版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
内蒙古准格尔旗第四中学2024届数学八下期末学业质量监测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.如图,在△ABC中,BF平分∠ABC,过A点作AF⊥BF,垂足为F并延长交BC于点G,D为AB中点,连接DF延长交AC于点E。若AB=12,BC=20,则线段EF的长为()A.2 B.3 C.4 D.52.要使代数式有意义,实数的取值范围是()A. B. C. D.3.函数y=中,自变量x的取值范围在数轴上表示正确的是()A. B. C. D.4.如图,在矩形ABCD中,对角线AC,BD交于点O,已知∠AOD=120°,AB=2,则矩形的面积为()A.2 B.4 C. D.35.四边形ABCD中,对角线AC,BD相交于点O,给出下列四个条件:;;;,从中任选两个条件,能使四边形ABCD为平行四边形的选法有A.2种 B.3种 C.4种 D.5种6.长春市某服装店销售夏季T恤衫,试销期间对4种款式T恤衫的销售量统计如下表:款式ABCD销售量/件1851该店老板如果想要了解哪种款式的销售量最大,那么他应关注的统计量是(
)A.平均数 B.众数 C.中位数 D.方差7.在平行四边形ABCD中,∠A:∠B:∠C:∠D的可能情况是()A.2:7:2:7 B.2:2:7:7 C.2:7:7:2 D.2:3:4:58.如图,平行四边形ABCD中,E为BC边上一点,以AE为边作正方形AEFG,若,,则的度数是A. B. C. D.9.若代数式有意义,则实数x的取值范围是()A.x≥1 B.x≥2 C.x>1 D.x>210.下列英文大写正体字母中,既是中心对称图形又是轴对称图形的是()A. B. C. D.二、填空题(每小题3分,共24分)11.“暑期乒乓球夏令营”开始在学校报名了,已知甲、乙、丙三个夏令营组人数相等,且每组学生的平均年龄都是14岁,三个组学生年龄的方差分别是,,如果今年暑假你也准备报名参加夏令营活动,但喜欢和年龄相近的同伴相处,那么你应选择是________.12.如图,将矩形ABCD的四个角向内翻折后,恰好拼成一个无缝隙无重叠的四边形EFGH,EH=8cm,EF=15cm,则边AD的长是______cm.13.如图,在平行四边形ABCD中,EF是△BCD的中位线,且EF=4,则AD=___.14.在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、3、4,则原直角三角形纸片的斜边长是.15.如图,正方形ABCD的面积等于25cm2,正方形DEFG的面积等于9cm2,则阴影部分的面积S=______cm2.16.求代数式的值是____________.17.如图,在正方形ABCD中,AC、BD相交于点O,E、F分别为BC、CD上的两点,,AE、BF分别交BD、AC于M、N两点,连OE、下列结论:;;;,其中正确的序数是______.18.正方形中,点是对角线上一动点,过作的垂线交射线于,连接,,则的值为________.三、解答题(共66分)19.(10分)已知正方形ABCD,点P是对角线AC所在直线上的动点,点E在BC边所在直线上,PE=PB.(1)如图1,当点E在线段BC上时,求证:①PE=PD,②PE⊥PD.简析:由正方形的性质,图1中有三对全等的三角形,即△ABC≌△ADC,_______≌_______,和_______≌______,由全等三角形性质,结合条件中PE=PB,易证PE=PD.要证PE⊥PD,考虑到∠ECD=90°,故在四边形PECD中,只需证∠PDC+∠PEC=______即可.再结合全等三角形和等腰三角形PBE的性质,结论可证.(2)如图2,当点E在线段BC的延长线上时,(1)中的结论是否成立?如果成立,请给出证明;如果不成立,请说明理由;(3)若AB=1,当△PBE是等边三角形时,请直接写出PB的长.20.(6分)如图,正方形网格中的每个小正方形边长都为1,每个小正方形的顶点叫格点,以格点为顶点分别按下列要求画三角形和平行四边形.(1)使三角形三边长为3,,;(2)使平行四边形有一锐角为15°,且面积为1.21.(6分)有一工程需在规定日期x天内完成,如果甲单独工作刚好能够按期完成:如果乙单独工作就要超过规定日期3天.(1)甲的工作效率为,乙的工作效率为.(用含x的代数式表示)(2)若甲、乙合作2天后余下的工程由乙单独完成刚好在规定日期完成,求x的值.22.(8分)如图,王华在晚上由路灯走向路灯,当他走到点时,发现身后他影子的顶部刚好接触到路灯的底部,当他向前再步行到达点时,发现身前他影子的顶部刚好接触到路灯的底部,已知王华的身高是,如果两个路灯之间的距离为,且两路灯的高度相同,求路灯的高度.23.(8分)如图,边长为2的正方形纸片ABCD中,点M为边CD上一点(不与C,D重合),将△ADM沿AM折叠得到△AME,延长ME交边BC于点N,连结AN.(1)猜想∠MAN的大小是否变化,并说明理由;(2)如图1,当N点恰为BC中点时,求DM的长度;(3)如图2,连结BD,分别交AN,AM于点Q,H.若BQ=,求线段QH的长度.24.(8分)如图,有一块凹四边形土地ABCD,∠ADC=90°,AD=4m,CD=3m,AB=13m,BC=12m,求这块四边形土地的面积.25.(10分)已知:正方形ABCD和等腰直角三角形AEF,AE=AF(AE<AD),连接DE、BF,P是DE的中点,连接AP。将△AEF绕点A逆时针旋转。(1)如图①,当△AEF的顶点E、F恰好分别落在边AB、AD时,则线段AP与线段BF的位置关系为,数量关系为。(2)当△AEF绕点A逆时针旋转到如图②所示位置时,证明:第(1)问中的结论仍然成立。(3)若AB=3,AE=1,则线段AP的取值范围为。26.(10分)如图,△ABC中,∠A=60°,∠C=40°,DE垂直平分BC,连接BD.(1)尺规作图:过点D作AB的垂线,垂足为F.(保留作图痕迹,不写作法)(2)求证:点D到BA,BC的距离相等.
参考答案一、选择题(每小题3分,共30分)1、C【解题分析】
由直角三角形的性质可求得DF=BD=AB,由角平分线的定义可证得DE∥BC,利用三角形中位线定理可求得DE的长,则可求得EF的长.【题目详解】解:∵AF⊥BF,D为AB的中点,∴DF=DB=AB=6,∴∠DBF=∠DFB,∵BF平分∠ABC,∴∠DBF=∠CBF,∴∠DFB=∠CBF,∴DE∥BC,∴DE为△ABC的中位线,∴DE=BC=10,∴EF=DE−DF=10−6=4,故选:C.【题目点拨】本题考查直角三角形斜边上的中线的性质,角平分线的性质,等腰三角形的判定与性质,三角形中位线定理.根据直角三角形斜边上的中线是斜边是斜边的一半可得△DBF为等腰三角形,通过角平分线的性质和等角对等边可得DF//BC,即DE为△ABC的中位线,从而计算出DE,继而求出EF.2、B【解题分析】
根据二次根式的双重非负性即可求得.【题目详解】代数式有意义,二次根号下被开方数≥0,故∴故选B.【题目点拨】本题考查了二次根式有意义的条件,难度低,属于基础题,熟练掌握二次根式的双重非负性是解题关键.3、B【解题分析】
根据函数y=可得出x-1≥0,再解出一元一次不等式即可.【题目详解】由题意得,x-1≥0,
解得x≥1.
在数轴上表示如下:
故选B.【题目点拨】本题要考查的是一元一次不等式的解法以及二次根式成立得出判定,熟练掌握一元一次不等式的解法是本题的解题关键.4、B【解题分析】
由矩形的性质得出∠ABC=90°,OA=OB,再证明△AOB是等边三角形,得出OA=AB,求出AC,然后根据勾股定理即可求出BC,进而得出矩形面积即可.【题目详解】解:∵四边形ABCD是矩形,∴∠ABC=90°,OA=AC,OB=BD,AC=BD,∴OA=OB,∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴OA=AB=2,∴AC=2OA=4,∴BC=,∴矩形的面积=AB•BC=4;故选B.【题目点拨】本题考查了矩形的性质、等边三角形的判定与性质以及勾股定理;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.5、C【解题分析】
根据题目所给条件,利用平行四边形的判定方法分别进行分析即可.【题目详解】①②组合可根据一组对边平行且相等的四边形是平行四边形判定出四边形ABCD为平行四边形.③④组合可根据对角线互相平分的四边形是平行四边形判定出四边形ABCD为平行四边形.①③可证明△ABO≌△CDO,进而得到AB=CD,可利用一组对边平行且相等的四边形是平行四边形,判定出四边形ABCD为平行四边形.①④可证明△ABO≌△CDO,进而得到AB=CD,可利用一组对边平行且相等的四边形是平行四边形,判定出四边形ABCD为平行四边形.故选C【题目点拨】此题主要考查了平行四边形的判定,关键是熟练掌握平行四边形的判定定理,属于中档题.6、B【解题分析】
平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量.既然是对4种款式T恤衫的销售量情况作调查,所以应该关注销量的最多,故值得关注的是众数.【题目详解】由于众数是数据中出现次数最多的数,故应最关心这组数据中的众数.故选B.【题目点拨】本题考查了统计的有关知识,熟知平均数、中位数、众数、方差的意义是解决问题的关键.7、A【解题分析】
由四边形ABCD是平行四边形,根据平行四边形的对角相等,即可求得答案.【题目详解】解:∵四边形ABCD是平行四边形,∴∠A=∠C,∠B=∠D,∴∠A:∠B:∠C:∠D的可能情况是2:1:2:1.故选:A.【题目点拨】此题考查了平行四边形的性质.此题比较简单,注意掌握平行四边形的对角相等定理的应用.8、A【解题分析】分析:首先求出∠AEB,再利用三角形内角和定理求出∠B,最后利用平行四边形的性质得∠D=∠B即可解决问题.详解:∵四边形ABCD是正方形,∴∠AEF=90°,∵∠CEF=15°,∴∠AEB=180°-90°-15°=75°,∵∠B=180°-∠BAE-∠AEB=180°-40°-75°=65°,∵四边形ABCD是平行四边形,∴∠D=∠B=65°故选A.点睛:本题考查正方形的性质、平行四边形的性质、三角形内角和定理等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题,属于中考常考题型.9、D【解题分析】
直接利用二次根式有意义的条件分析得出答案.【题目详解】∵代数式有意义,∴,解得:x>1.故选:D.【题目点拨】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.10、C【解题分析】
根据轴对称图形与中心对称图形的概念求解.【题目详解】解:A、是轴对称图形,不是中心对称图形,故此选项错误;
B、是轴对称图形,不是中心对称图形,故此选项错误;
C、是轴对称图形,也是中心对称图形,故此选项正确;D、不是轴对称图形,是中心对称图形,故此选项错误.
故选:C.【题目点拨】此题考查中心对称图形与轴对称图形的概念,解题关键在于掌握轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.二、填空题(每小题3分,共24分)11、乙组【解题分析】
根据方差的定义,方差越小数据越稳定解答即可.【题目详解】解:∵,,,∵最小,∴乙组学生年龄最相近,应选择乙组.故答案为:乙组.【题目点拨】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.12、【解题分析】
通过设各线段参数,利用勾股定理和射影定理建立各参数的关系方程,即可解决.【题目详解】解:设AH=e,AE=BE=f,BF=HD=m在Rt△AHE中,e2+f2=82在Rt△EFH中,f2=em在Rt△EFB中,f2+m2=152(e+m)2=e2+m2+2em=189AD=e+m=3故答案为3【题目点拨】本题考查了翻折的性质,利用直角三角形建立方程关系求解.13、1.【解题分析】
利用三角形中位线定理求出BC,再利用平行四边形的对边相等即可解决问题.【题目详解】∵EF是△DBC的中位线,∴BC=2EF=1,∵四边形ABCD是平行四边形,∴AD=BC=1,故答案为1.【题目点拨】此题考查平行四边形的性质和三角形中位线定理,解题关键在于利用中位线的性质计算出BC的长度14、2或10.【解题分析】试题分析:先根据题意画出图形,再根据勾股定理求出斜边上的中线,最后即可求出斜边的长.试题解析:①如图:因为CD=,点D是斜边AB的中点,所以AB=2CD=2,②如图:因为CE=点E是斜边AB的中点,所以AB=2CE=10,综上所述,原直角三角形纸片的斜边长是2或10.考点:1.勾股定理;2.直角三角形斜边上的中线;3.直角梯形.15、【解题分析】
由题意可知:已知正方形ABCD面积等于25cm2,边长是5,正方形DEFG的面积等于9cm2,边长是3,阴影部分是正方形ABCD面积的一半,加上正方形DEFG的面积,减去底为5+3=8cm,高为3cm的三角形的面积,由此列式得出答案即可.【题目详解】解:∵正方形ABCD面积等于25cm2,正方形DEFG的面积等于9cm2,
∴正方形ABCD边长是5,正方形DEFG的边长是3,
∴阴影部分的面积S=25×+9-×(5+3)×3
=+-
=.故答案为:.【题目点拨】本题考查正方形的性质,整式的混合运算,掌握组合图形面积之间的计算关系是解决问题的关键.16、1【解题分析】
先算乘方,再通分,最后化简即可.【题目详解】解:原式=-+c+1==
=1,
故答案为:1.【题目点拨】本题考查了二次根式的混合运算,熟练掌握运算顺序和运算法则是解题关键.17、【解题分析】
易证得≌,则可证得结论正确;由≌,可得,证得,选项正确;证明是等腰直角三角形,求得选项正确;证明≌,根据正方形被对角线将面积四等分,即可得出选项正确.【题目详解】解:四边形ABCD是正方形,,,在和中,,≌,,故正确;由知:≌,,,,故正确;四边形ABCD是正方形,,,是等腰直角三角形,,,故正确;四边形ABCD是正方形,,,在和中,,≌,,,故正确;故答案为:.【题目点拨】此题属于四边形的综合题考查了正方形的性质,全等三角形的判定与性质、勾股定理以及等腰直角三角形的性质注意掌握全等三角形的判定与性质是解此题的关键.18、【解题分析】
如图,连接PC.首先证明PA=PC,利用相似三角形的性质即可解决问题.【题目详解】解:如图,连接PC.
∵四边形ABCD是正方形,
∴点A,点C关于BD对称,∠CBD=∠CDB=45°,
∴PA=PC,
∵PE⊥BD,
∴∠DPE=∠DCB=90°,
∴∠DEP=∠DBC=45°,
∴△DPE∽△DCB,
∴,
∴,
∵∠CDP=∠BDE,
∴△DPC∽△DEB,
∴,
∴BE:PA=,故答案为.【题目点拨】本题考查正方形的性质,相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.三、解答题(共66分)19、(1)△PAB;△PAD;△PBC;△PDC,180°;(2)成立,证明见解析;(3)或.【解题分析】
(1)根据题意推导即可得出结论.(2)求证PE⊥PB,PE=PB,由AC为对角线以及已知条件可先证明△PDC≌△PBC,得PD=PB,PB=PE,PE=PD.由△PDC≌△PBC可得出∠PDC=∠PBC,最后得出∠EPD=∠FCE=90°,即PE⊥PB.(3)分两种情况讨论当点P在线段AC的反向延长线上时,当点P在线段AC的延长线上时.【题目详解】(1)由正方形的性质,图1中有三对全等的三角形,即△ABC≌△ADC,△PAB≌△PAD,和△PBC≌△PDC,由全等三角形性质,结合条件中PE=PB,易证PE=PD.要证PE⊥PD,考虑到∠ECD=90°,故在四边形PECD中,只需证∠PDC+∠PEC=180°即可.再结合全等三角形和等腰三角形PBE的性质,结论可证.(2)(1)中的结论成立.①∵四边形ABCD是正方形,AC为对角线,∴CD=CB,∠ACD=∠ACB,又∵PC=PC,∴△PDC≌△PBC.∴PD=PB.∵PB=PE,∴PE=PD.②由①得△PDC≌△PBC.∴∠PDC=∠PBC.又∵PE=PB,∴∠PBE=∠PEB.∴∠PDC=∠PEB如图,记DC与PE的交点为F,则∠PFD=∠CFE.∴∠EPD=∠FCE=90°.∴PE⊥PB.(3)如图,当点P在线段AC上时,过点P作PH⊥BC,垂足为H.设PB=x,则,∴,解得,当点P在线段AC的反向延长线上时,同理可得;当点P在线段AC的延长线上时,△PBE是等边三角形不成立.综上,x=或.【题目点拨】此题考查正方形的性质,全等三角形判定与性质,解题关键在于证明全等三角形得出结论进行推导.20、(1)详见解析;(2)详见解析【解题分析】
(1)本题中实际上是长为2宽为2的正方形的对角线长,实际上是长为2宽为1的矩形的对角线的长,据此可找出所求的三角形;(2)可先找出一个直角边为2的等腰直角三角形,然后据此画出平行四边形.【题目详解】(1)△ABC为所求;
(2)四边形ABCD为所求.【题目点拨】关键是确定三角形的边长,然后根据边长画出所求的三角形.21、(1),;(2)规定的时间是6天.【解题分析】
(1)由“工作效率=工作量÷工作时间”即可得;(2)关键描述语为:“由甲、乙两队合作2天,剩下的由乙队独做,也刚好在规定日期内完成”;本题的等量关系为:甲工作2天完成的工作量+乙规定日期完成的工作量=1,把相应数值代入即可求解.【题目详解】(1)依题意得,甲的工作效率为,乙的工作效率为.故答案为:,;(2)依题意得:+=1,解得x=6,经检验,x=6是原方程的解且符合实际意义,答:规定的时间是6天.【题目点拨】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.22、路灯的高度是【解题分析】
根据题意结合图形可知,AP=OB,在P点时有,列出比例式进行即可即可【题目详解】解:由题意知:即解得答:路灯的高度是【题目点拨】本题主要考查相似三角形的应用,熟练掌握相似三角形对应边成比例是解题关键23、(1)∠MAN的大小没有变化,理由见解析;(2);(3).【解题分析】
(1)由折叠知AD=AE、DM=EM、∠D=∠AEM=90°、∠DAM=∠EAM=∠DAE,再证Rt△BAN≌Rt△EAN得∠BAN=∠EAN=∠BAE,根据∠MAN=∠EAM+∠EAN=(∠DAE+∠BAE)可得答案;(2)由题意知EN=BN=CN=1,设DM=EM=x,则MC=2-x、MN=1+x,在Rt△MNC中,由MC2+CN2=MN2列出关于x的方程求解可得;(3)将△ABQ绕点A逆时针旋转90°得△ADG,连接GH,由旋转知DG=BQ=,AG=AQ,∠ADG=∠ABQ=∠ADB=45°,∠BAQ=∠DAG,证△GAH≌△QAH得GH=QH,设GH=QH=a,得BD=AB=2,BQ=,DQ=,DH=-a,在Rt△DGH中,由DG2+DH2=GH2可得关于a的方程,解之可得答案.【题目详解】(1)∠MAN的大小没有变化,∵将△ADM沿AM折叠得到△AME,∴△ADM≌△AEM,∴AD=AE=2、DM=EM、∠D=∠AEM=90°、∠DAM=∠EAM=∠DAE,又∵AD=AB=2、∠D=∠B=90°,∴AE=AB、∠B=∠AEM=∠AEN=90°,在Rt△BAN和Rt△EAN中,∵,∴Rt△BAN≌Rt△EAN(HL),∴∠BAN=∠EAN=∠BAE,则∠MAN=∠EAM+∠EAN=∠DAE+∠BAE=(∠DAE+∠BAE)=∠BAD=45°,∴∠MAN的大小没有变化;(2)∵N点恰为BC中点,∴EN=BN=CN=1,设DM=EM=x,则MC=2﹣x,∴MN=ME+EN=1+x,在Rt△MNC中,由MC2+CN2=MN2可得(2﹣x)2+12=(1+x)2,解得:x=,即DM=;(3)如图,将△ABQ绕点A逆时针旋转90°得△ADG,连接GH,则△ABQ≌△ADG,∴DG=BQ=、AG=AQ、∠ADG=∠ABQ=∠ADB=45°、∠BAQ=∠DAG,∵∠MAN=∠BAD=45°,∴∠BAQ+∠DAM=∠DAG+∠DAM=∠GAH=45°,则∠GAH=∠QAH,在△GAH和△QAH中,∵,∴△GAH≌△QAH(SAS),∴GH=QH,设GH=QH=a,∵BD=AB=2,BQ=,∴DQ=BD﹣BQ=,∴DH=﹣a,∵∠ADG=∠ADH=45°,∴∠GDH=90°,在Rt△DGH中,由DG2+DH2=GH2可得()2+(﹣a)2=a2,解得:a=,即QH=.【题目点拨】本题主要考查四边形的综合问题,解题的关键是熟练掌握正方形的性质、全等三角形的判定与性质及旋转的性质等知识点.24、这块土地的面积为14m1【解题分析】
试题分析:连接AC,先利用勾股定理求AC,再利用勾股定理逆定理证△ACB为直角三角形,根据四边形ABCD的面积=△ABC面积-△ACD面积即可计算.试题解析:连接AC,∵AD=4m,CD=3m,∠ADC=90°,∴AC=5m,△ACD的面积=×3×4=6(m²),在△ABC中,∵AC=5m,BC=11m,AB=13m,∴AC²+BC²=AB²,∴△ABC为直角三角形,且∠ACB=90°,∴直角△ABC的面积=×11×5=30(m²),∴四边形ABCD的面积=30−6=14(m²).∴该花圃的面积是14m1.25、(1)AP⊥BF,(2)见解析;(3)1≤AP≤2【解题分析】
(1)根据直角三角形斜边中线定理可得,即△APD为等腰三角形推出∠DAP=∠EDA,可证△AED≌△ABF可得∠ABF=∠EDA=∠DAP且BF=ED由三角形内角和可得∠AOF=90°即AP⊥BF由全等可得即(2)延长AP至
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 员工疫情防控承诺书范文
- 上海公务员考试《行测》通关模拟试题及答案解析:6
- 大酒店销售部管理运转手册模板
- 输煤运行培训考试试题及答案
- 深圳助护招聘考试题库及答案
- 人文素养竞赛试题及答案
- 辅警警示培训课件
- 辅警入职培训课件
- 右外踝骨折的康复护理质量评价
- 《GAT 755-2008电子数据存储介质写保护设备要求及检测方法》专题研究报告
- 前沿财务知识培训课件
- 财务出纳述职报告
- 新疆乌鲁木齐市2024-2025学年八年级(上)期末语文试卷(解析版)
- 2025年包头钢铁职业技术学院单招职业技能考试题库完整
- 苹果电脑macOS效率手册
- 2022年版 义务教育《数学》课程标准
- 供货保障方案及应急措施
- TOC基本课程讲义学员版-王仕斌
- 初中语文新课程标准与解读课件
- 中建通风与空调施工方案
- GB/T 3683-2023橡胶软管及软管组合件油基或水基流体适用的钢丝编织增强液压型规范
评论
0/150
提交评论