版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
重庆市铜梁县2024届数学八年级第二学期期末复习检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.若分式□的运算结果为x(x≠0),则在“口”中添加的运算符号为()A.+ B.﹣ C.+或÷ D.﹣或×2.将点P(5,3)向左平移4个单位,再向下平移1个单位后,落在函数y=kx﹣2的图象上,则k的值为()A.k=2 B.k=4 C.k=15 D.k=363.如果点P(3﹣m,1)在第二象限,那么关于x的不等式(2﹣m)x+2>m的解集是()A.x>﹣1 B.x<﹣1 C.x>1 D.x<14.若直线经过第一、二、四象限,则直线的图象大致是()A. B.C. D.5.下列计算结果,正确的是()A. B. C. D.6.下列函数中,当x<0时,y随x的增大而减小的是()A.y=x B.y=2x–1 C.y= D.y=–7.矩形,菱形,正方形都具有的性质是()A.对角线相等 B.对角线互相垂直C.对角线互相平分 D.对角线平分一组对角8.在下列各组数中,是勾股数的是()A.1、2、3 B.2、3、4 C.3、4、5 D.4、5、69.的值等于()A. B. C. D.10.在解分式方程+=2时,去分母后变形正确的是()A. B.C. D.11.一根长为20cm的长方形纸条,将其按照图示的过程折叠,若折叠完成后纸条两端超出点P的长度相等,且PM=PN=5cm,则长方形纸条的宽为()A.1.5cm B.2cm C.2.5cm D.3cm12.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①a<0;②a-b+c<0;③b2-4ac>0;④2a+b>0,其中正确的是()A.①②③④ B.②③④ C.①②③ D.①②④二、填空题(每题4分,共24分)13.分解因时:=__________14.已如边长为的正方形ABCD中,C(0,5),点A在x轴上,点B在反比例函数y=(x>0,m>0)的图象上,点D在反比例函数y=(x<0,n<0)的图象上,那么m+n=______.15.某种商品的进价为400元,出售时标价为500元,商店准备打折出售,但要保持利润率不低于10%,则至多可以打_____折.16.如图,菱形的边长为1,;作于点,以为一边,作第二个菱形,使;作于点,以为一边,作第三个菱形,使;…依此类推,这样作出第个菱形.则_________._________.17.平行四边形的一个内角平分线将对边分成3和5两个部分,则该平行四边形的周长是_____.18.一次数学测验满分是100分,全班38名学生平均分是67分.如果去掉A、B、C、D、E五人的成绩,其余人的平均分是62分,那么在这次测验中,C的成绩是_____分.三、解答题(共78分)19.(8分)如图,ΔABC中,CD平分∠ACB,CD的垂直平分线分别交AC、DC、BC于点E、F、G,连接DE、DG.(1)求证:四边形DGCE是菱形;(2)若∠ACB=30∘,∠B=45∘,20.(8分)阅读下列材料并解答问题:数学中有很多恒等式可以用图形的面积来得到例如,图1中阴影部分的面积可表示为;若将阴影部分剪下来,重新拼成一个矩形如图,它的长,宽分别是,,由图1,图2中阴影部分的面积相等,可得恒等式.(1)观察图3,根据图形,写出一个代数恒等式:______;(2)现有若干块长方形和正方形硬纸片如图4所示请你仿照图3,用拼图的方法推出恒等式,画出你的拼图并标出相关数据;(3)利用前面推出的恒等式和计算:①;②.21.(8分)用无刻度的直尺绘图.(1)如图1,在中,AC为对角线,AC=BC,AE是△ABC的中线.画出△ABC的高CH(2)如图2,在直角梯形中,,AC为对角线,AC=BC,画出△ABC的高CH.22.(10分)已知在边长为4的菱形ABCD中,∠EBF=∠A=60°,(1)如图①,当点E、F分别在线段AD、DC上,①判断△EBF的形状,并说明理由;②若四边形ABFD的面积为7,求DE的长;(2)如图②,当点E、F分别在线段AD、DC的延长线上,BE与DC交于点O,设△BOF的面积为S1,△EOD的面积为S2,则S1-S2的值是否为定值,如果是,请求出定值:如果不是,请说明理由.23.(10分)某中学为了解该校学生的体育锻炼情况,随机抽查了该校部分学生一周的体育锻炼时间的情况,并绘制了如下两幅不完整的统计图:根据以上信息解答以下问题:(1)本次抽查的学生共有多少名,并补全条形统计图;(2)写出被抽查学生的体育锻炼时间的众数和中位数;(3)该校一共有1800名学生,请估计该校学生一周体育锻炼时间不低于9小时的人数.24.(10分)先化简再求值:÷(﹣1),其中x=.25.(12分)王先生准备采购一批(大于100条)某种品牌的跳绳,采购跳绳有在实体店和网店购买两种方式,通过洽谈,获得了以下信息:购买方式标价(元条)优惠条件实体店40全部按标价的8折出售网店40购买100或100条以下,按标价出售;购买100条以上,从101条开始按标价的7折出售(免邮寄费)(1)请分别写出王先生在实体店、网店购买跳绳所需的资金y1、y2元与购买的跳绳数x(x>100)条之间的函数关系式;(2)王先生选取哪种方式购买跳绳省钱?26.先化简再求值:,其中.
参考答案一、选择题(每题4分,共48分)1、C【解题分析】
分别尝试各种符号,可得出结论.【题目详解】解:因为,,所以,在“口”中添加的运算符号为+或÷故选:C.【题目点拨】本题考核知识点:分式的运算,解题关键点:熟记分式运算法则.2、B【解题分析】
根据点的平移规律,得出平移后的点的坐标,将该点坐标代入y=kx﹣2中求k即可.【题目详解】将点P(5,3)向左平移1个单位,再向下平移1个单位后点的坐标为(1,2),将点(1,2)代入y=kx﹣2中,得k﹣2=2,解得k=1.故选B.【题目点拨】本题考查了一次函数图象上点的坐标特点,点的坐标平移规律.关键是找出平移后点的坐标.3、B【解题分析】根据第二象限内点的坐标特征得3-m<0,解得m>3,不等式(2-m)x+2>m化简为(2-m)x>m-2,由m>3,得2-m<0,所以x<=-1.故选B.4、D【解题分析】
根据直线y=ax+b经过第一、二、四象限,可以判断a和b的正负,从而可以判断直线y=bx+a经过哪几个象限,本题得以解决.【题目详解】解:∵直线y=ax+b经过第一、二、四象限,
∴a<0,b>0,
∴y=bx+a经过第一、三、四象限,
故选:D.【题目点拨】本题考查一次函数的性质和图象,解答本题的关键是明确题意,利用一次函数的性质解答.5、C【解题分析】
按照二次根式的运算法则对各项分别进行计算,求得结果后进行判断即可.【题目详解】A.与不是同类二次根式,不能合并,故此选项错误;B.,故此选项错误;C.,正确;D.不能化简了,故此选项错误.故选:C.【题目点拨】此题需要注意的是:二次根式的加减运算实质是合并同类二次根式的过程,不是同类二次根式的不能合并.6、C【解题分析】
根据正比例函数、一次函数、反比例函数的性质依次判断即可.【题目详解】A、为一次函数,k的值大于0,y随x的增大而增大,不符合题意;B、为一次函数,k的值大于0,y随x的增大而增大,不符合题意;C、为反比例函数,k的值大于0,x<0时,y随x的增大而减小,符合题意;D、为反比例函数,k的值小于0,x<0时,y随x的增大而增大,不符合题意;故选C.【题目点拨】此题考查正比例函数的性质,一次函数的性质,反比例函数的性质,熟记各性质定理并熟练解题是关键.7、C【解题分析】
利用矩形、菱形和正方形的性质对各选项进行判断.【题目详解】解:矩形、菱形、正方形都具有的性质是对角线互相平分.故选:C.【题目点拨】本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.8、C【解题分析】
判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.【题目详解】A、12+22=5≠32,不是勾股数,故本选项不符合题意.B、22+32=13≠42,不是勾股数,故本选项不符合题意.C、32+42=52,是勾股数,故本选项符合题意.D、42+52=41≠62,不是勾股数,故本选项不符合题意.故选C.【题目点拨】本题考查了勾股数的知识,解答此题要用到勾股数的定义,及勾股定理的逆定理:已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.9、A【解题分析】分析:根据平方与开平方互为逆运算,可得答案.详解:=,故选A.点睛:本题考查了算术平方根,注意一个正数的算术平方根只有一个.10、A【解题分析】
本题考查对一个分式确定最简公分母,去分母得能力.观察式子x-1和1-x互为相反数,可得1-x=-(x-1),所以可得最简公分母为x-1,因为去分母时式子不能漏乘,所以方程中式子每一项都要乘最简公分母.【题目详解】方程两边都乘以x-1,
得:3-(x+2)=2(x-1).
故答案选A.【题目点拨】本题考查了解分式方程,解题的关键是方程两边都乘以最简公分母.11、B【解题分析】
设纸条宽为xcm,观察图形,由折叠的性质可知:PM=PN=5,除了AP和BM的长度中间的长度为5x,将折叠的纸条展开,根据题意列出方程式求出x的值即可.【题目详解】解:如图:设纸条宽为xcm,观察图形,由折叠的性质可知:PM=PN=5,MN=20由题意可得:5×2+5x=20解得:x=2故选:B.【题目点拨】本题考查了翻折变换的知识以及学生的动手操作能力,解答本题的关键是仔细观察图形,得到各线段之间存在的关系.12、C【解题分析】分析:根据抛物线开口方向得a<0,可对①进行判断;把x=-1代入y=ax2+bx+c,可对②进行判断;根据抛物线与x轴的交点可对③进行判断,根据抛物线的对称轴小于1,可对④进行判断.详解:抛物线开口向下:a<0,
故①正确;
当x=-1时,
y=a-b+c<0,
故②正确;
抛物线与x轴有两个交点,
∴b2-4ac>0,
故③正确,
由图象知<1,则2a+b<0,故④错误.故选C.点睛:本题考查了二次函数图象与系数的关系,二次函数y=ax²+bx+c(a≠0)系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点、抛物线与x轴交点的个数确定.二、填空题(每题4分,共24分)13、.【解题分析】
首先提取公因式,进而利用完全平方公式分解因式即可.【题目详解】.故答案为:.【题目点拨】此题主要考查了提取公因式法以及公式法分解因式,正确运用公式是解题关键.14、±5【解题分析】
由勾股定理可求点A坐标,分两种情况讨论,利用全等三角形的判定和性质求出B、D的坐标,即可求解.【题目详解】解:设点A(x,0)∴AC2=OA2+OC2,∴26=25+OA2,∴OA=1∴点A(1,0),或(-1,0)当点A(1,0)时,如图,过点B作BF⊥x轴,过点C作CE⊥y轴,与BF交于点E,过点D作DH⊥x轴,交CE于点G,∵∠CBE+∠ABF=90°,且∠CBE+∠ECB=90°∴∠ECB=∠ABF,且BC=AB,∠E=∠AFB=90°∴△ABF≌△BCE(AAS)∴BE=AF,BF=CE∵OF=OA+AF∴CE=OF=1+BE=BF∴BF+BE=1+BE+BE=5∴BE=2,∴BF=3∴点B坐标(3,3)∴m=3×3=9,∵A(1,0),C(0,5),B(3,3),∴点D(1+0-3,0+5-3),即(-2,2)∴n=-2×2=-4∴m+n=5若点A(-1,0)时,同理可得:B(2,2),D(-3,3),∴m=4,n=-9∴m+n=-5故答案为:±5【题目点拨】本题考查了反比例函数图象上点的坐标特征,正方形的性质,全等三角形的判定和性质,利用分类讨论思想解决问题和利用方程思想解决问题是本题的关键.15、1.1.【解题分析】
设打x折,则售价是500×元.根据利润率不低于10%就可以列出不等式,求出x的范围.【题目详解】解:要保持利润率不低于10%,设可打x折.
则500×-400≥400×10%,
解得x≥1.1.
故答案是:1.1.【题目点拨】本题考查一元一次不等式的应用,正确理解利润率的含义,理解利润=进价×利润率,是解题的关键.16、【解题分析】
在△AB1D2中利用30°角的性质和勾股定理计算出AD2=,再根据菱形的性质得AB2=AD2=,同理可求AD3和AD4的值.【题目详解】解:在△AB1D2中,∵,∴∠B1AD2=30°,∴B1D2=,∴AD2==,∵四边形AB2C2D2为菱形,∴AB2=AD2=,在△AB2D3中,∵,∴∠B2AD3=30°,∴B2D3=,∴AD3==,∵四边形AB3C3D3为菱形,∴AB3=AD3=,在△AB3D4中,∵,∴∠B3AD4=30°,∴B3D4=,∴AD4==,故答案为,.【题目点拨】本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.菱形的面积等于对角线乘积的一半.也考查了锐角三角函数的知识.17、22或1.【解题分析】
根据题意画出图形,由平行四边形得出对边平行,又由角平分线可以得出△ABE为等腰三角形,可以求解.【题目详解】∵四边形ABCD为平行四边形,∴AD∥BC,∴∠DAE=∠AEB,∵AE为角平分线,∴∠DAE=∠BAE,∴∠AEB=∠BAE,∴AB=BE,∴①当BE=3时,CE=5,AB=3,则周长为22;②当BE=5时,CE=3,AB=5,则周长为1,故答案为:22或1.【题目点拨】本题考查了平行四边形的性质,结合了等腰三角形的判定.注意有两种情况,要进行分类讨论.18、1【解题分析】
先根据平均数公式分别求出全班38名学生的总分,去掉A、B、C、D、E五人的总分,相减得到A、B、C、D、E五人的总分,再根据实际情况得到C的成绩.【题目详解】解:设A、B、C、D、E分别得分为a、b、c、d、e.则[38×67﹣(a+b+c+d+e)]÷(38﹣5)=62,因此a+b+c+d+e=500分.由于最高满分为1分,因此a=b=c=d=e=1,即C得1分.故答案是:1.【题目点拨】利用了平均数的概念建立方程.注意将A、B、C、D、E五人的总分看作一个整体求解.三、解答题(共78分)19、(1)详见解析;(2)BG=5+5【解题分析】
(1)根据CD平分∠ACB,得到∠ACD=∠DCG,再根据EG垂直平分CD,得到DG=CG,DE=EC,从而得到∠EDC=∠DCG=∠ACD=∠GDC,故CE∥DG,DE∥GC,从而证明四边形DECG是平行四边形,再根据DE=EC证明四边形DGCE是菱形;(2)过点D作DH⊥BC,由(1)知CG=DG=10,DG∥EC,得到∠ACB=∠DGB=30∘,且DH⊥BC,得到HG=3DH=53,由∠B=45【题目详解】解:(1)证明:∵CD平分∠ACB,∴∠ACD=∠DCG,∵EG垂直平分CD,∴DG=CG,DE=EC,∴∠DCG=∠GDC,∠ACD=∠EDC,∴∠EDC=∠DCG=∠ACD=∠GDC,∴CE∥DG,DE∥GC,∴四边形DECG是平行四边形,又∵DE=EC,∴四边形DGCE是菱形;(2)如图,过点D作DH⊥BC,由(1)知∴CG=DG=10,DG∥EC,∴∠ACB=∠DGB=30∘,且∴DH=5,HG=3∵∠B=45∘,∴∠B=∠BDH=45∴BH=DH=5,∴BG=BH+HG=5+53【题目点拨】此题主要考查菱形的判定与性质,解题的关键是熟知菱形的判定定理、含30°的直角三角形的性质及等腰直角三角形的性质.20、(1);(2);(3)①1;②.【解题分析】
(1)根据面积的两种表达方式得到图3所表示的代数恒等式;(2)作边长为a+b的正方形即可得;(3)套用所得公式计算可得.【题目详解】解:(1)由图3知,等式为:,故答案为;(2)如图所示:
由图可得;(3)①原式;②.【题目点拨】本题考查了完全平方公式的几何背景,根据矩形的面积公式分整体与部分两种思路表示出面积,然后再根据同一个图形的面积相等即可解答.21、见解析.【解题分析】
(1)根据AC=BC得出△ABC为等腰三角形,连接BD,因为ABCD为平行四边形,所以AC与BD交点即为两条线段中点,可得出△ABC中AC边上的中线,再根据三角形三条中线交于一点,连接BD与AE的交点和C点并延长,交AB于点H,此时CH为△ACB的AB边上的中线,因为三线合一,所以可得CH是△ABC的AB边上的高线;(2)因为ABCD为直角梯形,所以∠DAB=90°,延长BC、AD交于点E,因为AC=BC,可得∠CAB=∠CBA,根据△EAB为直角三角形易证AC=CB=CE,可得C为BE中点,再根据∠CDA=90°,易证D为AE中点,根据三角形三条中线交于一点,连接E与AC、BD交点并延长交AB于点H,可得点H为AB中点,连接CH,CH为△ACB中AB边上的中线,根据三线合一可得,CH为△ACB中AB边上的高.【题目详解】解:如图所示.(1)连接BD交AE于点F,连接CF并延长交AB于点H,此时CH即为所求线段;(2)延长BC、AD交于点E,连接BD交AC于点F,连接EF并延长交AB于点H,再连接CH,此时CH即为所求线段.【题目点拨】本题考查无刻度尺的作图方法,注意利用题中已知条件,想要做等腰三角形底边上的中线,可利用等腰三角形三线合一的性质,再利用题中已知的中线,根据三角形三条中线交于一点来画图.22、(1)①△EBF是等边三角形,见解析;②DE=1;(2)S1-S2的值是定值,S1-S2=4.【解题分析】
(1)①△EBF是等边三角形.连接BD,证明△ABE≌△DBF(ASA)即可解决问题.②如图1中,作BH⊥AD于H.求出△ABE的面积,利用三角形的面积公式求出AE即可解决问题.(2)如图2中,结论:S1-S2的值是定值.想办法证明:S1-S2=S△BCD即可.【题目详解】解:(1)①△EBF是等边三角形.理由如下:如图1中,连接BD,∵四边形ABCD是菱形,∴AD=AB,∵∠ADB=60°,∴△ADB是等边三角形,△BDC是等边三角形,∴AB=BD,∠ABD=∠A=∠BDC=60°,∵∠ABD=∠EBF=60°,∴∠ABE=∠DBF,在△ABE和△DBF中,,∴△ABE≌△DBF(ASA),∴BE=BF,∵∠EBF=60°,∴△EBF是等边三角形.②如图1中,作BH⊥AD于H.在Rt△ABH中,BH=2,∴S△ABD=•AD•BH=4,∵S四边形ABFD=7,∴S△BDF=S△ABE=3,∴=3,∴AE=3,∴DE=AD=AE=1.(2)如图2中,结论:S1-S2的值是定值.理由:∵△BDC,△EBF都是等边三角形,∴BD=BC,∠DBC=∠EBF=60°,BE=BF,∴∠DBE=∠CBF,∴△DBE≌△CBF(SAS),∴S△BDE=S△BCF,∴S1-S2=S△BDE+S△BOC-S△DOE=S△DOE+S△BOD+S△BOC-S△DOE=S△BCD=×42=4.故S1-S2的值是定值.【题目点拨】本题属于四边形综合题,考查了菱形的性质,等边三角形的判定和性质,全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.23、(1)40,图形见解析;(2)众数是8,中位数是8.5;(3)900名【解题分析】
(1)本次抽查的学生数=每天锻炼10小时的人数÷每天锻炼10小时的人数占抽查学生的百分比;一周体育锻炼时间为9小时的人数=抽查的人数-(每天锻炼7小时的人数+每天锻炼8小时的人数+每天锻炼10小时的人数);根据求得的数据补充条形统计图即可;(2)一组数据中出现次数最多的数是众数,结合条形图,8出现了18次,所以确定众数就是18;把一组数据按从小到大的数序排列,处于中间位置的一个数字(或两个数字的平均值)叫做这组数据的中位数。由图可知第20、21个数分别是8、9,所以中位数是它们的平均数;(3)该校学生一周体育锻炼时间不低于9小时的估计人数
=该校学生总数×一周体育锻炼时间不低于9小时的频率.【题目详解】(1)解:本次抽查的学生共有8÷20%=40(名)一周体育锻炼时间为9小时的人数是40-(2+18+8)=12(名)条形图补充如下:(2)解:由条形图可知,8出现了18次,此时最多,所以众数是8将40个数据按从小到大的顺序排列,第20、21个数分别是8、9,所以中位数是(8+9)÷2=8.5(3)解:1800×=900(名)答:估计该校学生一周体育锻炼时间不低于9小时的大约有90
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年教师资格证(小学)(教育教学知识与能力)考试题及答案
- 2026四川省人民医院专职科研人员、工程师及实验技术员招聘5人笔试参考题库及答案解析
- 2025四川绵阳市涪城区政务服务和行政审批局招聘编外人员3人模拟笔试试题及答案解析
- 2025下半年“才聚齐鲁 成就未来”山东高速集团有限公司社会招聘162人备考考试题库及答案解析
- 2026中国信达贵州分公司招聘备考笔试题库及答案解析
- 2025山西空港新城太平中学就业见习招聘2人模拟笔试试题及答案解析
- 2025甘肃临夏州临夏市人力资源和社会保障局招聘城镇公益性岗位人员1人备考笔试试题及答案解析
- 2025贵州安顺关岭自治县社会保险事业局招聘公益性岗位人员1人备考笔试题库及答案解析
- 2026浙江宁波市慈溪市招聘部分专业卫技人员134人参考笔试题库及答案解析
- 2025年哈尔滨方正县“归雁计划”备考笔试题库及答案解析
- 2025广东高考物理试题(大题部分)+评析
- 2025年中国国际货运代理行业市场情况研究及竞争格局分析报告
- 家庭教育概论 课件 第5章 亲子关系:家庭教育的起点与结果
- 500千伏输电线路工程项目管理实施规划
- 家具油漆翻新施工方案
- 哪吒主题课件模板文档
- 2025年鞍钢集团招聘笔试参考题库含答案解析
- 2024年客运资格证考试试题及答案解析
- JTS+155-1-2019码头岸电设施检测技术规范
- DL-T-1946-2018气体绝缘金属封闭开关设备X射线透视成像现场检测技术导则
- 血液透析中低血压的预防与治疗
评论
0/150
提交评论