2024届江苏省宝应县八年级数学第二学期期末检测试题含解析_第1页
2024届江苏省宝应县八年级数学第二学期期末检测试题含解析_第2页
2024届江苏省宝应县八年级数学第二学期期末检测试题含解析_第3页
2024届江苏省宝应县八年级数学第二学期期末检测试题含解析_第4页
2024届江苏省宝应县八年级数学第二学期期末检测试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江苏省宝应县八年级数学第二学期期末检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.在▱ABCD中,∠A:∠B:∠C=1:2:1,则∠D等于()A.0° B.60° C.120° D.150°2.如图,四边形ABCD与四边形AEFG是位似图形,且AC:AF=2:3,则下列结论不正确的是()A.四边形ABCD与四边形AEFG是相似图形B.AD与AE的比是2:3C.四边形ABCD与四边形AEFG的周长比是2:3D.四边形ABCD与四边形AEFG的面积比是4:93.在分式中,的取值范围是()A. B. C. D.4.如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD,若AC=2,∠ADC=30°,下列说法:四边形ACED是平行四边形,△BCE是等腰三角形,四边形ACEB的周长是10+2,④四边形ACEB的面积是16.正确的个数是()A.2个 B.3个 C.4个 D.5个5.下列调查中,调查方式选择合理的是()A.调查你所在班级同学的身高,采用抽样调查方式B.调查市场上某品牌电脑的使用寿命,采用普查的方式C.调查嘉陵江的水质情况,采用抽样调查的方式D.要了解全国初中学生的业余爱好,采用普查的方式6.已知反比例函数,当时,自变量x的取值范围是A. B. C. D.或7.顺次连接矩形四边中点得到的四边形一定是()A.正方形 B.矩形 C.菱形 D.不确定,与矩形的边长有关8.如图,,点D在AB的垂直平分线上,点E在AC的垂直平分线上,则的度数是().A.15° B.20° C.25° D.30°9.下列说法中,错误的是()A.平行四边形的对角线互相平分 B.菱形的对角线互相垂直C.矩形的对角线相等 D.正方形的对角线不一定互相平分10.若分式有意义,则的取值范围是A. B. C. D.11.如图,已知正比例函数与一次函数的图象交于点P.下面有四个结论:①k>0;②b>0;③当x>0时,>0;④当x<-2时,kx>-x+b.其中正确的是()A.①③ B.②③ C.③④ D.①④12.某旅游景点的游客人数逐年增加,据有关部门统计,2015年约为12万人次,若2017年约为17万人次,设游客人数年平均增长率为x,则下列方程中正确的是()A.12(1+x)=17B.17(1﹣x)=12C.12(1+x)2=17D.12+12(1+x)+12(1+x)2=17二、填空题(每题4分,共24分)13.菱形的两条对角线相交于,若,,则菱形的周长是___.14.函数y=2x-3的图象向下平移3个单位,所得新图象的函数表达式是___________.15.若关于x的方程=-3有增根,则增根为x=_______.16.如图,已知一次函数的图象为直线,则关于x的方程的解______.17.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=5,AD=12,则四边形ABOM的周长为.18.对分式,,进行通分时,最简公分母是_____三、解答题(共78分)19.(8分)如图所示,方格纸中的每个小方格都是边长为个单位长度的正方形,在建立平面直角坐标系后,的顶点均在格点上.①以原点为对称中心,画出与关于原点对称的.②将绕点沿逆时针方向旋转得到,画出,并求出的长.20.(8分)如图,点P是正方形ABCD内一点,连接CP,将线段CP绕点C顺时针旋转90°,得线段CQ,连接BP,DQ.(1)求证:△BCP≌△DCQ;(2)延长BP交直线DQ于点E.①如图2,求证:BE⊥DQ;②若△BCP是等边三角形,请画出图形,判断△DEP的形状,并说明理由.21.(8分)在菱形中,,点是射线上一动点,以为边向右侧作等边,点的位置随着点的位置变化而变化.(1)如图1,当点在菱形内部或边上时,连接,与的数量关系是______,与的位置关系是______;(2)当点在菱形外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由(选择图2,图3中的一种情况予以证明或说理);(3)如图4,当点在线段的延长线上时,连接,若,,求四边形的面积.22.(10分)如图,正方形ABCD中,AB=4,点E为边AD上一动点,连接CE,以CE为边,作正方形CEFG(点D、F在CE所在直线的同侧),H为CD中点,连接FH.(1)如图1,连接BE,BH,若四边形BEFH为平行四边形,求四边形BEFH的周长;(2)如图2,连接EH,若AE=1,求△EHF的面积;(3)直接写出点E在运动过程中,HF的最小值.23.(10分)某游泳馆普通票价20元/张,暑假为了促销,新推出两种优惠卡:①金卡售价600元/张,每次凭卡不再收费.②银卡售价150元/张,每次凭卡另收10元.暑假普通票正常出售,两种优惠卡仅限暑假使用,不限次数.设游泳x次时,所需总费用为y元.(1)分别写出选择银卡、普通票消费时,y与x之间的函数关系式;(2)在同一坐标系中,若三种消费方式对应的函数图象如图所示,请求出点A、B、C的坐标;(3)请根据函数图象,直接写出选择哪种消费方式更合算.24.(10分)阅读理解:阅读下列材料:已知二次三项式2x2+x+a有一个因式是(x+2),求另一个因式以及a的值解:设另一个因式是(2x+b),根据题意,得2x2+x+a=(x+2)(2x+b),展开,得2x2+x+a=2x2+(b+4)x+2b,所以,解得,所以,另一个因式是(2x−3),a的值是−6.请你仿照以上做法解答下题:已知二次三项式3x210xm有一个因式是(x+4),求另一个因式以及m的值.25.(12分)如图,在平面直角坐标系中,已知点,点,点在第一象限内,轴,且.(1)求直线的表达式;(2)如果四边形是等腰梯形,求点的坐标.26.某文具店第一次用400元购进胶皮笔记本若干个,第二次又用400元购进该种型号的笔记本,但这次每个的进价是第一次进价的1.25倍,购进数量比第一次少了20个.(1)求第一次每个笔记本的进价是多少?(2)若要求这两次购进的笔记本按同一价格全部销售完毕后后获利不低于460元,问每个笔记本至少是多少元?

参考答案一、选择题(每题4分,共48分)1、C【解题分析】

在□ABCD中,,,而且四边形内角和是,由此得到,.【题目详解】解:在□ABCD中,,∴又∵,∴,.故选:C.【题目点拨】本题主要考查四边形的内角和定理及平行四边形的性质,利用平行四边形的性质寻找各角之间的关系是解题的关键.2、B【解题分析】∵四边形ABCD与四边形AEFG是位似图形;A、四边形ABCD与四边形AEFG一定是相似图形,故正确;B、AD与AG是对应边,故AD:AE=2:3;故错误;C、四边形ABCD与四边形AEFG的相似比是2:3,故正确;D、则周长的比是2:3,面积的比是4:9,故正确.故选B.3、A【解题分析】

根据分式有意义,分母不等于0列式计算即可得解.【题目详解】由题意得,x-1≠0,解得x≠1.故选A.【题目点拨】本题考查的是分式有意义的条件,解题的关键是掌握(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.4、B【解题分析】

证明AC∥DE,再由条件CE∥AD可证明四边形ACED是平行四边形;根据线段的垂直平分线证明AE=EB可得△BCE是等腰三角形;首先利用三角函数计算出AD=4,CD=2,再算出AB长可得四边形ACEB的周长是10+2,利用△ACB和△CBE的面积和可得四边形ACEB的面积.【题目详解】①∵∠ACB=90°,DE⊥BC,∴∠ACD=∠CDE=90°,∴AC∥DE,∵CE∥AD,∴四边形ACED是平行四边形,所以①正确;②∵D是BC的中点,DE⊥BC,∴EC=EB,∴△BCE是等腰三角形,所以②正确;③∵AC=2,∠ADC=30°,∴AD=4,CD=2,∵四边形ACED是平行四边形,∴CE=AD=4,∵CE=EB,∴EB=4,DB=2,∴CB=4,∴AB=,∴四边形ACEB的周长是10+2;所以③正确;④四边形ACEB的面积:×2×4+×4×2=8,所以④错误,故选:C.【题目点拨】考查了平行四边形的判定和性质、等腰三角形的判定和性质、特殊角三角函数、勾股定理、线段的垂直平分线的性质等知识,解题的关键是熟练掌握平行四边形的判定方法和等腰三角形的判定方法.5、C【解题分析】

由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【题目详解】解:A、调查你所在班级同学的身高,应采用全面调查方式,故方法不合理,故此选项错误;B、调查市场上某品牌电脑的使用寿命,采用普查的方式,方法不合理,故此选项错误;C、查嘉陵江的水质情况,采用抽样调查的方式,方法合理,故此选项正确;D、要了解全国初中学生的业余爱好,采用普查的方式,方法不合理,故此选项错误;故选C.【题目点拨】本题主要考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6、D【解题分析】

根据函数解析式中的系数推知函数图象经过第一、三象限,结合函数图象求得当时自变量的取值范围.【题目详解】解:反比例函数的大致图象如图所示,当时自变量的取值范围是或.故选:.【题目点拨】考查了反比例函数的性质,解题时,要注意自变量的取值范围有两部分组成.7、C【解题分析】

根据三角形的中位线平行于第三边,且等于第三边的一半求解.需注意新四边形的形状只与对角线有关,不用考虑原四边形的形状.【题目详解】如图,连接AC、BD.在△ABD中,∵AH=HD,AE=EB,∴EH=BD,同理FG=BD,HG=AC,EF=AC,又∵在矩形ABCD中,AC=BD,∴EH=HG=GF=FE,∴四边形EFGH为菱形.故选:C.【题目点拨】本题考查了菱形的判定,菱形的判别方法是说明一个四边形为菱形的理论依据,常用三种方法:①定义,②四边相等,③对角线互相垂直平分.8、B【解题分析】

根据线段的垂直平分线的性质得到DB=DA,EC=EA,根据等腰三角形的性质解答即可.【题目详解】解:∵AB的垂直平分线交BC于点D,AC的垂直平分线交BC于点E,

∴DB=DA,EC=EA,

∵∠BAC=100°,

∴∠B+∠C=80°,

∵DB=DA,EC=EA,

∴∠DAB=∠B,∠EAC=∠C,

∴∠DAB+∠EAC=80°,

∴∠DAE=100°-80°=20°,故选B.【题目点拨】本题考查了三角形内角和定理,线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.9、D【解题分析】

用平行四边形对角线互相平分,菱形对角线互相垂直平分,矩形对角线相等且互相平分,正方形对角线互相垂直平分且相等进行判断即可.【题目详解】解:A.平行四边形的对角线互相平分,本选项正确;B.菱形的对角线互相垂直,本选项正确;C.矩形的对角线相等,本选项正确;D.正方形的对角线一定互相平分,故该选项错误.故选D.【题目点拨】本题考查特殊平行四边形的性质,掌握平行四边形对角线互相平分,菱形对角线互相垂直平分,矩形对角线相等且互相平分,正方形对角线互相垂直平分且相等的性质进行判断是解题关键.10、A【解题分析】

直接利用分式有意义的条件即分母不为零,进而得出答案.【题目详解】解:分式有意义,,解得:.故选:.【题目点拨】此题主要考查了分式有意义的条件,正确把握定义是解题关键.11、A【解题分析】

根据正比例函数和一次函数的性质判断即可.【题目详解】解:∵直线y1=kx经过第一、三象限,

∴k>0,故①正确;

∵y2=-x+b与y轴交点在负半轴,

∴b<0,故②错误;

∵正比例函数y1=kx经过原点,且y随x的增大而增大,

∴当x>0时,y1>0;故③正确;

当x<-2时,正比例函数y1=kx在一次函数y2=-x+b图象的下方,即kx<-x+b,故④错误.

故选:A.【题目点拨】本题考查了一次函数与一元一次不等式,关键是根据正比例函数和一次函数的性质判断.12、C【解题分析】【分析】设游客人数的年平均增长率为x,由2015年约为12万人次,到2017年约为17万人次,增长了2次,可列出方程.【题目详解】设游客人数的年平均增长率为x,由2015年约为12万人次,到2017年约为17万人次,增长2次,可列出方程12(1+x)2=17.故选C【题目点拨】本题考核知识点:列一元二次方程解应用题.解题关键点:找出相等关系,列方程.二、填空题(每题4分,共24分)13、【解题分析】

根据菱形对角线互相垂直平分的性质,可以求得BO=OD,AO=OC,在Rt△AOD中,根据勾股定理可以求得AB的长,即可求菱形ABCD的周长.【题目详解】∵菱形ABCD的两条对角线相交于O,AC=8,BD=6,由菱形对角线互相垂直平分,∴BO=OD=3,AO=OC=4,∴AB==5,故菱形的周长为1,故答案为:1.【题目点拨】本题考查了勾股定理在直角三角形中的运用,以及菱形各边长相等的性质,本题中根据勾股定理计算AB的长是解题的关键.14、y=2x-6【解题分析】

根据“左加右减,上加下减”的原则进行解答即可.【题目详解】解:函数y=2x-3的图像向下平移3个单位,所得新图像的函数表达式是y=2x-6.故答案为y=2x-6.【题目点拨】本题主要考查一次函数图象的平移,解此题的关键在于熟记“左加右减,上加下减”.15、2【解题分析】

增根是化为整式方程后产生的不适合分式方程的根,确定增根的可能值,让最简公分母x-2=0即可.【题目详解】∵关于x的方程=-3有增根,∴最简公分母x-2=0,∴x=2.故答案为:2【题目点拨】本题考查分式方程的增根,确定增根的可能值,只需让最简公分母为0即可.分母是多项式时,应先因式分解.16、1.【解题分析】

解:根据图象可得,一次函数y=ax+b的图象经过(1,1)点,因此关于x的方程ax+b=1的解x=1.故答案是1.【题目点拨】本题考查一次函数与一元一次方程,利用数形结合思想解题是关键.17、1.【解题分析】

∵AB=5,AD=12,∴根据矩形的性质和勾股定理,得AC=13.∵BO为Rt△ABC斜边上的中线∴BO=6.5∵O是AC的中点,M是AD的中点,∴OM是△ACD的中位线∴OM=2.5∴四边形ABOM的周长为:6.5+2.5+6+5=1故答案为118、8xy1【解题分析】

由于几个分式的分母分别是1x、4y、8xy1,首先确定1、4、8的最小公倍数,然后确定各个字母的最高指数,由此即可确定它们的最简公分母.【题目详解】根据最简公分母的求法得:分式,,的最简公分母是8xy1,故答案为8xy1.【题目点拨】此题主要考查了几个分式的最简公分母的确定,确定公分母的系数找最小公倍数,确定公分母的字母找最高指数.三、解答题(共78分)19、①见解析;②【解题分析】试题分析:(1)根据对称点平分对应点连线可找到各点的对应点,从而顺次连接即可得出△A1B1C1;

(2)根据图形旋转的性质画出△A2B2C2,并求得的长.试题解析:①②∴即为所求设点为点,∵,,∴,.∵,∴.∵旋转,∴,.∵,,∴,.∵,∴.20、(1)证明见解析;(2)①证明见解析;②作图见解析;△DEP为等腰直角三角形,理由见解析.【解题分析】

(1)根据旋转的性质证明∠BCP=∠DCQ,得到△BCP≌△DCQ;(2)①根据全等的性质和对顶角相等即可得到答案;②根据等边三角形的性质和旋转的性质求出∠EPD=45°,∠EDP=45°,判断△DEP的形状.【题目详解】(1)证明:∵∠BCD=90°,∠PCQ=90°,∴∠BCP=∠DCQ,在△BCP和△DCQ中,,∴△BCP≌△DCQ;(2)①如图b,∵△BCP≌△DCQ,∴∠CBF=∠EDF,又∠BFC=∠DFE,∴∠DEF=∠BCF=90°,∴BE⊥DQ;②画图如下,∵△BCP为等边三角形,∴∠BCP=60°,∴∠PCD=30°,又CP=CD,∴∠CPD=∠CDP=75°,又∠BPC=60°,∠CDQ=60°,∴∠EPD=45°,∠EDP=45°,∴△DEP为等腰直角三角形.【题目点拨】本题考查的是正方形的性质、三角形全等的判定和性质以及旋转的性质,掌握正方形的四条边相等、四个角都是直角,旋转的性质是解题的关键.21、(1),;(2)结论仍然成立,理由:略;(3)【解题分析】

(1)连接AC,根据菱形的性质和等边三角形的性质得出△BAP≌△CAE,再延长交于,根据全等三角形的性质即可得出;

(2)结论仍然成立.证明方法同(1);

(3)根据(2)可知△BAP≌△CAE,根据勾股定理分别求出AP和EC的长,即可解决问题;【题目详解】(1)如图1中,结论:,.理由:连接.∵四边形是菱形,,∴,都是等边三角形,,∴,,∵是等边三角形,∴,,∵,∴,,∴,∴,,延长交于,∵,∴,∴,即.故答案为,.(2)结论仍然成立.理由:选图2,连接交于,设交于.∵四边形是菱形,,∴,都是等边三角形,,∴,,∵是等边三角形,∴,,∴.,∴,∴,,∵,∴,∴,即.选图3,连接交于,设交于.∵四边形ABCD是菱形,,∴,都是等边三角形,,∵是等边三角形,∴,,∴.,∴,∴,,∵,∴,∴,即.(3),由(2)可知,,在菱形中,,∴,∵,,在中,,∴,∵与是菱形的对角线,∴,,∴,∴,,∴,在中,,∴.【题目点拨】本题考查四边形综合题、菱形的性质、等边三角形的判定和性质、勾股定理、全等三角形的判定和性质等知识,解题的关键是正确添加常用辅助线,寻找全等三角形解决问题,属于中考压轴题.22、(1)8;(2);(3)3.【解题分析】

(1)由平行四边形的性质和正方形的性质可得EC=EF=BH,BC=DC,可证Rt△BHC≌Rt△CED,可得CH=DE,由“SAS”可证BE=EC,可得BE=EF=HF=BH=EC,由勾股定理可求BH的长,即可求四边形BEFH的周长;

(2)连接DF,过点F作FM⊥AD,交AD延长线于点M,由“AAS”可证△EFM≌△CED,可得CD=EM=4,DE=FM=3,由三角形面积公式可求解;

(3)过点F作FN⊥CD的延长线于点N,设AE=x=DM,则DE=4-x=FM,NH=4-x+2=6-x,由勾股定理可求HF的长,由二次函数的性质可求HF的最小值.【题目详解】解:(1)∵四边形BEFH为平行四边形

∴BE=HF,BH=EF

∵四边形EFGC,四边形ABCD都是正方形

∴EF=EC,BC=CD=4=AD

∴BH=EC,且BC=CD

∴Rt△BHC≌Rt△CED(HL)

∴CH=DE

∵H为CD中点,

∴CH=2=DE

∴AE=AD-DE=2=DE,且AB=CD,∠BAD=∠ADC=90°

∴Rt△ABE≌Rt△DCE(SAS)

∴BE=EC

∴BE=EF=HF=BH=EC

∵CH=2,BC=4

∴BH===2

∴四边形BEFH的周长=BE+BH+EF+FH=8;

(2)如图2,连接DF,过点F作FM⊥AD,交AD延长线于点M,

∵AE=1,

∴DE=3

∵∠FEM+∠CEM=90°,∠CEM+∠ECD=90°

∴∠FEM=∠ECD,且CE=EF,∠EDC=∠EMF=90°

∴△EFM≌△CED(AAS)

∴CD=EM=4,DE=FM=3,

∴DM=1,

∴S△EFH=S△EFD+S△EDH+S△DHF=×3×3+×3×2+×2×1=;

(3)如图3,过点F作FN⊥CD的延长线于点N,

由(2)可知:△EFM≌△CED

∴CD=EM,DE=FM,

∴CD=AD=EM,

∴AE=DM,

设AE=x=DM,则DE=4-x=FM,

∵FN⊥CD,FM⊥AD,ND⊥AD

∴四边形FNDM是矩形

∴FN=DM=x,FM=DN=4-x

∴NH=4-x+2=6-x

在Rt△NFH中,HF===

∴当x=3时,HF有最小值==3.故答案为:(1)8;(2);(3)3.【题目点拨】本题是四边形综合题,考查正方形的性质,平行四边形的判定,全等三角形的判定和性质,勾股定理,二次函数的性质,添加恰当辅助线构造全等三角形是题的关键.23、(1)银卡消费:y=10x+150,普通消费:y=20x;(2)A(0,150),B(15,300),C(45,600);(3)答案见解析.【解题分析】试题分析:(1)根据银卡售价150元/张,每次凭卡另收10元,以及旅游馆普通票价20元/张,设游泳x次时,分别得出所需总费用为y元与x的关系式即可;(2)利用函数交点坐标求法分别得出即可;(3)利用(2)的点的坐标以及结合得出函数图象得出答案.解:(1)由题意可得:银卡消费:y=10x+150,普通消费:y=20x;(2)由题意可得:当10x+150=20x,解得:x=15,则y=300,故B(15,300),当y=10x+150,x=0时,y=150,故A(0,150),当y=10x+150=600,解得:x=45,则y=600,故C(45,600);(3)如图所示

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论