2024届广东省东莞市(莞外、松山湖实验)八年级数学第二学期期末复习检测模拟试题含解析_第1页
2024届广东省东莞市(莞外、松山湖实验)八年级数学第二学期期末复习检测模拟试题含解析_第2页
2024届广东省东莞市(莞外、松山湖实验)八年级数学第二学期期末复习检测模拟试题含解析_第3页
2024届广东省东莞市(莞外、松山湖实验)八年级数学第二学期期末复习检测模拟试题含解析_第4页
2024届广东省东莞市(莞外、松山湖实验)八年级数学第二学期期末复习检测模拟试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届广东省东莞市(莞外、松山湖实验)八年级数学第二学期期末复习检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.已知一次函数y=kx+2,y随x的增大而增大,则该函数的图象一定经过()A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限2.小刚以400米/分的速度匀速骑车5分钟,在原地休息了6分钟,然后以500米/分的速度骑回出发地.下列函数图象能表达这一过程的是(横坐标表示小刚出发所用时间,纵坐标表示小刚离出发地的距离)()A. B.C. D.3.下列图形是中心对称图形,但不是轴对称图形的是(

)A. B. C. D.4.若–1是关于的方程()的一个根,则的值为()A.1 B.2 C.–1 D.–25.一元二次方程的解为()A. B.B. C., D.,6.若一次函数的图象上有两点,则下列大小关系正确的是()A. B. C. D.7.在△ABC中,AB=AC=10,BD是AC边上的高,DC=4,则BD等于()A.2 B.4 C.6 D.88.关于的一元二次方程有两个不相等的实数根,则的取值范围是()A. B. C.且 D.且9.已知的三边,,满足,则的面积为()A. B. C. D.10.下列运算正确的是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,菱形ABCD的边长为4,∠BAD=120°,点E是AB的中点,点F是AC上的一动点,则EF+BF的最小值是.12.一组正整数2、3、4、x从小到大排列,已知这组数据的中位数和平均数相等,那么x的值是.13.需要对一批排球的质量是否符合标准进行检测,其中质量超过标准的克数记为正数,不足标准的克数记为负数,现抽取8个排球,通过检测所得数据如下(单位:克):+1,−2,+1,0,+2,−3,0,+1,则这组数据的方差是________.14.如图,在中,,,分别是,的中点,在的延长线上,,,,则四边形的周长是____________.15.在矩形中,,点是的中点,将沿折叠后得到,点的对应点为点.(1)若点恰好落在边上,则______,(2)延长交直线于点,已知,则______.16.将直线向上平移个单位,得到直线_______。17.如图所示,平行四边形中,点在边上,以为折痕,将向上翻折,点正好落在上的处,若的周长为8,的周长为22,则的长为__________.18.小玲在一次班会中参加知识抢答活动,现有语文题道,数学题道,综合题道,她从中随机抽取道,抽中数学题的概率是_________.三、解答题(共66分)19.(10分)在如图平面直角坐标系中,直线l分别交x轴、y轴于点A(3,0)、B(0,4)两点,动点P从点O开始沿OA向点A以每秒个单位长度运动,动点Q从点B开始沿BO向点O以每秒个单位长度运动,过点P作y轴的平行线交直线AB于点M,连接PQ.且点P、Q分别从点O、B同时出发,运动时间为t秒.(1)请直接写出直线AB的函数解析式:;(2)当t=4时,四边形BQPM是否为菱形?若是,请说明理由;若不是,请求出当t为何值时,四边形BQPM是菱形.20.(6分)如图,已知点E,C在线段BF上,BE=EC=CF,AB∥DE,∠ACB=∠F.(1)求证:△ABC≌△DEF;(2)求证:四边形ACFD为平行四边形.21.(6分)2018年8月中国铁路总公司宣布,京津高铁将再次提速,担任此次运营任务是最新的复兴号动车组,提速后车速是之前的1.5倍,100千米缩短了10分钟,问提速前后的速度分别是多少千米每小时?22.(8分)阅读下列材料并解答问题:数学中有很多恒等式可以用图形的面积来得到例如,图1中阴影部分的面积可表示为;若将阴影部分剪下来,重新拼成一个矩形如图,它的长,宽分别是,,由图1,图2中阴影部分的面积相等,可得恒等式.(1)观察图3,根据图形,写出一个代数恒等式:______;(2)现有若干块长方形和正方形硬纸片如图4所示请你仿照图3,用拼图的方法推出恒等式,画出你的拼图并标出相关数据;(3)利用前面推出的恒等式和计算:①;②.23.(8分)如图,折叠矩形ABCD的一边AD,使点D落在BC边上的点F处,折痕为AE.若BC=5cm,AB=3cm,求EF的长.24.(8分)如图1,矩形OABC摆放在平面直角坐标系中,点A在x轴上,点C在y轴上,OA=3,OC=2,过点A的直线交矩形OABC的边BC于点P,且点P不与点B、C重合,过点P作∠CPD=∠APB,PD交x轴于点D,交y轴于点E.(1)若△APD为等腰直角三角形.①求直线AP的函数解析式;②在x轴上另有一点G的坐标为(2,0),请在直线AP和y轴上分别找一点M、N,使△GMN的周长最小,并求出此时点N的坐标和△GMN周长的最小值.(2)如图2,过点E作EF∥AP交x轴于点F,若以A、P、E、F为顶点的四边形是平行四边形,求直线PE的解析式.25.(10分)蚌埠“一带一路”国际龙舟邀请赛期间,小青所在学校组织了一次“龙舟”故事知多少比赛,小青从全体学生中随机抽取部分同学的分数(得分取正整数,满分为100分)进行统计.以下是根据抽取同学的分数制作的不完整的频率分布表和频率分布直方图,请根据图表,回答下列问题::组别分组频数频率190.1823210.4240.0652(1)根据上表填空:__,=.,=.(2)若小青的测试成绩是抽取的同学成绩的中位数,那么小青的测试成绩在什么范围内?(3)若规定:得分在的为“优秀”,若小青所在学校共有600名学生,从本次比赛选取得分为“优秀”的学生参加决赛,请问共有多少名学生被选拔参加决赛?26.(10分)已知:在平面直角坐标系中,直线分别交、轴于点A、B两点,OA=5,∠OAB=60°.(1)如图1,求直线AB的解析式;(2)如图2,点P为直线AB上一点,连接OP,点D在OA延长线上,分别过点P、D作OA、OP的平行线,两平行线交于点C,连接AC,设AD=m,△ABC的面积为S,求S与m的函数关系式;(3)如图3,在(2)的条件下,在PA上取点E,使PE=AD,连接EC,DE,若∠ECD=60°,四边形ADCE的周长等于22,求S的值.

参考答案一、选择题(每小题3分,共30分)1、A【解题分析】试题分析:y随x的增大而增大,则k>0,则函数y=kx+1一定经过一、二、三象限.考点:一次函数的性质.2、C【解题分析】

由题意结合函数图象的性质与实际意义,进行分析和判断.【题目详解】解:∵小刚在原地休息了6分钟,∴排除A,又∵小刚再休息后以500米/分的速度骑回出发地,可知小刚离出发地的距离越来越近,∴排除B、D,只有C满足.故选:C.【题目点拨】本题考查一次函数图象所代表的实际意义,学会判断横坐标和纵坐标所表示的实际含义以及运用数形结合思维分析是解题的关键.3、A【解题分析】

根据轴对称图形和中心对称图形的定义解答即可.【题目详解】解:A.是中心对称图形,不是轴对称图形,故A符合题意;B.是中心对称图形,也是轴对称图形,故B不符合题意;C.是中心对称图形,也是轴对称图形,故C不符合题意;D.是轴对称图形,不是中心对称图形,故D不合题意.故选A.【题目点拨】本题考查了中心对称和轴对称图形的定义.解题的关键是掌握中心对称和轴对称图形的定义.4、B【解题分析】

将﹣1代入方程求解即可.【题目详解】将﹣1代入方程得:n﹣m+2=0,即m﹣n=2.故选B.【题目点拨】本题考点:一元二次方程的根.5、D【解题分析】

把方程整理成,然后因式分解求解即可.【题目详解】解:把方程整理成即∴或解得:,故选:D.【题目点拨】此题考查了一元二次方程的解法,一元二次方程的解法有:直接开平方法;分解因式法;公式法;配方法,本题涉及的解法有分解因式法,此方法的步骤为:把方程右边通过移项化为0,方程左边利用提公因式法,式子相乘法,公式法以及分组分解法分解因式,然后根据两数积为0,两数中至少有一个为0,转化为两个一元一次方程,进而得到原方程的解.6、B【解题分析】

首先观察一次函数的x项的系数,当x项的系数大于0,则一次函数随着x的增大而增大,当x小于0,则一次函数随着x的减小而增大.因此只需要比较A、B点的横坐标即可.【题目详解】解:根据一次函数的解析式可得此一次函数随着x的增大而减小因为根据-2<1,可得故选B.【题目点拨】本题主要考查一次函数的一次项系数的含义,这是必考点,必须熟练掌握.7、D【解题分析】

求出AD,在Rt△BDA中,根据勾股定理求出BD即可.【题目详解】∵AB=AC=10,CD=4,∴AD=10-4=6,∵BD是AC边上的高,∴∠BDA=90°,在Rt△BDA中由勾股定理得:,故选:D.【题目点拨】本题考查了勾股定理的应用,主要考查学生能否正确运用勾股定理进行计算,注意:在直角三角形中,两直角边的平方和等于斜边的平方.8、D【解题分析】

根据方程有两个不相等的实数根,则,结合一元二次方程的定义,即可求出m的取值范围.【题目详解】解:∵一元二次方程有两个不相等的实数根,∴解得:,∵,∴的取值范围是:且;故选:D.【题目点拨】总结一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.9、B【解题分析】

根据非负数的性质得到b=4,c=3,a=5,根据勾股定理的逆定理得到△ABC是直角三角形,由三角形的面积公式即可得到结论.【题目详解】解:∵,∴

即,

∴b=4,c=3,a=5,

∴b2+c2=a2,

∴△ABC是直角三角形,

∴△ABC的面积=×3×4=1.

故选B.【题目点拨】本题考查非负数的性质,勾股定理的逆定理,三角形的面积的计算,熟练掌握勾股定理的逆定理是解题的关键.10、D【解题分析】

根据二次根式的计算法则对各个选项一一进行计算即可判断出答案.【题目详解】A.不是同类二次根式,不能合并,故A错误;B.,故B错误;C.,故C错误;D.故D正确.故选D.【题目点拨】本题考查了二次根式的运算.熟练应用二次根式的计算法则进行正确计算是解题的关键.二、填空题(每小题3分,共24分)11、27【解题分析】试题分析:首先连接DB,DE,设DE交AC于M,连接MB,DF.证明只有点F运动到点M时,EF+BF取最小值,再根据菱形的性质、勾股定理求得最小值.试题解析:连接DB,DE,设DE交AC于M,连接MB,DF,延长BA,DH⊥BA于H,∵四边形ABCD是菱形,∴AC,BD互相垂直平分,∴点B关于AC的对称点为D,∴FD=FB,∴FE+FB=FE+FD≥DE.只有当点F运动到点M时,取等号(两点之间线段最短),△ABD中,AD=AB,∠DAB=120°,∴∠HAD=60°,∵DH⊥AB,∴AH=AD,DH=32∵菱形ABCD的边长为4,E为AB的中点,∴AE=2,AH=2,∴EH=4,DH=23在RT△EHD中,DE=E∴EF+BF的最小值为27【考点】1.轴对称-最短路线问题;2.菱形的性质.12、5【解题分析】

解:∵这组数据的中位数和平均数相等,且2、3、4、x从小到大排列,∴(3+4)=(2+3+4+x),解得:x=5;故答案为513、2.1【解题分析】

解:平均数=(1-2+1+0+2-3+0+1)÷8=0;方差==2.1,故答案为2.1.考点:方差;正数和负数.14、1【解题分析】

根据勾股定理先求出BC的长,再根据三角形中位线定理和直角三角形的性质求出DE和AE的长,进而由已知可判定四边形AEDF是平行四边形,从而求得其周长.【题目详解】解:在Rt△ABC中,∵AC=6,AB=8,∴BC=10,∵E是BC的中点,∴AE=BE=5,∴∠BAE=∠B,∵∠FDA=∠B,∴∠FDA=∠BAE,∴DF∥AE,∵D、E分别是AB、BC的中点,∴DE∥AC,DE=AC=3,∴四边形AEDF是平行四边形∴四边形AEDF的周长=2×(3+5)=1.故答案为:1.【题目点拨】本题考查三角形中位线定理的运用,熟悉直角三角形的性质、等腰三角形的判定以及平行四边形的判定.熟练运用三角形的中位线定理和直角三角形的勾股定理是解题的关键.15、6或【解题分析】

(1)由矩形的性质得出,,由折叠的性质得出,由平行线的性质得出,推出,得出,即可得出结果;(2)①当点在矩形内时,连接,由折叠的性质得出,,,由矩形的性质和是的中点,得出,,,由证得,得出,由,得出,,,由勾股定理即可求出;②当点在矩形外时,连接,由折叠的性质得出,,,由矩形的性质和是的中点,得出,,,由证得,得出,由,得出,由勾股定理得出:,即,即可求出.【题目详解】解:(1)四边形是矩形,,,由折叠的性质可知,,如图1所示:,,,,是的中点,,,(2)①当点在矩形内时,连接,如图2所示:由折叠的性质可知,,,,四边形是矩形,是的中点,,,,在和中,,,,,,,,;②当点在矩形外时,连接,如图3所示:由折叠的性质可知,,,,四边形是矩形,是的中点,,,,在和中,,,,,,,即:,,解得:,(不合题意舍去),综上所述,或,故答案为(1)6;(2)或.【题目点拨】本题考查了折叠的性质、矩形的性质、平行线的性质、勾股定理、全等三角形的判定与性质等知识,熟练掌握折叠的性质、证明三角形全等并运用勾股定理得出方程是解题的关键.16、【解题分析】

根据平移k不变,b值加减即可得出答案.【题目详解】平移后解析式为:y=2x−1+4=2x+3,故答案为:y=2x+3【题目点拨】此题考查一次函数图象与几何变换,解题关键在于掌握平移的性质17、1.【解题分析】

依据△FDE的周长为8,△FCB的周长为22,即可得出DF+AD=8,FC+CB+AB=22,进而得到平行四边形ABCD的周长=8+22=30,可得AB+BC=BF+BC=15,再根据△FCB的周长=FC+CB+BF=22,即可得到CF=22-15=1.【题目详解】解:由折叠可得,EF=AE,BF=AB.∵△FDE的周长为8,△FCB的周长为22,∴DF+AD=8,FC+CB+AB=22,∴平行四边形ABCD的周长=8+22=30,∴AB+BC=BF+BC=15,又∵△FCB的周长=FC+CB+BF=22,∴CF=22-15=1,故答案为:1.【题目点拨】本题考查了平行四边形的性质及图形的翻折问题,折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.18、【解题分析】

随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.【题目详解】解:抽中数学题的概率为,

故答案为:.【题目点拨】本题考查了概率,正确利用概率公式计算是解题的关键.三、解答题(共66分)19、(1);(2)当t=4时,四边形BQPM是菱形.【解题分析】

(1)由点A、B的坐标,利用待定系数法求得直线AB的函数解析式;(2)当t=4时,求得BQ、OP的长度,结合勾股定理得到PQ=BQ;由相似三角形:△APM∽△AOB的对应边相等求得PM的长度,得到BQ=PM,所以该四边形是平行四边形,所以根据“邻边相等的平行四边形为菱形”推知当t=4时,四边形BQPM是菱形.【题目详解】解:(1)设直线AB的解析式为:y=kx+b(k≠0).把点A(1,0)、B(0,4)分别代入,得解得.故直线AB的函数解析式是:y=﹣x+1.故答案是:y=﹣x+1.(2)当t=4时,四边形BQPM是菱形.理由如下:当t=4时,BQ=,则OQ=.当t=4时,OP=,则AP=.由勾股定理求得PQ=.∵PM∥OB,∴△APM∽△AOB,∴,即,解得PM=.∴四边形BQPM是平行四边形,∴当t=4时,四边形BQPM是菱形.【题目点拨】考查了一次函数综合题,熟练掌握待定系数法求一次函数解析式,菱形的判定与性质,勾股定理,相似三角形的判定与性质,考查了同学们综合运用所学知识的能力,是一道综合性较好的题目.20、(1)证明见解析;(2)证明见解析.【解题分析】试题分析:(1)根据平行线得出∠B=∠DEF,求出BC=EF,根据ASA推出两三角形全等即可;(2)根据全等得出AC=DF,推出AC∥DF,得出平行四边形ACFD,推出AD∥CF,MAD=CF,推出AD=CE,AD∥CE,根据平行四边形的判定推出即可.试题解析:(1)证明:∵AB∥DE,∴∠B=∠DEF,∵BE=EC=CF,∴BC=EF,在△ABC和△DEF中∴△ABC≌△DEF.(2)证明:∵△ABC≌△DEF,∴AC=DF,∵∠ACB=∠F,∴AC∥DF,∴四边形ACFD是平行四边形,∴AD∥CF,AD=CF,∵EC=CF,∴AD∥EC,AD=CE,∴四边形AECD是平行四边形.21、提速前的速度为200千米/小时,提速后的速度为350千米/小时,【解题分析】

设列车提速前的速度为x千米每小时和列车提速后的速度为1.5千米每小时,根据关键语句“100千米缩短了10分钟”可列方程,解方程即可.【题目详解】设提速前后的速度分别为x千米每小时和1.5x千米每小时,根据题意得:解得:x=200,

经检验:x=200是原方程的根,

∴1.5x=300,

答:提速前后的速度分别是200千米每小时和300千米每小时.【题目点拨】考查了分式方程的应用,解题关键是弄懂题意,找出等量关系,列出方程.22、(1);(2);(3)①1;②.【解题分析】

(1)根据面积的两种表达方式得到图3所表示的代数恒等式;(2)作边长为a+b的正方形即可得;(3)套用所得公式计算可得.【题目详解】解:(1)由图3知,等式为:,故答案为;(2)如图所示:

由图可得;(3)①原式;②.【题目点拨】本题考查了完全平方公式的几何背景,根据矩形的面积公式分整体与部分两种思路表示出面积,然后再根据同一个图形的面积相等即可解答.23、EF=cm.【解题分析】

根据折叠找到相等线段,再由勾股定理得出FC的长,设CE=x,在Rt△ECF中勾股定理即可求出EF的长.【题目详解】解:∵四边形ABCD为矩形,由折叠可知,∠AFE=∠D=90°,AD=AF,又∵BC=5cm,AB=3cm,∴在Rt△ABF中,BF==4,∴FC=1,设CE=x,则DE=EF=3-x,在Rt△ECF中,EF2=FC2+EC2,即(3-x)2=12+x2,解得:x=,∴EF=3-x=cm.【题目点拨】本题考查了折叠和勾股定理,中等难度,通过折叠找到相等线段是解题关键.24、(1)①y=﹣x+3,②N(0,),;(2)y=2x﹣2.【解题分析】

(1)①由矩形的性质和等腰直角三角形的性质可求得∠BAP=∠BPA=45°,从而可得BP=AB=2,进而得到点P的坐标,再根据A、P两点的坐标从而可求AP的函数解析式;②作G点关于y轴对称点G'(﹣2,0),作点G关于直线AP对称点G''(3,1),连接G'G''交y轴于N,交直线AP于M,此时△GMN周长的最小,根据点G'、G''两点的坐标,求出其解析式,然后再根据一次函数的性质即可求解;(2)根据矩形的性质以及已知条件求得PD=PA,进而求得DM=AM,根据平行四边形的性质得出PD=DE,然后通过得出△PDM≌△EDO得出点E和点P的坐标,即可求得.【题目详解】解:(1)①∵矩形OABC,OA=3,OC=2,∴A(3,0),C(0,2),B(3,2),AO∥BC,AO=BC=3,∠B=90°,CO=AB=2,∵△APD为等腰直角三角形,∴∠PAD=45°,∵AO∥BC,∴∠BPA=∠PAD=45°,∵∠B=90°,∴∠BAP=∠BPA=45°,∴BP=AB=2,∴P(1,2),设直线AP解析式y=kx+b,∵过点A,点P,∴∴,∴直线AP解析式y=﹣x+3;②如图所示:作G点关于y轴对称点G'(﹣2,0),作点G关于直线AP对称点G''(3,1)连接G'G''交y轴于N,交直线AP于M,此时△GMN周长的最小,∵G'(﹣2,0),G''(3,1)∴直线G'G''解析式y=x+当x=0时,y=,∴N(0,),∵G'G''=,∴△GMN周长的最小值为;(2)如图:作PM⊥AD于M,∵BC∥OA∴∠CPD=∠PDA且∠CPD=∠APB,∴PD=PA,且PM⊥AD,∴DM=AM,∵四边形PAEF是平行四边形∴PD=DE又∵∠PMD=∠DOE,∠ODE=∠PDM∴△PMD≌△EOD,∴OD=DM,OE=PM,∴OD=DM=MA,∵PM=2,OA=3,∴OE=2,OM=2∴E(0,﹣2),P(2,2)设直线PE的解析式y=mx+n∴∴直线PE解析式y=2x﹣2.【题目点拨】本题主要考查了求一次函数的解析式、矩形的性质、等腰三角形的性质、平行四边形的性质、对称的性质等知识点,熟练掌握基础知识正确的作出辅助线是解题的关键.25、(1);(2);(1)24.【解题分析】

(1)根据频数、频率、总数之间的关系一一解决问题即可;(2)根据中位数的定义即可判断;(1)用样本估计总体的思想解决问题即可.【题目详解】解:(1)9÷0.18=50(人).a=50×0.06=1,m=50﹣(9+21+1+2)=15,b=15÷50=0.1.故答案为:1,0.1,15;(2)共有50名学生,中位数是第25、26个数据的平均数,第25、26个数据在第1组,所以小青的测试成绩在70≤x<80范围内;(1)×600=24(人).答:共有24名学生被选拔参加决赛.【题目点拨】本题考查频数分布直方图、样本估计总体的思想、频数分布表、中位数的定义等知识,解题的关键是熟练掌握基本知识,所以中考常考题型.26、(1)直线解析式为;(2)S=;(3).【解题分析】

(1)先求出点B坐标,设AB解析式为,把点A(5,0),B(0,)分别代入,利用待定系数法进行求解即可;(2)由题意可得四边形ODCP是平行四边形,∠OAB=∠APC=60°,则有PC=OD=5+m,∠PCH=30°,过点C作CH⊥AB,在Rt△PCH中利用勾股定理可求得CH=,再由S=ABCH代入相关数据进

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论