级第二学期期末学业水平测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.若点P(m,2)与点Q(3,n)关于原点对称,则m,n的值分别为()A.,2 B.3, C., D.3,22.用反证法证明命题“若,则”时,第一步应假设()A. B. C. D.3.已知菱形的两条对角线的长分别是6和8,则菱形的周长是()A.36 B.30 C.24 D.204.不等式组的解集是()A. B. C. D.5.已知().A.3 B.-3 C.5 D.-56.下列各式:,,+y,,,其中分式共有()A.1个 B.2个 C.3个 D.4个7.在平面直角坐标系中,平行四边形的顶点的坐标分别是,,点把线段三等分,延长分别交于点,连接,则下列结论:;③四边形的面积为;④,其中正确的有().A. B. C. D.8.下列说法错误的是()A.当时,分式有意义 B.当时,分式无意义C.不论取何值,分式都有意义 D.当时,分式的值为09.如图,在RtΔABC中,∠C=90°,BC=6,AC=8,则AB的长度为()A.7 B.8 C.9 D.1010.已知一次函数y=kx﹣1,若y随x的增大而减小,则它的图象经过()A.第一、二、三象限 B.第一、二、四象限C.第一、三、四象限 D.第二、三、四象限二、填空题(每小题3分,共24分)11.2018﹣2019赛季中国男子篮球职业联赛(CBA),继续采用双循环制(每两队之间都进行两场比赛),总比赛场数为380场.求有多少支队伍参加比赛?设参赛队伍有x支,则可列方程为_____.12.若方程组的解是,那么|a-b|=______________.13.分式与的最简公分母是__________.14.命题“全等三角形的对应角相等”的逆命题是____________________________这个逆命题是______(填“真”或“假”)15.若分式的值为0,则__.16.如图所示,P是正方形ABCD内一点,将△ABP绕点B顺时针方向旋转能与△CBP′重合,若PB=2,则PP′=_______.17.已知:如图,在△ABC中,∠ACB=90°,D、E、F分别是AC、AB、BC的中点,若CE=8,则DF的长是________.18.如图,升降平台由三个边长为1.2米的菱形和两个腰长为1.2米的等腰三角形组成,其中平台AM与底座A0N平行,长度均为24米,点B,B0分别在AM和A0N上滑动这种设计是利用平行四边形的________;为了安全,该平台作业时∠B1不得超过60°,则平台高度(AA0)的最大值为________

米三、解答题(共66分)19.(10分)为了方便居民低碳出行,我市公共自行车租赁系统(一期)试运行.图①是公共自行车的实物图,图②是公共自行车的车架示意图,点、、、在伺一条直线上,测量得到座杆,,,且.求点到的距离.(结果精确到.参考数据:,,)20.(6分)某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份A款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?(3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a值应是多少?此时,哪种方案对公司更有利?21.(6分)某单位欲从内部招聘管理人员一名,对甲、乙、丙三名候选人进行了笔试和面试两项测试,三人的测试成绩如下表所示:根据录用程序,组织200名职工对三人利用投票推荐的方式进行民主评议,三人得票率(没有弃权票,每位职工只能推荐1人)如上图所示,每得一票记作1分.(l)请算出三人的民主评议得分;(2)如果根据三项测试的平均成绩确定录用人选,那么谁将被录用(精确到0.01)?(3)根据实际需要,单位将笔试、面试、民主评议三项测试得分按4:3:3的比例确定个人成绩,那么谁将被录用?22.(8分)如图,把矩形纸片ABCD置于直角坐标系中,AB∥x轴,BC∥y轴,AB=4,BC=3,点B(5,1)翻折矩形纸片使点A落在对角线DB上的H处得折痕DG.(1)求AG的长;(2)在坐标平面内存在点M(m,-1)使AM+CM最小,求出这个最小值;(3)求线段GH所在直线的解析式.23.(8分)如图,正方形网格中的每个小正方形边长都为1,每个小正方形的顶点叫格点,以格点为顶点分别按下列要求画三角形和平行四边形.(1)使三角形三边长为3,,;(2)使平行四边形有一锐角为15°,且面积为1.24.(8分)如图①,正方形的边长为,动点从点出发,在正方形的边上沿运动,设运动的时间为,点移动的路程为,与的函数图象如图②,请回答下列问题:(1)点在上运动的时间为,在上运动的速度为(2)设的面积为,求当点在上运动时,与之间的函数解析式;(3)①下列图表示的面积与时间之间的函数图象是.②当时,的面积为25.(10分)某住宅小区有一块草坪如图所示.已知AB=3米,BC=4米,CD=12米,DA=13米,且AB⊥BC,求这块草坪的面积.26.(10分)某公司招聘职员,对甲、乙两位候选人进行了面试和笔试,面试中包括形体和口才,笔试中包括专业水平和创新能力考察,他们的成绩(百分制)如下表:候选人面试笔试形体口才专业水平创新能力甲86909692乙92889593(1)若公司想招一个综合能力较强的职员,计算两名候选人的平均成绩,应该录取谁?(2)若公司根据经营性质和岗位要求认为:形体、口才、专业水平、创新能力按照1:3:4:2的比确定,请计算甲、乙两人各自的平均成绩,看看谁将被录取?

参考答案一、选择题(每小题3分,共30分)1、C【解题分析】

根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.【题目详解】点P(m,2)与点Q(3,n)关于原点对称,得m=-3,n=-2,故选:C.【题目点拨】本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.2、C【解题分析】

用反证法证明命题的真假,首先我们要假设命题的结论不成立,据此即可得出答案.【题目详解】∵用反证法证明命题的真假,首先我们要假设命题的结论不成立,∴反证法证明命题“若,则”时,第一步应假设,故选:C.【题目点拨】本题主要考查了反证法的运用,熟练掌握相关概念是解题关键.3、D【解题分析】解:如图所示,根据题意得:AO=×8=4,BO=×6=1.∵四边形ABCD是菱形,∴AB=BC=CD=DA,AC⊥BD,∴△AOB是直角三角形,∴AB==5,∴此菱形的周长为:5×4=2.故选D.4、A【解题分析】

分别求出各不等式的解集,再求出其公共解集即可.【题目详解】解:

解不等式①得:x⩽2,

解不等式②得:x>−3,

∴不等式组的解集为:−3<x⩽2,

故选:A.【题目点拨】本题考查了解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.5、A【解题分析】

观察已知m2-m-1=0可转化为m2-m=1,再对m4-m3-m+2提取公因式因式分解的过程中将m2-m作为一个整体代入,逐次降低m的次数,使问题得以解决.【题目详解】∵m2-m-1=0,∴m2-m=1,∴m4-m3-m+2=m2(m2-m)-m+2=m2-m+2=1+2=3,故选A.【题目点拨】本题考查了因式分解的应用,解决本题的关键是将m2-m作为一个整体出现,逐次降低m的次数.6、B【解题分析】

判断分式的依据是看分母中是否含有字母,如果含有字母则是分式.利用这点进行解题即可.【题目详解】在,,,,,中是分式的有:,,故B正确.【题目点拨】本题考查的是分式的定义,解题的关键是找到分母中含有字母的式子,同时一定要注意π不是字母.7、C【解题分析】

①根据题意证明,得出对应边成比例,再根据把线段三等分,证得,即可证得结论;②延长BC交y轴于H,证明OA≠AB,则∠AOB≠∠EBG,所以△OFD∽△BEG不成立;③利用面积差求得,根据相似三角形面积比等于相似比的平方进行计算并作出判断;④根据勾股定理,计算出OB的长,根据三等分线段OB可得结论.【题目详解】作AN⊥OB于点N,BM⊥x轴于点M,如图所示:在平行四边形OABC中,点的坐标分别是,,∴又∵把线段三等分,∴又∵,∴∴∴即,①结论正确;∵,∴∴平行四边形OABC不是菱形,∴∵∴∴∴故△OFD和△BEG不相似,故②错误;由①得,点G是AB的中点,∴FG是△OAB的中位线,∴,又∵把线段三等分,∴∵∴∵∴四边形DEGH是梯形∴,故③正确;,故④错误;综上:①③正确,故答案为C.【题目点拨】此题主要考查勾股定理、平行四边形的性质、相似三角形的判定与性质、线段的中点,熟练运用,即可解题.8、C【解题分析】

分母不为0时,分式有意义,分母为0时,分式无意义,分子等于0,分母不为0时分式值为0,由此判断即可.【题目详解】解:A选项当,即时,分式有意义,故A正确;B选项当,即时,分式无意义,故B正确;C选项当,即时,分式有意义,故C错误;D选项当,且即时,分式的值为0,故D正确.故选C.【题目点拨】本题主要考查了分式有意义、无意义、值为0的条件,熟练掌握分式的分母不为0是确定分式有意义的关键.9、D【解题分析】

根据勾股定理即可得到结论.【题目详解】在Rt△ABC中,∠C=90°,BC=6,AC=8,∴AB=AC2故选D.【题目点拨】本题考查了勾股定理,熟练掌握勾股定理是解题的关键.10、D【解题分析】

先根据一次函数y=kx﹣1中,y随x的增大而减小判断出k的符号,再根据一次函数的性质判断出此函数的图象所经过的象限,进而可得出结论.【题目详解】解:∵一次函数y=kx﹣1中,y随x的增大而减小,∴k<0,∴此函数图象必过二、四象限;∵b=﹣1<0,∴此函数图象与y轴相交于负半轴,∴此函数图象经过二、三、四象限.故选:D.【题目点拨】本题主要考查一次函数的图象与性质,掌握一次函数的图象与性质是解题的关键.二、填空题(每小题3分,共24分)11、x(x﹣1)=1【解题分析】

设参赛队伍有x支,根据参加篮球职业联赛的每两队之间都进行两场比赛,共要比赛1场,可列出方程.【题目详解】设参赛队伍有x支,根据题意得:x(x﹣1)=1故答案为x(x﹣1)=1.【题目点拨】本题考查了由实际问题抽象出一元二次方程,关键是根据总比赛场数做为等量关系列方程求解.12、1【解题分析】将代入中,得解得所以|a-b|=|1-2|=1.13、【解题分析】

分式的最简公分母通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,即可得解.【题目详解】由题意,得其最简公分母是,故答案为:.【题目点拨】此题主要考查分式的最简公分母,熟练掌握,即可解题.14、对应角相等的三角形是全等三角形假【解题分析】

把原命题的题设和结论作为新命题的结论和题设就得逆命题.【题目详解】命题“全等三角形的对应角相等”的逆命题是“对应角相等的三角形是全等三角形”;对应角相等的三角形不一定是全等三角形,这个逆命题是假命题.故答案为(1).对应角相等的三角形是全等三角形(2).假【题目点拨】本题考核知识点:互逆命题.解题关键点:注意命题的形式.15、2【解题分析】

根据分式的值为零的条件即可求出答案.【题目详解】解:由题意可知:,解得:,故答案为:2;【题目点拨】本题考查分式的值为零,解题的关键是正确理解分式的值为零的条件,本题属于基础题型.16、【解题分析】解:∵四边形ABCD为正方形,∴∠ABC=90°.∵△ABP绕点B顺时针方向旋转能与△CBP′重合,∴∠PBP′=∠ABC=90°,PB=P′B=2,∴△PBP′为等腰直角三角形,∴PP′=PB=.故答案为.点睛:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了正方形与等腰直角三角形性质.17、1【解题分析】

根据直角三角形的性质得到AB=2CE=16,根据三角形中位线定理计算即可.【题目详解】∵∠ACB=90°,E是AB的中点,∴AB=2CE=16,∵D、F分别是AC、BC的中点,∴DF=AB=1.【题目点拨】本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.18、不稳定性;4.2【解题分析】

(1)根据四边形的不稳定性即可解决问题.(1)当∠B1=60°时,平台AA0的高度最大,解直角三角形A1B0A0,可得A0A1的长,再由AA3=A3A1=A1A1=A1A0,即可解决问题.【题目详解】解:(1)因为四边形具有不稳定性,点B,B0分别在AM和A0N上滑动,从而达到升降目的,因而这种设计利用了平行四边形的不稳定性;(1)由图可知,当∠B1=60°时,平台AA0的高度最大,=30°,B0A1=1A1C1=1.4,则A0A1=A1B0sin∠A1B0A0=1.4×=1.1.

又∵AA3=A3A1=A1A1=A1A0=1.1,则AA0=4×1.1=4.2.故答案为:不稳定性,4.2.【题目点拨】本题考查了解直角三角形的应用,等腰三角形的性质,菱形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.三、解答题(共66分)19、58【解题分析】

作EH⊥AB于H,求出AE的长,根据正弦的概念求出点E到车架AB的距离.【题目详解】解:∵CE=15cm,CD=30cm,AD=15cm.∴AE=AD+CD+EC=15+30+15=60(cm),如图②,过点E作EH⊥AB于H,在Rt△AEH中,sin∠EAH=,则EH=AE•sin∠EAH=AB•sin75°≈60×0.97≈58(cm).答:点E到AB的距离约为58cm.【题目点拨】本题考查的是解直角三角形的知识,正确找出辅助线、掌握锐角三角函数的概念是解题的关键.20、(1)1万元(2)共有5种进货方案(3)购买A款汽车6辆,B款汽车1辆时对公司更有利【解题分析】分析:(1)求单价,总价明显,应根据数量来列等量关系.等量关系为:今年的销售数量=去年的销售数量.(2)关系式为:公司预计用不多于2万元且不少于11万元的资金购进这两款汽车共15辆.(3)方案获利相同,说明与所设的未知数无关,让未知数x的系数为0即可;多进B款汽车对公司更有利,因为A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,所以要多进B款.详解:(1)设今年5月份A款汽车每辆售价m万元.则:,解得:m=1.经检验,m=1是原方程的根且符合题意.答:今年5月份A款汽车每辆售价1万元;(2)设购进A款汽车x辆,则购进B款汽车(15﹣x)辆,根据题意得:11≤7.5x+6(15﹣x)≤2.解得:6≤x≤3.∵x的正整数解为6,7,8,1,3,∴共有5种进货方案;(3)设总获利为W万元,购进A款汽车x辆,则:W=(1﹣7.5)x+(8﹣6﹣a)(15﹣x)=(a﹣0.5)x+30﹣15a.当a=0.5时,(2)中所有方案获利相同.此时,购买A款汽车6辆,B款汽车1辆时对公司更有利.点睛:本题考查了分式方程和一元一次不等式组的综合应用,找到合适的等量关系及不等关系是解决问题的关键.21、(l)50分,80分,70分(2)候选人乙将被录用(3)候选人丙将被录用【解题分析】

(1)根据扇形统计图中的数据即可求得甲、乙、丙的民主评议得分;(2)据平均数的概念求得甲、乙、丙的平均成绩,进行比较;(3)根据加权成绩分别计算三人的个人成绩,进行比较.【题目详解】(1)甲、乙、丙的民主评议得分分别为:200×25%=50分,200×40%=80分,200×35%=70分;(2)甲的平均成绩为:(分),乙的平均成绩为:(分),丙的平均成绩为:(分).由于,所以候选人乙将被录用.(3)如果将笔试、面试、民主评议三项测试得分按的比例确定个人成绩,那么甲的个人成绩为:(分),乙的个人成绩为:(分),丙的个人成绩为:(分),由于丙的个人成绩最高,所以候选人丙将被录用.【题目点拨】解答本题的关键是读懂题意,通过阅读表格获取信息,再根据题目要求进行平均数与加权平均数的计算.22、(1)AG=1.5;AM+CM最小值为;(3)【解题分析】试题分析:(1)根据折叠的性质可得AG=GH,设AG的长度为x,在Rt△HGB中,利用勾股定理求出x的值;(2)作点A关于直线y=-1的对称点A',连接CA'与y=-1交于一点,这个就是所求的点,求出此时AM+CM的值;(3)求出G、H的坐标,然后设出解析式,代入求解即可得出解析式.试题解析:(1)由折叠的性质可得,AG=GH,AD=DH,GH⊥BD,∵AB=4,BC=3,∴BD=,设AG的长度为x,∴BG=4-x,HB=5-3=2,在Rt△BHG中,GH2+HB2=BG2,x2+4=(4-x)2,解得:x=1.5,即AG的长度为1.5;(2)如图所示:作点A关于直线y=-1的对称点A',连接CA'与y=-1交于M点,∵点B(5,1),∴A(1,1),C(5,4),A'(1,-3),AM+CM=A'C=,即AM+CM的最小值为;(3)∵点A(1,1),∴G(2.5,1),过点H作HE⊥AD于点E,HF⊥AB于点F,如图所示,∴△AEH∽△DAB,△HFB∽△DAB,∴,,即,,解得:EH=,HF=,则点H(,),设GH所在直线的解析式为y=kx+b,则,解得:,则解析式为:.【题目点拨】本题考查了一次函数的综合应用,涉及了折叠的性质、勾股定理的应用、相似三角形的判定和性质以及利用待定系数法求函数解析式等知识,知识点较多,难度较大,解答本题的关键是掌握数形结合的思想.23、(1)详见解析;(2)详见解析【解题分析】

(1)本题中实际上是长为2宽为2的正方形的对角线长,实际上是长为2宽为1的矩形的对角线的长,据此可找出所求的三角形;(2)可先找出一个直角边为2的等腰直角三角形,然后据此画出平行四边形.【题目详解】(1)△ABC为所求;

(2)四边形ABCD为所求.【题目点拨】关键是确定三角形的边长,然后根据边长画出所求的三角形.24、(1)6,2;(2);(3)①C;

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论