“无机非金属材料”文件文集_第1页
“无机非金属材料”文件文集_第2页
“无机非金属材料”文件文集_第3页
“无机非金属材料”文件文集_第4页
“无机非金属材料”文件文集_第5页
已阅读5页,还剩49页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

“无机非金属材料”文件文集目录无机非金属材料“无机非金属材料的主角硅”教学设计基于深度学习理论的化学课堂教学设计以“无机非金属材料的主角硅”为例纳米无机非金属材料的合成、表征及性质研究玻璃_非晶无机非金属材料玻璃纤维_无机非金属材料无机非金属材料无机非金属材料,是以某些元素的氧化物、碳化物、氮化物、卤素化合物、硼化物以及硅酸盐、铝酸盐、磷酸盐、硼酸盐等物质组成的材料。是除有机高分子材料和金属材料以外的所有材料的统称。无机非金属材料的提法是20世纪40年代以后,随着现代科学技术的发展从传统的硅酸盐材料演变而来的。无机非金属材料是与有机高分子材料和金属材料并列的三大材料之一。

在晶体结构上,无机非金属的晶体结构远比金属复杂。具有比金属键和纯共价键更强的离子键和混合键。这种化学键所特有的高键能、高键强赋予这一大类材料以高熔点、高硬度、耐腐蚀、耐磨损、高强度和良好的抗氧化性等基本属性,以及宽广的导电性、隔热性、透光性及良好的铁电性、铁磁性和压电性。

硅酸盐材料是无机非金属材料的主要分支之一,硅酸盐材料是陶瓷的主要组成物质。

无机非金属材料品种和名目极其繁多,用途各异,因此,还没有一个统一而完善的分类方法。通常把它们分为普通的(传统的)和先进的(新型的)无机非金属材料两大类。传统的无机非金属材料是工业和基本建设所必需的基础材料。如水泥是一种重要的建筑材料;耐火材料与高温技术,尤其与钢铁工业的发展关系密切;各种规格的平板玻璃、仪器玻璃和普通的光学玻璃以及日用陶瓷、卫生陶瓷、建筑陶瓷、化工陶瓷和电瓷等与人们的生产、生活息息相关,它们产量大、用途广。其他产品如搪瓷、磨料(碳化硅、氧化铝)、铸石(辉绿岩、玄武岩等)、碳素材料、非金属矿(石棉、云母、大理石等)也都属于传统的无机非金属材料。新型无机非金属材料是20世纪中期以后发展起来的,具有特殊性能和用途的材料。它们是现代新技术、新产业、传统工业技术改造、现代国防和生物医学所不可缺少的物质基础。主要有先进陶瓷、非晶态材料、人工晶体、无机涂层、无机纤维等。

水泥和其他胶凝材料:硅酸盐水泥、铝酸盐水泥、石灰、石膏等;

陶瓷:粘土质、长石质、滑石质和骨灰质陶瓷等;

耐火材料:硅质、硅酸铝质、高铝质、镁质、铬镁质等,玻璃硅酸盐;

多孔材料:硅藻土、蛭石、沸石、多孔硅酸盐和硅酸铝等;

非金属矿:粘土、石棉、石膏、云母、大理石、水晶和金刚石等;

(1)氧化铝、氧化铍、滑石、镁橄榄石质陶瓷、石英玻璃和微晶玻璃等;

(2)铁电和压电材料:钛酸钡系、锆钛酸铅系材料等;

(1)锰—锌、镍—锌、锰—镁、锂—锰等铁氧体、磁记录和磁泡材料等;

(2)导体陶瓷、钠、锂、氧离子的快离子导体和碳化硅等;

(3)半导体陶瓷、钛酸钡、氧化锌、氧化锡、氧化钒、氧化锆等过滤金属元素氧化物系材料等。

钇铝石榴石激光材料,氧化铝、氧化钇透明材料和石英系或多组分玻璃的光导纤维等。

(1)高温氧化物、碳化物、氮化物及硼化物等难熔化合物超硬材料:碳化钛、人造金刚石和立方氮化硼等;

(2)人工晶体:铝酸锂、钽酸锂、砷化镓、氟金云母等。

长石质齿材、氧化铝、磷酸盐骨材和酶的载体材料等。

传统无机非金属材料和新型无机非金属材料的比较:传统无机非金属材料具有性质稳定,抗腐蚀耐高温等优点,但质脆,经不起热冲击。新型无机非金属材料除具有传统无机非金属材料的优点外,还有某些特征如:强度高、具有电学、光学特性和生物功能等。

其中,瓷是粉体的致密烧结体,较之较早的陶,其气孔率明显降低,致密度升高。

陶瓷在我国有悠久的历史,是中华民族古老文明的象征。从西安地区出土的秦始皇陵中大批陶兵马俑,气势宏伟,形象逼真,被认为是世界文化奇迹,人类的文明宝库。唐代的唐三彩、明清景德镇的瓷器均久负盛名。

传统陶瓷材料的主要成分是硅酸盐,自然界存在大量天然的硅酸盐,如岩石、土壤等,还有许多矿物如云母、滑石、石棉、高岭石等,它们都属于天然的硅酸盐。人们为了满足生产和生活的需要,生产了大量人造硅酸盐,主要有玻璃、水泥、各种陶瓷、砖瓦、耐火砖、水玻璃以及某些分子筛等。硅酸盐制品性质稳定,熔点较高,难溶于水,有很广泛的用途。

硅酸盐制品一般都是以黏土(高岭土)、石英和长石为原料经高温烧结而成。黏土的化学组成为Al2O3·2SiO2·2H2O,石英为SiO2,长石为K2O·Al2O3·6SiO2(钾长石)或Na2O·Al2O3·6SiO2(钠长石)。这些原料中都含有SiO2,因此在硅酸盐晶体结构中,硅与氧的结合是最重要也是最基本的。

硅酸盐材料是一种多相结构物质,其中含有晶态部分和非晶态部分,但以晶态为主。硅酸盐晶体中硅氧四面体是硅酸盐结构的基本单元。在硅氧四面体中,硅原子以sp3杂化轨道与氧原子成键,Si—O键键长为162pm,比起Si和O的离子半径之和有所缩短,故Si—O键的结合是比较强的。

精细陶瓷的化学组成已远远超出了传统硅酸盐的范围。例如,透明的氧化铝陶瓷、耐高温的二氧化锆(ZrO2)陶瓷、高熔点的氮化硅(Si3N4)和碳化硅(SiC)陶瓷等,它们都是无机非金属材料,是传统陶瓷材料的发展。精细陶瓷是适应社会经济和科学技术发展而发展起来的,信息科学、能源技术、宇航技术、生物工程、超导技术、海洋技术等现代科学技术需要大量特殊性能的新材料,促使人们研制精细陶瓷,并在超硬陶瓷、高温结构陶瓷、电子陶瓷、磁性陶瓷、光学陶瓷、超导陶瓷和生物陶瓷等方面取得了很好的进展,下面选择一些实例做简要的介绍。

高温结构陶瓷汽车发动机一般用铸铁铸造,耐热性能有一定限度。由于需要用冷却水冷却,热能散失严重,热效率只有30%左右。如果用高温结构陶瓷制造陶瓷发动机,发动机的工作温度能稳定在1300℃左右,由于燃料充分燃烧而又不需要水冷系统,使热效率大幅度提高。用陶瓷材料做发动机,还可减轻汽车的质量,这对航天航空事业更具吸引力,用高温陶瓷取代高温合金来制造飞机上的涡轮发动机效果会更好。

已有多个国家的大的汽车公司试制无冷却式陶瓷发动机汽车。我国也在1990年装配了一辆并完成了试车。陶瓷发动机的材料选用氮化硅,它的机械强度高、硬度高、热膨胀系数低、导热性好、化学稳定性高,是很好的高温陶瓷材料。氮化硅可用多种方法合成,工业上普遍采用高纯硅与纯氮在1300℃反应后获得:

3Si+2N2→Si3N4(1300℃)

高温结构陶瓷除了氮化硅外,还有碳化硅(SiC)、二氧化锆(ZrO2)、氧化铝等。

透明陶瓷一般陶瓷是不透明的,但光学陶瓷像玻璃一样透明,故称透明陶瓷。一般陶瓷不透明的原因是其内部存在有杂质和气孔,前者能吸收光,后者使光产生散射,所以就不透明了。因此如果选用高纯原料,并通过工艺手段排除气孔就可能获得透明陶瓷。早期就是采用这样的办法得到透明的氧化铝陶瓷,后来陆续研究出如烧结白刚玉、氧化镁、氧化铍、氧化钇、氧化钇-二氧化锆等多种氧化物系列透明陶瓷。又研制出非氧化物透明陶瓷,如砷化镓(GaAs)、硫化锌(ZnS)、硒化锌(ZnSe)、氟化镁(MgF2)、氟化钙(CaF2)等。这些透明陶瓷不仅有优异的光学性能,而且耐高温,一般它们的熔点都在2000℃以上。如氧化钍-氧化钇透明陶瓷的熔点高达3100℃,比普通硼酸盐玻璃高1500℃。透明陶瓷的重要用途是制造高压钠灯,它的发光效率比高压汞灯提高一倍,使用寿命达2万小时,是使用寿命最长的高效电光源。高压钠灯的工作温度高达1200℃,压力大、腐蚀性强,选用氧化铝透明陶瓷为材料成功地制造出高压钠灯。透明陶瓷的透明度、强度、硬度都高于普通玻璃,它们耐磨损、耐划伤,用透明陶瓷可以制造防弹汽车的窗、坦克的观察窗、轰炸机的轰炸瞄准器和高级防护眼镜等。

生物陶瓷人体器官和组织由于种种原因需要修复或再造时,选用的材料要求生物相容性好,对肌体无免疫排异反应;血液相容性好,无溶血、凝血反应;不会引起代谢作用异常现象;对人体无毒,不会致癌。已发展起来的生物合金、生物高分子和生物陶瓷基本上能满足这些要求。利用这些材料制造了许多人工器官,在临床上得到广泛的应用。但是这类人工器官一旦植入体内,要经受体内复杂的生理环境的长期考验。例如,不锈钢在常温下是非常稳定的材料,但把它做成人工关节植入体内,三五年后便会出现腐蚀斑,并且还会有微量金属离子析出,这是生物合金的缺点。有机高分子材料做成的人工器官容易老化,相比之下,生物陶瓷是惰性材料,耐腐蚀,更适合植入体内。

氧化铝陶瓷做成的假牙与天然齿十分接近,它还可以做人工关节用于很多部位,如膝关节、肘关节、肩关节、指关节、髋关节等。ZrO2陶瓷的强度、断裂韧性和耐磨性比氧化铝陶瓷好,也可用以制造牙根、骨和股关节等。羟基磷灰石〔Ca10(PO4)6(OH)2〕是骨组织的主要成分,人工合成的与骨的生物相容性非常好,可用于颌骨、耳听骨修复和人工牙种植等。发现用熔融法制得的生物玻璃,如CaO-Na2O-SiO2-P2O5,具有与骨骼键合的能力。

陶瓷材料最大的弱点是性脆,韧性不足,这就严重影响了它作为人工人体器官的推广应用。陶瓷材料要在生物工程中占有地位,必须考虑解决其脆性问题。

从陶瓷材料发展的历史来看,经历了三次飞跃。由陶器进入瓷器这是第一次飞跃;由传统陶瓷发展到精细陶瓷是第二次飞跃,在这个期间,不论是原材料,还是制备工艺、产品性能和应用等许多方面都有长足的进展和提高,然而对于陶瓷材料的致命弱点──脆性问题没有得到根本的解决。精细陶瓷粉体的颗粒较大,属微米级(10-6m),有人用新的制备方法把陶瓷粉体的颗粒加工到纳米级(10-9m),用这种超细微粉体粒子来制造陶瓷材料,得到新一代纳米陶瓷,这是陶瓷材料的第三次飞跃。纳米陶瓷具有延性,有的甚至出现超塑性。如室温下合成的TiO2陶瓷,它可以弯曲,其塑性变形高达100%,韧性极好。因此人们寄希望于发展纳米技术去解决陶瓷材料的脆性问题。纳米陶瓷被称为21世纪陶瓷。

旧石器时代人们用来制作工具的天然石材是最早的无机非金属材料。在公元前6000~前5000年中国发明了原始陶器。中国商代(约公元前17世纪初~约前11世纪)有了原始瓷器,并出现了上釉陶器。以后为了满足宫廷观赏及民间日用、建筑的需要,陶瓷的生产技术不断发展。公元200年(东汉时期)的青瓷是迄今发现的最早瓷器。陶器的出现促进了人类进入金属时代,中国夏代(约公元前22世纪末至约前21世纪初~约前17世纪初)炼铜用的陶质炼锅,是最早的耐火材料。铁的熔炼温度远高于铜,故铁器时代的耐火材料相应地也有很大发展。18世纪以后钢铁工业的兴起,促进耐火材料向多品种、耐高温、耐腐蚀方向发展。公元前3700年,埃及就开始有简单的玻璃珠作装饰品。

公元前1000年前,中国也有了白色穿孔的玻璃珠。公元初期罗马已能生产多种形式的玻璃制品。1000~1200年间玻璃制造技术趋于成熟,意大利的威尼斯成为玻璃工业中心。1600年后玻璃工业已遍及世界各地区。公元前3000~前2000年已使用石灰和石膏等气硬性胶凝材料。随着建筑业的发展,胶凝材料也获得相应的发展。公元初期有了水硬性石灰,火山灰胶凝材料,1700年以后制成水硬性石灰和罗马水泥。1824年英国J.阿斯普丁发明波特兰水泥。上述陶瓷、耐火材料、玻璃、水泥等的主要成分均为硅酸盐,属于典型的硅酸盐材料。18世纪工业革命以后,随着建筑、机械、钢铁、运输等工业的兴起,无机非金属材料有了较快的发展,出现了电瓷、化工陶瓷、金属陶瓷、平板玻璃、化学仪器玻璃、光学玻璃、平炉和转炉用的耐火材料以及快硬早强等性能优异的水泥。同时,发展了研磨材料、碳素及石墨制品、铸石等。

20世纪以来,随着电子技术、航天、能源、计算机、通信、激光、红外、光电子学、生物医学和环境保护等新技术的兴起,对材料提出了更高的要求,促进了特种无机非金属材料的迅速发展。30~40年代出现了高频绝缘陶瓷、铁电陶瓷和压电陶瓷、铁氧体(又称磁性瓷)和热敏电阻陶瓷等。50~60年代开发了碳化硅和氮化硅等高温结构陶瓷、氧化铝透明陶瓷、β-氧化铝快离子导体陶瓷、气敏和湿敏陶瓷等。至今,又出现了变色玻璃、光导纤维、电光效应、电子发射及高温超导等各种新型无机材料。

普通无机非金属材料的特点是:耐压强度高、硬度大、耐高温、抗腐蚀。水泥在胶凝性能上,玻璃在光学性能上,陶瓷在耐蚀、介电性能上,耐火材料在防热隔热性能上都有其优异的特性,为金属材料和高分子材料所不及。但与金属材料相比,它抗断强度低、缺少延展性,属于脆性材料。与高分子材料相比,密度较大,制造工艺较复杂。

特种无机非金属材料的特点是:①各具特色。例如:高温氧化物等的高温抗氧化特性;氧化铝、氧化铍陶瓷的高频绝缘特性;铁氧体的磁学性质;光导纤维的光传输性质;金刚石、立方氮化硼的超硬性质;导体材料的导电性质;快硬早强水泥的快凝、快硬性质等。②各种物理效应和微观现象。例如:光敏材料的光-电、热敏材料的热-电、压电材料的力-电、气敏材料的气体-电、湿敏材料的湿度-电等材料对物理和化学参数间的功能转换特性。③不同性质的材料经复合而构成复合材料。例如:金属陶瓷、高温无机涂层,以及用无机纤维、晶须等增强的材料。

普通无机非金属材料的生产是采用天然矿石作原料。经过粉碎、配料、混合等工序,成型(陶瓷、耐火材料等)或不成型(水泥、玻璃等),在高温下煅烧成多晶态(水泥、陶瓷等)或非晶态(玻璃、铸石等),再经过进一步的加工如粉磨(水泥)、上釉彩饰(陶瓷)、成型后退火(玻璃、铸石等),得到粉状或块状的制品。

特种无机非金属材料的原料多采用高纯、微细的人工粉料。单晶体材料用焰融、提拉、水溶液、气相及高压合成等方法制造。多晶体材料用热压铸等静压、轧膜、流延、喷射或蒸镀等方法成型后再煅烧,或用热压、高温等静压等烧结工艺,或用水热合成、超高压合成或熔体晶化等方法制造粉状、块状或薄膜状的制品。非晶态材料用高温熔融、熔体凝固、喷涂、拉丝或喷吹等方法制成块状、薄膜或纤维状的制品。

未来科学技术的发展,对各种无机非金属材料,尤其是对特种新型材料提出更多更高的要求。材料学科有广阔的发展前景,复合材料、定向结晶材料、增韧陶瓷以及各种类型的表面处理和涂层的使用,将使材料的效能得到更大发挥。由于对材料科学基础研究的日益深入,各种精密测试分析技术的发展,将有助于按预定性能设计材料的原子或分子组成及结构形态的早日实现。“无机非金属材料的主角硅”教学设计培养学生的实验能力,引导学生观察实验现象并从中得出结论。

硅的物理性质:硅是一种非金属元素,具有稳定的化学性质。它的晶体结构与金刚石相似,但物理性质有所不同。硅的熔点高、硬度大,具有良好的半导体性能。

硅的化学性质:硅的化学性质稳定,不易与其他元素发生反应。但在一定条件下,硅能与某些非金属元素(如氧、氮、硫等)和某些金属元素(如铝、铁等)反应,生成具有各种特性的化合物。

硅在无机非金属材料中的应用:硅是无机非金属材料的主角,被广泛应用于电子、半导体、太阳能等领域。硅与碳、氮、氧等元素结合,可形成多种具有特殊性能的材料,如硅橡胶、石英玻璃、陶瓷等。

难点:理解硅的化学性质及其在无机非金属材料中的应用。

讲授法:讲授硅的物理性质和化学性质,以及其在无机非金属材料中的应用。

实验法:通过实验展示硅的性质和化合物,培养学生的实验能力。

导入:通过提问导入新课,问学生“你们知道什么是无机非金属材料吗?”,然后引出无机非金属材料的主角——硅。

讲授新课:讲授硅的物理性质和化学性质,以及其在无机非金属材料中的应用。利用投影仪播放相关的PPT,展示硅的晶体结构、化合物等方面的图片和视频。同时,利用黑板书写重要的概念和公式,帮助学生理解硅的性质和化合物。

实验:通过实验展示硅的性质和化合物。利用实验器材进行演示实验,让学生观察实验现象并从中得出结论。同时,引导学生自己动手进行实验,培养学生的实验能力。

巩固练习:通过让学生回答问题、完成练习题等方式巩固所学知识。可以问学生“你们知道硅为什么能在无机非金属材料中占据重要地位吗?”,然后让学生回答并阐述自己的观点。还可以让学生完成一些相关的练习题,如选择题、填空题等,帮助学生巩固所学知识。

小结:对本节课所学知识进行总结,强调重点和难点内容,帮助学生加深记忆和理解。同时,让学生思考和探讨硅在其他领域的应用前景,激发学生的探究兴趣和学习动力。基于深度学习理论的化学课堂教学设计以“无机非金属材料的主角硅”为例在当今的信息化时代,教育方式也在逐步转变,深度学习理论日益受到重视,它强调对概念的理解和批判性思维的培养。在化学课堂教学中,尤其是无机非金属材料的教学中,深度学习理论的应用有助于学生更好地理解和掌握知识。本文以“无机非金属材料的主角硅”为例,探讨如何基于深度学习理论进行化学课堂教学设计。

深度学习理论强调学生的主动性和批判性思维,提倡让学生在理解的基础上进行学习,而非机械记忆。它注重对知识的理解和应用,而非简单的信息堆砌。深度学习理论鼓励教师引导学生进行反思、提问、论证,以培养他们的创新能力和解决问题的能力。

确立教学目标:教师首先需要明确教学目标,例如,“理解硅在无机非金属材料中的重要地位”、“掌握硅的化学性质和物理性质”、“学会应用硅的性质解决实际问题”等。

激活背景知识:在进入新课前,教师需要激活学生已有的背景知识,如“回顾无机非金属材料的分类和特点”。

引导探索:教师可以通过提问、演示实验等方式引导学生探索硅的性质和应用。例如,“展示硅矿石样本,让学生观察其颜色、质地”、“进行硅的化学反应实验,让学生观察并描述反应现象”。

组织讨论:教师可以组织学生进行小组讨论,例如,“讨论硅在电子工业中的应用”、“分析硅酸盐对环境的影响”。

总结评价:在课程结束时,教师需要对学生的学习情况进行总结评价,例如,“总结硅的性质和用途”、“评价学生在讨论中的表现”。

以“无机非金属材料的主角硅”为例,教师可以引导学生了解硅在无机非金属材料中的地位和作用,通过实验和讨论的方式让学生掌握硅的化学和物理性质,并学会应用这些性质解决实际问题。例如,教师可以提问:“硅在半导体工业中有什么应用?”、“硅酸盐在建筑材料中的地位如何?”等问题,引导学生思考并寻找答案。

基于深度学习理论的化学课堂教学设计有助于学生更好地理解和掌握知识,培养他们的创新能力和解决问题的能力。在“无机非金属材料的主角硅”这一课中,通过确立教学目标、激活背景知识、引导探索、组织讨论和总结评价等环节,教师可以有效地将深度学习理论应用到课堂教学中,提高教学效果。纳米无机非金属材料的合成、表征及性质研究纳米无机非金属材料是一种具有广泛应用前景的新型材料,因其独特的物理、化学和机械性质而受到广泛。本文主要探讨纳米无机非金属材料的合成、表征及其性质的研究。

纳米无机非金属材料的合成是研究其性质的关键步骤之一。合成方法的选择直接影响着材料的形貌、尺寸和性能。以下是一些常见的合成方法:

化学气相沉积(CVD):通过高温加热,使反应气体在基底上发生化学反应并沉积出纳米材料。该方法可以制备出高质量、大面积的纳米无机非金属材料。

溶胶-凝胶法:通过溶液中的化学反应制备出纳米粒子,然后将其干燥并烧结成纳米材料。该方法具有操作简单、产物纯度高等优点。

微乳液法:通过将两种互不相溶的液体混合,形成微小的乳滴,然后在乳滴中生成纳米粒子。该方法可以制备出单分散的纳米粒子。

表征纳米无机非金属材料的方法对于了解其性质和性能至关重要。以下是一些常见的表征方法:

射线衍射(RD):通过分析射线的衍射图谱,可以确定纳米材料的晶体结构和相组成。

扫描电子显微镜(SEM):通过SEM可以观察纳米材料的形貌、尺寸和分布情况。

透射电子显微镜(TEM):通过TEM可以观察纳米材料的内部结构和晶体取向。

原子力显微镜(AFM):通过AFM可以了解纳米材料表面的粗糙度和力学性质。

纳米无机非金属材料的性质主要取决于其尺寸、形貌和化学组成等因素。以下是一些常见的性质:

光学性质:纳米无机非金属材料具有独特的光学性质,如光吸收、荧光和光致发光等。这些性质使其在光学器件、传感器和生物医学领域具有广泛的应用前景。

电子学性质:纳米无机非金属材料具有优异的电子学性能,如导电性和半导体特性等。这些性质使其在电子器件和集成电路等领域具有潜在的应用价值。

磁学性质:纳米无机非金属材料具有独特的磁学性质,如磁滞回线、磁化率和磁致伸缩等。这些性质使其在信息存储、电磁屏蔽和生物医学领域具有广泛的应用前景。

热学性质:纳米无机非金属材料具有优异的热学性能,如热导率和热膨胀系数等。这些性质使其在热管理和热控制等领域具有广泛的应用前景。

机械性质:纳米无机非金属材料具有优异的机械性能,如硬度、韧性和抗疲劳性等。这些性质使其在机械部件和结构材料等领域具有广泛的应用前景。

纳米无机非金属材料作为一种新型的功能材料,在各个领域都有广泛的应用前景。对其合成、表征及性质的研究有助于我们更好地了解其性能,为实际应用提供理论依据和指导。玻璃_非晶无机非金属材料玻璃是非晶无机非金属材料,一般是用多种无机矿物(如石英砂、硼砂、硼酸、重晶石、碳酸钡、石灰石、长石、纯碱等)为主要原料,另外加入少量辅助原料制成的。

它的主要成分为二氧化硅和其他氧化物。普通玻璃的化学组成是Na2SiOCaSiOSiO2或Na2O·CaO·6SiO2等,主要成分是硅酸盐复盐,是一种无规则结构的非晶态固体。

广泛应用于建筑物,用来隔风透光,属于混合物。另有混入了某些金属的氧化物或者盐类而呈现出颜色的有色玻璃,和通过物理或者化学的方法制得的钢化玻璃等。有时把一些透明的塑料(如聚甲基丙烯酸甲酯)也称作有机玻璃。

世界最早的玻璃制造者为古埃及人。玻璃的出现与使用在人类的生活里已有四千多年的历史,从4000年前的美索不达米亚和古埃及的遗迹里,都曾有小玻璃珠的出土。

传说3000多年前,一艘欧洲腓尼基人的商船,满载着晶体矿物“天然苏打”,航行在地中海沿岸的贝鲁斯河上。由于海水落潮,商船搁浅了,于是船员们纷纷登上沙滩。有的船员还抬来大锅,搬来木柴,并用几块“天然苏打”作为大锅的支架,在沙滩上做起饭来。船员们吃完饭,潮水开始上涨了。他们正准备收拾一下登船继续航行时,突然有人高喊:“大家快来看啊,锅下面的沙地上有一些晶莹明亮、闪闪发光的东西!”船员们把这些闪烁光芒的东西,带到船上仔细研究起来。他们发现,这些亮晶晶的东西上粘有一些石英砂和融化的天然苏打。原来,这些闪光的东西,是他们做饭时用来做锅的支架的天然苏打,在火焰的作用下,与沙滩上的石英砂发生化学反应而产生的物质,这就是最早的玻璃。后来腓尼基人把石英砂和天然苏打和在一起,然后用一种特制的炉子熔化,制成玻璃球,使腓尼基人发了一笔大财。大约在4世纪,古罗马人开始把玻璃应用在门窗上,到1291年,意大利的玻璃制造技术已经非常发达。就这样,意大利的玻璃工匠都被送到一个与世隔绝的孤岛上生产玻璃,他们在一生当中不准离开这座孤岛。

公元12世纪,出现了商品玻璃,并开始成为工业材料。

1688年,一名叫纳夫的人发明了制作大块玻璃的工艺,从此,玻璃成了普通的物品。18世纪,为适应制望远镜的需要,制出光学玻璃。

1906年,美国制出平板玻璃引上机,此后,随着玻璃生产的工业化和规模化,各种用途和各种性能的玻璃相继问世。现代,玻璃已成为日常生活、生产和科学技术领域的重要材料。

玻璃:此为梵语音,非当今所谓之玻璃。又作颇黎,新译作颇置迦、娑颇致迦、塞波致迦等,相当于此方之水精(晶)。

《玄应音义》曰:“颇黎,西国宝名也,此云水玉,或云白珠。”

《大论》云:“此宝出山石窟中,过千年,冰化为颇黎珠。”

《慧苑音义》云此宝:“形如水精,光莹精妙于水精,有黄、碧、紫、白四色差别。”

明代李时珍《本草纲目》:“玻璃,本作颇黎。颇黎国名也。其莹如水,其坚如玉,故名水玉。与水精同名。”

几百年来,人们一直认为玻璃是绿色的,是无法改变的。后来发现绿色来自原料中少量的铁,二价铁的化合物使得玻璃显绿色。在加入二氧化锰以后,原来的二价铁变成三价铁显黄色,而四价锰被还原成三价锰呈紫色。光学上,黄色和紫色在一定程度上可以互补,混合在一起成为白光,玻璃就不偏色了。不过若干年后,三价锰被空气继续氧化,黄色会逐渐增强,所以那些古老房屋的窗玻璃会略微带点黄色。

有石英玻璃、硅酸盐玻璃、钠钙玻璃、氟化物玻璃、高温玻璃、耐高压玻璃、防紫外线玻璃、防爆玻璃等。通常指硅酸盐玻璃,以石英砂、纯碱、长石及石灰石等为原料,经混和、高温熔融、匀化后,加工成形,再经退火而得。广泛用于建筑、日用、艺术、医疗、化学、电子、仪表、核工程等领域。

热熔玻璃、浮雕玻璃、锻打玻璃、晶彩玻璃、琉璃玻璃、夹丝玻璃、聚晶玻璃、玻璃马赛克、钢化玻璃、夹层玻璃、中空玻璃、调光玻璃、发光玻璃。

陈设工艺品这一块越来越多人关注,其中有很大一部分的工艺品造型由玻璃制造。

玻璃简单分类主要分为平板玻璃和深加工玻璃。平板玻璃主要分为三种:即引上法平板玻璃(分有槽/无槽两种)、平拉法平板玻璃和浮法玻璃。由于浮法玻璃具有厚度均匀、上下表面平整平行,再加上劳动生产率高及利于管理等方面的因素影响,浮法玻璃正成为玻璃制造方式的主流。而特种玻璃则品种众多,下面按装修中常见的品种一一说明:

3~4厘玻璃,mm在日常中也称为厘或者个。我们所说的3厘(个)玻璃,就是指厚度3mm的玻璃。这种规格的玻璃主要用于画框表面。

5~6厘玻璃,主要用于外墙窗户、门扇等小面积透光造型等等。

7~9厘玻璃,主要用于室内屏风等较大面积但又有框架保护的造型之中。

9~10厘玻璃,可用于室内大面积隔断、栏杆等装修项目。

11~12厘玻璃,可用于地弹簧玻璃门和一些活动人流较大的隔断。

15厘以上玻璃,一般市面上销售较少,往往需要订货,主要用于较大面积的地弹簧玻璃门和外墙整块玻璃墙面。

为达到生产生活中的各种需求,人们对普通平板玻璃进行深加工处理,主要分类:

钢化玻璃。它是普通平板玻璃经过再加工处理而成一种预应力玻璃。钢化玻璃相对于普通平板玻璃来说,具有两大特征:

(1)前者强度是后者的数倍,抗拉度是后者的3倍以上,抗冲击是后者5倍以上。

(2)钢化玻璃不容易破碎,即使破碎也会以无锐角的颗粒形式碎裂,对人体伤害大大降低。

磨砂玻璃。它也是在普通平板玻璃上面再磨砂加工而成。一般厚度多在9厘以下,以6厘厚度居多。

喷砂玻璃。性能上基本上与磨砂玻璃相似,不同的改磨砂为喷砂。由于两者视觉上类同,很多业主,甚至装修专业人员都把它们混为一谈。

压花玻璃。是采用压延方法制造的一种平板玻璃。其最大的特点是透光不透明,多使用于洗手间等装修区域。

夹丝玻璃。是采用压延方法,将金属丝或金属网嵌于玻璃板内制成的一种具有抗冲击平板玻璃,受撞击时只会形成辐射状裂纹而不至于堕下伤人。故多采用于高层楼宇和震荡性强的厂房。

中空玻璃。多采用胶接法将两块玻璃保持一定间隔,间隔中是干燥的空气,周边再用密封材料密封而成,主要用于有隔音隔热要求的装修工程之中。

夹层玻璃。夹层玻璃一般由两片普通平板玻璃(也可以是钢化玻璃或其他特殊玻璃)和玻璃之间的有机胶合层构成。当受到破坏时,碎片仍粘附在胶层上,避免了碎片飞溅对人体的伤害。多用于有安全要求的装修项目。

防弹玻璃。实际上就是夹层玻璃的一种,只是构成的玻璃多采用强度较高的钢化玻璃,而且夹层的数量也相对较多。多采用于银行或者豪宅等对安全要求非常高的装修工程之中。

热弯玻璃。由优质平板玻璃加热软化在模具中成型,再经退火制成的曲面玻璃。样式美观,线条流畅,在一些高级装修中出现的频率越来越高。

玻璃砖。玻璃砖的制作工艺基本和平板玻璃一样,不同的是成型方法。

其中间为干燥的空气。多用于装饰性项目或者有保温要求的透光造型之中。

玻璃纸。也称玻璃膜,具有多种颜色和花色。根据纸膜的性能不同,具有不同的性能。绝大部分起隔热、防红外线、防紫外线、防爆等作用。

LED光电玻璃。光电玻璃是一种新型环保节能产品,是LED和玻璃的结合体,既有玻璃的通透性,又有LED的亮度,主要用于室内外装饰和广告。

调光玻璃:通电呈现玻璃本质透明状,断电时呈现白色磨砂状不透明,不透明状态下,可以作为背投幕。

节能玻璃:中空玻璃、真空玻璃、低辐射玻璃、Coatinglow-e玻璃,纳米涂膜玻璃,隔热玻璃等。

玻璃是一种无规则结构的非晶态固体(从微观上看,玻璃也是一种液体),其分子不像晶体那样在空间具有长程有序的排列,而近似于液体那样具有短程有序。玻璃像固体一样保持特定的外形,不像液体那样随重力作用而流动。

玻璃通常按主要成分分为氧化物玻璃和非氧化物玻璃。非氧化物玻璃品种和数量很少,主要有硫系玻璃和卤化物玻璃。硫系玻璃的阴离子多为硫、硒、碲等,可截止短波长光线而通过黄、红光,以及近、远红外光,其电阻低,具有开关与记忆特性。卤化物玻璃的折射率低,色散低,多用作光学玻璃。

氧化物玻璃又分为硅酸盐玻璃、硼酸盐玻璃、磷酸盐玻璃等。硅酸盐玻璃指基本成分为SiO2的玻璃,其品种多,用途广。通常按玻璃中SiO2以及碱金属、碱土金属氧化物的不同含量,又分为:

①石英玻璃。SiO2含量大于5%,热膨胀系数低,耐高温,化学稳定性好,透紫外光和红外光,熔制温度高、粘度大,成型较难。多用于半导体、电光源、光导通信、激光等技术和光学仪器中。

②高硅氧玻璃。也称vycor玻璃,主要成分为SiO2含量约95%~98%,含少量B2O3和Na2O,其性质与石英玻璃相似。

③钠钙玻璃。以SiO2含量为主,还含有15%的Na2O和16%的CaO,其成本低廉,易成型,适宜大规模生产,其产量占实用玻璃的90%。可生产玻璃瓶罐、平板玻璃、器皿、灯泡等。

④铅硅酸盐玻璃。主要成分有SiO2和PbO,具有独特的高折射率和高体积电阻,与金属有良好的浸润性,可用于制造灯泡、真空管芯柱、晶质玻璃器皿、火石光学玻璃等。含有大量PbO的铅玻璃能阻挡射线和γ射线。

⑤铝硅酸盐玻璃。以SiO2和Al2O3为主要成分,软化变形温度高,用于制作放电灯泡、高温玻璃温度计、化学燃烧管和玻璃纤维等。

⑥硼硅酸盐玻璃。以SiO2和B2O3为主要成分,具有良好的耐热性和化学稳定性,用以制造烹饪器具、实验室仪器、金属焊封玻璃等。硼酸盐玻璃以B2O3为主要成分,熔融温度低,可抵抗钠蒸气腐蚀。含稀土元素的硼酸盐玻璃折射率高、色散低,是一种新型光学玻璃。磷酸盐玻璃以P2O5为主要成分,折射率低、色散低,用于光学仪器中。

(1)普通玻璃(Na2SiOCaSiOSiO2或Na2O·CaO·6SiO2)。

(2)石英玻璃(以纯净的石英为主要原料制成的玻璃,成分仅为SiO2)。

(4)钾玻璃(K2O、CaO、SiO2)。

(6)有色玻璃在(普通玻璃制造过程中加入一些金属氧化物。Cu2O——红色;CuO——蓝绿色;CdO——浅黄色;Co2O3——蓝色;Ni2O3——墨绿色;MnO2——蓝紫色;胶体Au——红色;胶体Ag——黄色)。

(7)变色玻璃(用稀土元素的氧化物作为着色剂的高级有色玻璃)。

(8)光学玻璃(在普通的硼硅酸盐玻璃原料中加入少量对光敏感的物质,如AgCl、AgBr等,再加入极少量的敏化剂,如CuO等,使玻璃对光线变得更加敏感)。

(9)彩虹玻璃(在普通玻璃原料中加入大量氟化物、少量的敏化剂和溴化物制成)。

(10)防护玻璃(在普通玻璃制造过程加入适当辅助料,使其具有防止强光、强热或辐射线透过而保护人身安全的功能。如灰色——重铬酸盐,氧化铁吸收紫外线和部分可见光;蓝绿色——氧化镍、氧化亚铁吸收红外线和部分可见光;铅玻璃——氧化铅吸收射线和r射线;暗蓝色——重铬酸盐、氧化亚铁、氧化铁吸收紫外线、红外线和大部分可见光;加入氧化镉和氧化硼吸收中子流)。

(11)微晶玻璃(又叫结晶玻璃或玻璃陶瓷,是在普通玻璃中加入金、银、铜等晶核制成,代替不锈钢和宝石,作雷达罩和导弹头等)。

(12)玻璃纤维(由熔融玻璃拉成或吹成的直径为几微米至几千微米的纤维,成分与玻璃相同)。

(14)玻璃钢(由环氧树脂与玻璃纤维复合而得到的强度类似钢材的增强塑料)。

(15)玻璃纸(用粘胶溶液制成的透明的纤维素薄膜)。

(16)水玻璃((Na2SiO3)的水溶液,因与普通玻璃中部分成分相同而得名)。

(17)金属玻璃(玻璃态金属,一般由熔融的金属迅速冷却而制得)。

(18)萤石(氟石)(无色透明的CaF2,用作光学仪器中的棱镜和透光镜)。

玻璃按性能特点又分为:钢化玻璃、多孔玻璃(即泡沫玻璃,孔径约40nm,用于海水淡化、病毒过滤等方面)、导电玻璃(用作电极和飞机风挡玻璃)、微晶玻璃、乳浊玻璃(用于照明器件和装饰物品等)和中空玻璃(用作门窗玻璃)等。

玻璃的分子排列是无规则的,其分子在空间中具有统计上的均匀性。在理想状态下,均质玻璃的物理、化学性质(如折射率、硬度、弹性模量、热膨胀系数、导热率、电导率等)在各方向都是相同的。

因为玻璃是混合物,非晶体,所以无固定熔沸点。玻璃由固体转变为液体是一定温度区域(即软化温度范围)内进行的,它与结晶物质不同,没有固定的熔点。软化温度范围Tg~T1,Tg为转变温度,T1为液相线温度,对应的黏度分别为14dPa·s、104~6dPa·s。

玻璃态物质一般是由熔融体快速冷却而得到,从熔融态向玻璃态转变时,冷却过程中黏度急剧增大,质点来不及做有规则排列而形成晶体,没有释出结晶潜热,因此,玻璃态物质比结晶态物质含有较高的内能,其能量介于熔融态和结晶态之间,属于亚稳状态。从力学观点看,玻璃是一种不稳定的高能状态,比如存在低能量状态转化的趋势,即有析晶倾向,所以,玻璃是一种亚稳态固体材料。

玻璃态物质从熔融态到固体状态的过程是渐变的,其物理、化学性质的变化也是连续的和渐变的。这与熔体的结晶过程明显不同,结晶过程必然出现新相,在结晶温度点附近,许多性质会发生突变。而玻璃态物质从熔融状态到固体状态是在较宽温度范围内完成的,随着温度逐渐降低,玻璃熔体黏度逐渐增大,最后形成固态玻璃,但是过程中没有新相形成。相反玻璃加热变为熔体的过程也是渐变的。

夹层玻璃是指用一种透明可粘合性塑料膜贴在二层或三层玻璃之间,将塑料的强韧性和玻璃的坚硬性结合在一起,增加了玻璃的抗破碎能力,破碎后仍然能够保持能见度。多用于汽车挡风玻璃。

区域钢化玻璃是钢化玻璃的一种新品种,它经过特殊处理,能够在受到冲击破裂时,其玻璃的裂纹仍可以保持一定的清晰度,保证驾驶者的视野区域不受影响。多用于汽车挡风玻璃及仪表保护屏。

防火玻璃主要有五种,其一是夹层复合防火玻璃,其二是夹丝防火玻璃,其三是特种防火玻璃,其四是中空防火玻璃,其五是高强度单层铯钾防火玻璃。当然科技是在不断的发展,所以相关的方面也是在不断的改善,不同类别的玻璃它的效用是不一样的,所以其相关的制作工艺以及使用用途是不同的,这是需要我们进行细致化考虑和分析的。

玻璃生产的主要原料有玻璃形成体、玻璃调整物和玻璃中间体,其余为辅助原料。主要原料指引入玻璃形成网络的氧化物、中间体氧化物和网络外氧化物;辅助原料包括澄清剂、助熔剂、乳浊剂、着色剂、脱色剂、氧化剂和还原剂等。

①原料预加工。将块状原料(石英砂、纯碱、石灰石、长石等)粉碎,使潮湿原料干燥,将含铁原料进行除铁处理,以保证玻璃质量。

③熔制。玻璃配合料在池窑或坩埚窑内进行高温(1550~1600度)加热,使之形成均匀、无气泡,并符合成型要求的液态玻璃。

④成型。将液态玻璃加工成所要求形状的制品,如平板、各种器皿等。

⑤热处理。通过退火、淬火等工艺,消除或产生玻璃内部的应力、分相或晶化,以及改变玻璃的结构状态。

先将需要加工的平板玻璃平放在垫有粗呢或棉毯的工作台上,再在玻璃面上堆放适量的细金刚砂,用粗瓷碗反扣住金刚砂,用双手轻压碗底转圈推动。也可使用较高号水磨石地面用的磨石研磨。研磨操作应从四周边角开始逐步移向中间,直至把玻璃面研磨呈均匀的乳白色,达到透光不透视即可。

先把平板玻璃用清水洗净晾干后满涂石蜡,然后在石蜡上刻掉成各种花纹,用1:5浓度的氢氟酸溶液腐蚀玻璃面。最后倒去氢氟酸清除石蜡,用水把玻璃清洗干净为止。

其他如彩色玻璃可采用裱贴或喷涂方法加工,具体方法从略。在地面和立墙上弹线,令做好下部墙体结构、骨架立柱横梁的固定,玻璃加工裁割安装上部及全部木(金属)骨架,玻璃安装,镶边油漆及清理。

根据种类不同,玻璃有不同的特性。下面按照建筑玻璃分类方法分别介绍如下:

良好的透视、透光性能(3mm、5mm厚的镜片玻璃的可见光透射比分别为87%和84%)。对太阳光中近红外热射线的透过率较高,但对可见光折射至室内墙顶地面和家具、织物而反射产生的远红外长波热射线却有效阻挡,故可产生明显的“暖房效应”。净片玻璃对太阳光中紫外线的透过率较低;

抗拉强度远小于抗压强度,是典型的脆性材料;

有较高的化学稳定性,通常情况下,对酸碱盐及化学试剂盒气体都有较强的抵抗能力,但长期遭受侵蚀性介质的作用也能导致变质和破坏,如玻璃的风化和发霉都会导致外观破坏和透光性能降低;

彩色平板玻璃:可以拼成各类团,并有耐腐蚀抗冲刷、易清洗等特点。

压花玻璃、喷花玻璃、乳花玻璃、刻花玻璃、冰花玻璃:根据各自制作花纹的工艺不同,有各种色彩、观感、光泽效果,富有装饰性。

着色玻璃:有效吸收太阳辐射热,达到蔽热节能效果;吸收较多可见光,使透过的光线柔和;较强吸收紫外线,防止紫外线对室内影响;色泽艳丽耐久,增加建筑物外形美观。

镀膜玻璃:保温隔热效果较好,易对外面环境产生光污染。

中空玻璃:光学性能良好、保温隔热性能好、防结露、具有良好的隔声性能。

钢化玻璃:机械强度高、弹性好、热稳定性好、碎后不易伤人、不易发生自爆。

夹丝玻璃:受冲击或温度骤变后碎片不会飞散;可短时防止火焰蔓延;有一定的防盗、防抢作用。

夹层玻璃:透明度好、抗冲击性能高、夹层PVB胶片粘合作用保护碎片不散落伤人,耐久、耐热、耐湿、耐寒性高。

平时不要用力碰撞玻璃面,为防玻璃面刮花,最好铺上台布。在玻璃家具上搁放东西时,要轻拿轻放,切忌碰撞。

日常清洁时,用湿毛巾或报纸擦拭即可,如遇污迹可用毛巾蘸啤酒或温热的食醋擦除,另外也可以使用市场上出售的玻璃清洗剂,忌用酸碱性较强的溶液清洁。冬天玻璃表面易结霜,可用布蘸浓盐水或白酒来擦拭,效果很好。

有花纹的毛玻璃一旦脏了,可用蘸有清洁剂的牙刷,顺着图样打圈擦拭即可去除。也可以在玻璃上滴点煤油或用粉笔灰和石膏粉蘸水涂在玻璃上晾干,再用干净布或棉花擦,这样玻璃既干净又明亮。

玻璃家具最好安放在一个较固定的地方,不要随意地来回移动;要平稳放置物件,沉重物件应放置玻璃家具底部,防止家具重心不稳造成翻倒。另外,要避免潮湿,远离炉灶,要与酸、碱等化工试剂隔绝,防止腐蚀变质。

使用保鲜膜和喷有洗涤剂的湿布也可以让时常沾满油污的玻璃“重获新生”。将玻璃全面喷上清洁剂,再贴上保鲜膜,使凝固的油渍软化,过十分钟后,撕去保鲜膜,再以湿布擦拭即可。要想保持玻璃光洁明亮,必须经常动手清洁,玻璃上若有笔迹,可用橡皮浸水摩擦,然后再用湿布擦拭;玻璃上若有油漆,可用棉花蘸热醋擦洗;用清洁干布蘸酒精擦拭玻璃,可使其亮如水晶。

在运输过程中为了避免不必要的损失,一定要注意固定和加软护垫。一般建议采用竖立的方法运输。车辆也应该注意保持稳定、慢速。

玻璃安装的另一面是封闭的话,要注意在安装前清洁好表面。最好使用专用的玻璃清洁剂,并且要待其干透后证实没有污痕后方可安装,安装时最好使用干净的建筑手套。

玻璃的安装,要使用硅酮密封胶进行固定,在窗户等安装中,还需要与橡胶密封条等配合使用。

在施工完毕后,要注意加贴防撞警告标志,一般可以用不干贴、彩色电工胶布等予以提示。

擦拭玻璃:先用毛巾将玻璃框擦干净,再用玻璃刮沾稀释后的玻璃水溶液,均匀的从上到下涂抹玻璃,再重复以上工序,用玻璃刮从上到下刮干净,用干毛巾擦净框上留下的水痕,玻璃上的水痕一定要用玻璃刮擦干净,否则将会在玻璃上留下一道道痕迹。

将醋和水按1:2的比例调和,放入喷雾中,喷在玻璃上再擦抹,就可擦得非常干净。

在水盆中加入5%的阿摩尼亚溶液或汽油,用其清洗玻璃,待玻璃稍干再用干布擦抹干净,玻璃即可一尘不染,光亮透明。在擦玻璃的时候,可选用擦窗器用不同的型号,看清是擦双层玻璃的还是单层玻璃的。使用擦窗器方便、省力、安全。

如玻璃表面有发霉现象,可将氢氟酸(HF)与水1:8的比例调和(注意:超过1:8,会对手部造成损伤),拭擦玻璃。注意:一定要做好腐蚀防护工作,皮肤不可接触HF,否则会严重腐蚀。拭擦完玻璃后,用清水再拭擦一遍,最后将玻璃擦干。

玻璃既不是晶态,也不是非晶态,也不是多晶态,也不是混合态。理论名称叫玻璃态。玻璃态在常温下的特点是:短程有序,即在数个或数十个原子范围内,原子有序排列,呈现晶体特征;长程无序,即再增加原子数量后,便成为一种无序的排列状态,其混乱程度类似于液体。在宏观上,玻璃又是一种固态的物质。

玻璃就是这样一种物质。造成玻璃这种结构的原因是:玻璃的粘度随温度的变化速度太快,而结晶速度又太慢。当温度下降,结晶刚刚开始的时候,粘度就已经变得非常大,原子的移动被限制住,造成了这种结果。所以,玻璃态类似于固态的液体,物质中的原子永远都是处于结晶的过程中。

因此,玻璃中的原子位置看似固定,但是原子间依然有作用力促使它具备重新排列的趋势。并不是一个稳定的状态,这和石蜡中的原子状态不同。所以,同样不是晶体,常温下,石蜡完全是固体,而玻璃却可以被看作是粘度极大的液体。

在实验中,为了观察微观原子的真实运动情况,研究人员利用较大的胶体微粒模拟原子,并用高倍显微镜进行观察。结果发现,这些粒子形成的凝胶因为构成了二十面体结构而无法形成结晶——这与20世纪50年代布里斯托尔大学的CharlesFrank作出的预测相一致。这种结构解释了为什么玻璃是“玻璃”而不是液体或固体。

此次研究对于理解亚稳态材料来说是个重大的突破,它将使进一步开发金属玻璃等新材料成为可能。另外,如果能够通过操作使金属在冷却时形成玻璃一样的内部结构,将有可能大大减少金属缺陷。(科学网梅进/编译)

(《自然—材料学》(NatureMaterials),doi:1038/nmat2219,C.PatrickRoyall,HajimeTanaka)

玻璃表面看上去是固体,实际上并不是。50多年来,科学家一直在尝试弄清玻璃的本质。英国、澳大利亚及日本的科学家联合研究发现,玻璃无法成为固体的原因在于玻璃冷却时所形成的特殊的原子结构。相关论文将在线发表于《自然—材料学》(NatureMaterials)上。

主要研究人员、英国布里斯托尔大学的PaddyRoyall说:“一些材料在冷却时会形成结晶,其原子会以高度规则的模式进行排列,称为“晶格”(lattice)。不过玻璃在冷却时,原子拥堵在一起,几乎随机排列,妨碍了规则晶格的形成。”

玻璃是一种古老的建筑材料,随着现代科技水平的迅速提高和应用技术的日新月异,各种功能独特的玻璃纷纷问世,兴旺了玻璃家族。

英国一家飞机制造公司发明了一种用于飞机上的打不碎玻璃,它是一种夹有碎屑黏合成透明塑料薄膜的多层玻璃。这种以聚氯酯为基础的塑料薄膜具有黏滞的半液态稠度,当有人试图打碎它时,受打击的聚氯酯薄膜会慢慢聚集在一起,并恢复自己特有的整体性。这种玻璃可用于轿车,以及防盗车。

防弹玻璃是由玻璃(或有机玻璃)和优质工程塑料经特殊加工得到的一种复合型材料,它通常是透明的材料,譬如PVB/聚碳酸酯纤维热塑性塑料(一般为力显树脂即lexan树脂也叫LEANPCRESIN)。它具有普通玻璃的外观和传送光的行为,对小型武器的射击提供一定的保护。最厚pc板能做到136毫米厚,最大宽度达2166毫米宽,有效时间达6664天。

日本三菱电子仪器实验室研制成功的这种玻璃,是将硼酸玻璃粉和碳化纤维混合后加热到1000摄氏度制成。它是采用硬质合金强化的玻璃,其最大断裂应力为一般玻璃的2倍以上,无脆性弱点,钉钉和装木螺丝,不用担心破碎。

由德国SCHOTT玻璃公司开发的不反光玻璃,光线反射率仅在1%以内(一般玻璃为8%),从而解决了玻璃反光和令人目眩的头痛问题。

匈牙利一家研究所研制的这种玻璃为多层结构,每层中间嵌有极细的金属导线,万一盗贼将玻璃击碎时,与金属导线相连接的警报系统会立即发出报警信号。

日本一家公司从德国引进技术,制造出一种新型隔音玻璃。这种玻璃是用厚达5毫米的软质树脂将两层玻璃黏合在一起,几乎可将全部杂音吸收殆尽,特别适合录音室和播音室使用。它的价格相当于普通玻璃的5倍。

这是一种用双层玻璃加工制造的,可将暖气送到玻璃夹层中,通过气孔散发到室内,代替暖气片。这不仅节约能量,而且方便、隔音和防尘,到了夏天还可改为送冷气。

日本平板玻璃公司开发的这种真空玻璃,是在两片厚度为3毫米的玻璃之间设有2毫米间隔的1/100大气压的真空层,层内有金属小圆柱支撑以防外部大气压使两片玻璃贴到一起。这种真空玻璃厚度仅2毫米,可直接安装在一般的窗框上。它具有良好的隔热隔音效果,适用于民宅和高层建筑的窗户。

美国研制的这种玻璃透明度能随着视野角度变化而变化,它有一种特殊的高分子膜,其散光度、厚度、面积和形式都能由制造者自由选择,利用它可以起到一定的保护和屏蔽作用。

美国波士顿一研究小组开发的全息衍射玻璃,可将某些颜色的光线集中到选择的方位。用这种玻璃的窗户可将自然光线分解成光谱组合色,并将光线射向天花板进而反射至房间的各个角落,即使没有窗户的房间,也可以通过通风管从反射墙“得到”阳光,然后由孔眼将光线漫射到天花板上。

英国一家公司研制成功被称为云胶的热变色调温玻璃,它是一种两面是塑料薄膜和中间夹着聚合物水色溶剂的合成玻璃。它在低温环境中呈透明状,吸收日光的热能,待环境温度升高后则变成不透明的白云色,并阻挡日光的热能,从而有效起到调节室内温度的作用。

美国佛罗里达大学研制出一种具有生物活性能和活性组织结合的新型生物玻璃。这种生物玻璃具有生物适应性,可用于人造骨和人造齿龈等方面。

日本一家公司研制成功一种电视天线窗户玻璃,这种玻璃内层嵌有很细的天线,安装好后,室内电视机就能呈现出更为清晰的画面。

德国科学家制造出一种能用于光电子学、生物传感器、计算机显示屏和其他现代技术领域的超薄型玻璃,它的厚度仅为003毫米。

日本德岛大学发明了一种能记录信息的玻璃。它记录信息时,先用光学显微镜将激光集中在玻璃内部的某一点上,30微微秒即完成一次照射,留下一个记录斑点,读信息时,通过激光扫描斑点来进行。这种记录信息可在常温下进行,其性能已高于大家使用的光盘。

美国加州大气污染观测实验室研制出一种能探测污染的污染变色玻璃。这种玻璃受到污染气体污染时能改变颜色,例如当受到酸性气体污染时变成绿色、受到含胺气体污染时变成黄灰色等,用它来制作污染检测材料和标示材料将具有广泛的用途。

日本工业技术院大阪工业技术研究所开发出可透过二氧化碳的玻璃膜,将它应用在居室的玻璃窗上,可将室内的二氧化碳气体排出室外。它在不同的湿度下,透过的二氧化碳量不同,湿度越大,透过性越高。

电解雾化玻璃,具有耐刮、耐划,手感舒适、柔软,不带汗渍、指纹印的功能。它改变传统玻璃给人的冰冷及生硬的感观。其最大的特点就是电解雾化玻璃在通电后,会自动产生表面雾化效果,瞬间改变透明度,在外部看起来就和一般白墙无异。日本透明公厕就是应用电解雾化玻璃的效果。

保加利亚的建材专家研制成功一种泡沫玻璃,它具有良好的生物稳定性,不腐烂,吸湿性差,便于加工,也容易与其他建筑材料黏合。这种新型泡沫玻璃是在加入各种矿物成分的液体玻璃的基础上制造成功的。

日本东京大学发明了一种二氧化钛涂层玻璃,能防止污垢和水点聚积于表面,可达到自动清洗和防震的效果,可不费气力清洁玻璃窗。玻璃纤维_无机非金属材料玻璃纤维(Fiberglass),是一种性能优异的无机非金属材料,种类繁多,优点是绝缘性好、耐热性强、抗腐蚀性好、机械强度高,但缺点是性脆,耐磨性较差。它是以叶腊石、石英砂、石灰石、白云石、硼钙石、硼镁石六种矿石为原料经高温熔制、拉丝、络纱、织布等工艺制造成的,其单丝的直径为几个微米到二十几个微米,相当于一根头发丝的1/20-1/5,每束纤维原丝都由数百根甚至上千根单丝组成。玻璃纤维通常用作复合材料中的增强材料,电绝缘材料和绝热保温材料,电路基板等国民经济各个领域。

2017年10月27日,世界卫生组织国际癌症研究机构公布的致癌物清单初步整理参考,特殊用途的纤维,如E玻璃和“475”玻璃纤维在2B类致癌物清单中、连续的玻璃纤维在3类致癌物清单中。

其主要成分为二氧化硅、氧化铝、氧化钙、氧化硼、氧化镁、氧化钠等,根据玻璃中碱含量的多少,可分为无碱玻璃纤维(氧化钠0%~2%,属铝硼硅酸盐玻璃)、中碱玻璃纤维(氧化钠8%~12%,属含硼或不含硼的钠钙硅酸盐玻璃)和高碱玻璃纤维(氧化钠13%以上,属钠钙硅酸盐玻璃)。

原料及其应用:玻璃纤维比有机纤维耐温高,不燃,抗腐,隔热、隔音性好,抗拉强度高,电绝缘性好。但性脆,耐磨性较差。用来制造增强塑料或增强橡胶,作为补强材玻璃纤维具有以下之特点,这些特点使玻璃纤维之使用远较其他种类纤维来得广泛,发展速度亦遥遥领先其特性列举如下:

(3)弹性限度内伸长量大且拉伸强度高,故吸收冲击能量大。

(7)加工性佳,可作成股、束、毡、织布等不同形态之产品。

(11)不易燃烧,高温下可熔成玻璃状小珠。

玻璃纤维本身具有绝缘性好,耐高温,抗腐蚀能力好的特性,其也被3d打印技术所使用

玻璃纤维按形态和长度,可分为连续纤维、定长纤维和玻璃棉;按玻璃成分,可分为无碱、耐化学、高碱、中碱、高强度、高弹性模量和耐碱(抗碱)玻璃纤维等。

生产玻璃纤维的主要原料是:石英砂、氧化铝和叶蜡石、石灰石、白云石、硼酸、纯碱、芒硝、萤石等。生产方法大致分两类:一类是将熔融玻璃直接制成纤维;一类是将熔融玻璃先制成直径20mm的玻璃球或棒,再以多种方式加热重熔后制成直径为3~80μm的甚细纤维。通过铂合金板以机械拉丝方法拉制的无限长的纤维,称为连续玻璃纤维,通称长纤维。通过辊筒或气流制成的非连续纤维,称为定长玻璃纤维,通称短纤维。

玻璃纤维按组成、性质和用途,分为不同的级别。按标准级规定,E级玻璃纤维使用最普遍,广泛用于电绝缘材料;S级为特殊纤维。

除了以上的玻璃纤维成分以外,如今还出现一种新的无碱玻璃纤维,它完全不含硼,从而减轻环境污染,但其电绝缘性能及机械性能都与传统的E玻璃相似。另外还有一种双玻璃成分的玻璃纤维,已用在生产玻璃棉中,据称在作玻璃钢增强材料方面也有潜力。此外还有无氟玻璃纤维,是为环保要求而开发出来的改进型无碱玻璃纤维。

检验的简单方法是将纤维放在沸水里而煮6-7h,如果是高碱玻硝纤维,经过沸水煮后,经向和纬向的纤维全部变疏松了。按照不同的标准,玻璃纤维的分类方法很多,一般从长度和直径、组成和性能两个角度来划分。

玻璃纤维生产工艺有两种:两次成型-坩埚拉丝法,一次成型-池窑拉丝法。

坩埚拉丝法工艺繁多,先把玻璃原料高温熔制成玻璃球,然后将玻璃球二次熔化,高速拉丝制成玻璃纤维原丝。这种工艺有能耗高、成型工艺不稳定、劳动生产率低等种种弊端,基本被大型玻纤生产厂家淘汰。

池窑拉丝法把叶腊石等原料在窑炉中熔制成玻璃溶液,排除气泡后经通路运送至多孔漏板,高速拉制成玻纤原丝。窑炉可以通过多条通路连接上百个漏板同时生产。这种工艺工序简单、节能降耗、成型稳定、高效高产,便于大规模全自动化生产,成为国际主流生产工艺,用该工艺生产的玻璃纤维约占全球产量的90%以上。

玻璃纤维的拉伸强度高,伸长小(3%),测试方法标准有:

注:单纤维强伸性能试验要采用能测试玻璃纤维的高强高模纤维强力仪。

不慎与眼睛接触后,请立即用大量清水冲洗并征求医生意见。

无捻粗纱是由平行原丝或平行单丝集束而成的。无捻粗纱按玻璃成分可划分为:无碱玻璃无捻粗纱和中碱玻璃无捻粗纱。生产玻璃粗纱所用玻纤直径从12~23μm。无捻粗纱的号数从150号到9600号(tex)。无捻粗纱可直接用于某些复合材料工艺成型方法中,如缠绕、拉挤工艺,因其张力均匀,也可织成无捻粗纱织物,在某些用途中还将无捻粗纱进一步短切。

方格布是无捻粗纱平纹织物,是手糊玻璃钢重要基材。方格布的强度主要在织物的经纬方向上,对于要求经向或纬向强度高的场合,也可以织成单向方格布,它可以在经向或纬向布置较多的无捻粗纱。

对方格布的质量要求如下:①织物均匀,布边平直,布面平整呈席状,无污渍、起毛、折痕、皱纹等;②经、纬密,面积重量,布幅及卷长均符合标准;③卷绕在牢固的纸芯上,卷绕整齐;④迅速、良好的树脂透性;⑤织物制成的层合材料的干、湿态机械强度均应达到要求。

用方格布铺敷成型的复合材料其特点是层间剪切强度低,耐压和疲劳强度差。

(1)短切原丝:短切原丝分干法短切原丝及湿法短切原丝。前者用在增强塑料生产中,而后者则用于造纸。用于玻璃钢的短切原丝又分为增强热固性树脂(BMC)用短切原丝和增强热塑性树脂用短切原丝两大类。对增强热塑性塑料用短切原丝的要求是用无碱玻璃纤维,强度高及电绝缘性好,短切原丝集束性好、流动性好、白度较高。增强热固性塑料短切原丝要求集束性好,易为树脂很快浸透,具有很好的机械强度及电气性能。

(2)磨碎纤维:磨碎纤维系由锤磨机或球磨机将短切纤维磨碎而成。磨碎纤维主要在增强反应注射工艺(RRIM)中用作增强材料,在制造浇铸制品、模具等制品时用作树脂的填料用以改善表面裂纹现象,降低模塑收缩率,也可用作增强材料。

(1)玻璃布我国生产的玻璃布,分为无碱和中碱两类,国外大多数是无碱玻璃布。玻璃布主要用于生产各种电绝缘层压板、印刷线路板、各种车辆车体、贮罐、船艇、模具等。中碱玻璃布主要用于生产涂塑包装布,以及用于耐腐蚀场合。织物的特性由纤维性能、经纬密度、纱线结构和织纹所决定。经纬密度又由纱结构和织纹决定。经纬密加上纱结构,就决定了织物的物理性质,如重量、厚度和断裂强度等。有五种基本的织纹:平纹、斜纹、缎纹、罗纹和席纹。

(2)玻璃带:玻璃带分为有织边带和无织边带(毛边带)主要织法是平纹。玻璃带常用于制造高强度、介电性能好的电气设备零部件。

(3)单向织物:单向织物是一种粗经纱和细纬纱织成的四经破缎纹或长轴缎纹织物。其特点是在经纱主向上具有高强度。

(4)立体织物立体织物是相对平面织物而言,其结构特征从一维二维发展到了三维,从而使以此为增强体的复合材料具有良好的整体性和仿形性,大大提高了复合材料的层间剪切强度和抗损伤容限。它是随着航天、航空、兵器、船舶等部门的特殊需求发展起来的,目前其应用已拓展至汽车、体育运动器材、医疗器械等部门。主要有五类:机织三维织物、针织三维织物、正交及非正交非织造三维织物、三维编织织物和其它形式的三维织物。立体织物的形状有块状、柱状、管状、空心截锥体及变厚度异形截面等。

(5)异形织物:异形织物的形状和它所要增强的制品的形状非常相似,必须在专用的织机上织造。对称形状的异形织物有:圆盖、锥体、帽、哑铃形织物等,还可以制成箱、船壳等不对称形状。

(6)槽芯织物:槽芯织物是由两层平行的织物,用纵向的竖条连接起来所组成的织物,其横截面形状可以是三角形或矩形。

(7)玻璃纤维缝编织物:亦称为针织毡或编织毡,它既不同于普通的织物,也不同于通常意义的毡。最典型的缝编织物是一层经纱与一层纬纱重叠在一起,通过缝编将经纱与纬纱编织在一起成为织物。缝编织物的优点如下:①它可以增加玻璃钢层合制品的极限抗张强度,张力下的抗脱层强度以及抗弯强度;②减轻玻璃钢制品的重量;③表面平整使玻璃钢表面光滑;④简化手糊操作,提高劳动生产率。这种增强材料可以在拉挤法玻璃钢及RTM中代替连续原丝毡,还可以在离心法玻璃钢管生产中取代方格布。

(8)玻璃纤维绝缘套管:以玻璃纤维纱编织成管,并涂以树脂材料制成的各种绝缘等级的套管,有PVC树脂玻纤漆管、丙烯酸玻纤漆管、硅树脂玻纤漆管等。

70年代以来,出现了把短切原丝毡、连续原丝毡、无捻粗纱织物和无捻粗纱等,按一定的顺序组合起来的增强材料,大体有以下几种:

(7)玻璃布+单向无捻粗纱或玻璃细棒+玻璃布

玻璃纤维无纺布系列产品起源于欧洲,后引入美国、日本、中国等国家。我国先后建立几条大型生产线,主要技术来自于德国技术如常州的中兴天马、陕西华特。

(1)屋面毡用于改性沥青防水卷材、彩色沥青瓦等防水材料的基材

(2)管道毡用于石油、天然气管道的包覆,与沥青结合防止地下管道腐蚀

(4)贴面毡用于墙面和天花板,可以防止涂料的开裂、橘皮,多用于装饰大型会议室、高档酒店

(7)覆铜板毡贴附于覆铜板可增强其冲、钻性能

(8)蓄电池隔板毡用作铝酸蓄电池隔板毡的基材。

主要用途玻璃钢行业(约占70%)。建筑行业也有用玻璃纤维布的,主要作用就是增加强度。也作建筑外墙保温层,内墙装饰,内墙防潮防火等

玻璃纤维布品种:玻璃纤维网格布,玻璃纤维方格布,玻璃纤维平纹布,玻璃纤维轴向布,玻璃纤维壁布,玻璃纤维电子布。

增强刚性和硬度,玻纤的增加可以提高塑料的强度和刚性,但是同样的塑料的韧性会下降。例子:弯曲模量;

提高耐热性和热变形温度,以尼龙为例,增加了玻纤的尼龙,热变形性温度至少提高两倍以上,一般的玻纤增强尼龙耐温都可以达到220度以上

对阻燃性能因为烛芯效应,会干扰阻燃体系,影响

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论