2024届福建省南平市邵武市四中学片区八年级数学第二学期期末调研模拟试题含解析_第1页
2024届福建省南平市邵武市四中学片区八年级数学第二学期期末调研模拟试题含解析_第2页
2024届福建省南平市邵武市四中学片区八年级数学第二学期期末调研模拟试题含解析_第3页
2024届福建省南平市邵武市四中学片区八年级数学第二学期期末调研模拟试题含解析_第4页
2024届福建省南平市邵武市四中学片区八年级数学第二学期期末调研模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届福建省南平市邵武市四中学片区八年级数学第二学期期末调研模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如果反比例函数y=的图象经过点(-1,-2),则k的值是()A.2 B.-2 C.-3 D.32.如图,反比例函数y=(k≠0,x>0)图象经过正方形ABCD的顶点A,边BC在x轴的正半轴上,连接OA,若BC=2OB,AD=4,则k的值为()A.2 B.4 C.6 D.83.一元二次方程2x2﹣3x+1=0的根的情况是()A.有两个相等的实数根 B.有两个不相等的实数根C.只有一个实数根 D.没有实数根4.下面是某八年级(2)班第1组女生的体重(单位:kg):35,36,42,42,68,40,38,这7个数据的中位数是()A.68 B.43 C.42 D.405.矩形ABCD的对角线AC,BD相交于点O,∠AOD=120°,AC=6,则△ABO的周长为()A.18B.15C.12D.96.如图,▱ABCD的周长为32cm,AC,BD相交于点O,OE⊥AC交AD于点E,则△DCE的周长为()A.8cm B.24cm C.10cm D.16cm7.将若干个小菱形按如图所示的规律排列:第一个图形有5个菱形,第二个图形有9个菱形第三个图形有13个菱形,…,则第9个图形有()个菱形.A.33 B.36 C.37 D.418.如图所示的3×3正方形网格中,∠1+∠2+∠3+∠4+∠5等于()A.135° B.180° C.225° D.270°9.下列不等式的变形中,不正确的是()A.若,则 B.若,则C.若,则 D.若,则10.对于命题“已知:a∥b,b∥c,求证:a∥c”.如果用反证法,应先假设()A.a不平行b B.b不平行c C.a⊥c D.a不平行c二、填空题(每小题3分,共24分)11.若,则的值为______.12.计算:=_______.13.若关于x的一元二次方程有两个不相等的实数根,则非正整数k的值是______.14.函数中自变量x的取值范围是_______.15.在中,若,则_____________16.小明的生日是6月19日,他用6、1、9这三个数字设置了自己旅行箱三位数字的密码,但是他忘记了数字的顺序,那么他能一次打开旅行箱的概率是__________.17.如图,反比例函数y=(x>0)的图象经过矩形OABC对角线的交点M,分别交AB、BC于点D、E,连结DE.若四边形ODBE的面积为9,则△ODE的面积是________.18.如图,将直线OA向上平移1个单位,得到一个一次函数的图象,那么这个一次函数的关系式是_______.三、解答题(共66分)19.(10分)如图,BD,CE是△ABC的高,G,F分别是BC,DE的中点,求证:FG⊥DE.20.(6分)某校八年级学生进行了一次视力调查,绘制出频数分布表和频数直方图的一部分如下:请根据图表信息完成下列各题:(1)在频数分布表中,的值为,的值是;(2)将频数直方图补充完整;(3)小芳同学说“我的视力是此次调查所得数据的中位数”,你觉得小芳同学的视力应在哪个范围内?(1)若视力在不小于1.9的均属正常,请你求出视力正常的人数占被调查人数的百分比.21.(6分)(1)--;(2)22.(8分)某校举办了一次趣味数学党赛,满分100分,学生得分均为整数,这次竞赛中,甲、乙两组学生成绩如下(单位:分)甲组:30,60,60,60,60,60,70,90,90,100乙组:50,60,60,60,70,70,70,70,80,90.组别平均分中位数方差甲组68a376乙组b70(1)以生成绩统计分析表中a=_________分,b=_________分.(2)小亮同学说:“这次赛我得了70分,在我们小组中属中游略偏上!”双察上面表格判断,小亮可能是甲、乙哪个组的学生?并说明理由。(3)计算乙组成的方差,如果你是该校数学竞赛的教练员,现在需要你选一组同学代表学校参加复赛,你会进择哪一组?并说明理由。23.(8分)直线AB:y=﹣x+b分别与x,y轴交于A(6,0)、B两点,过点B的直线交x轴负半轴于C,且OB:OC=3:1.(1)求点B的坐标.(2)求直线BC的解析式.(3)直线EF的解析式为y=x,直线EF交AB于点E,交BC于点F,求证:S△EBO=S△FBO.24.(8分)如图所示,有一长方形的空地,长为米,宽为米,建筑商把它分成甲、乙、丙三部分,甲和乙为正方形.现计划甲建筑成住宅区,乙建成商场丙开辟成公园.请用含的代数式表示正方形乙的边长;;若丙地的面积为平方米,请求出的值.25.(10分)阅读下列解题过程,并解答后面的问题:如图,在平面直角坐标系中,,,C为线段AB的中点,求C的坐标.解:分别过A,C作x轴的平行线,过B,C作y轴的平行线,两组平行线的交点如图1.设C的坐标为,则D、E、F的坐标为,,由图可知:,∴C的坐标为问题:(1)已知A(-1,4),B(3,-2),则线段AB的中点坐标为______(2)平行四边形ABCD中,点A、B、C的坐标分别为(1,-4),(0,2),(5,6),求D的坐标.(3)如图2,B(6,4)在函数的图象上,A的坐标为(5,2),C在x轴上,D在函数的图象上,以A、B、C、D四个点为顶点构成平行四边形,直接写出所有满足条件的D点的坐标.26.(10分)如图,在正方形ABCD中,P是对角线BD上的一点,点E在CD的延长线上,且,PE交AD于点F.求证:;求的度数;如图,把正方形ABCD改为菱形ABCD,其它条件不变,当,连接AE,试探究线段AE与线段PC的数量关系,并给予证明.

参考答案一、选择题(每小题3分,共30分)1、D【解题分析】

此题考查的是用待定系数法求反比例函数的解析式,是中学阶段的重点.解答此题时,借用了“反比例函数图象上点的坐标特征”这一知识点.根据反比例函数图象上点的坐标特征,将(-1,-2)代入已知反比例函数的解析式,列出关于系数k的方程,通过解方程即可求得k的值.【题目详解】根据题意,得-2=,即2=k-1,解得,k=1.故选D.考点:待定系数法求反比例函数解析式.2、D【解题分析】

根据正方形的性质,和BC=2OB,AD=4,可求出OB、AB,进而确定点A的坐标,代入求出k即可.【题目详解】解:∵正方形ABCD,AD=4,∴AB=AD=4=BC,∵BC=2OB,∴OB=2,∴A(2,4),代入y=得:k=8,故选:D.【题目点拨】本题考查了反比例函数与几何问题中k的求解,解题的关键是根据几何图形的性质得出反比例函数图象上点的坐标.3、B【解题分析】试题分析:对于一元二次方程ax2+bx+c=0(a≠0),当△=b2-4ac>0时方程有两个不相等的实数根,当△4、D【解题分析】

把这组数据按从小到大的顺序排列,然后按照中位数的定义求解.【题目详解】解:这组数据按从小到大的顺序排列为:35,36,38,1,42,42,68,

则中位数为:1.

故选D.【题目点拨】本题考查了中位数的定义,将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.5、D【解题分析】分析:根据矩形的性质判定△ABO是等边三角形,求出三边的长.详解:因为四边形ABCD是矩形,所以OA=OB=OC=OD,因为∠AOD=120°,所以∠AOB=60°,所以△ABO是等边三角形,因为AC=6,所以OA=OB=AB=3,则△ABO的周长为9.故选D.点睛:本题考查了矩形的性质和等边三角形的判定与性质,在矩形中如果出现了60°的角,一般就会存在等边三角形.6、D【解题分析】

根据平行四边形性质得出AD=BC,AB=CD,OA=OC,根据线段垂直平分线得出AE=CE,求出CD+DE+EC=AD+CD,代入求出即可.【题目详解】∵平行四边形ABCD,∴AD=BC,AB=CD,OA=OC,∵EO⊥AC,∴AE=EC,∵AB+BC+CD+AD=32cm,∴AD+DC=16cm,∴△DCE的周长是:CD+DE+CE=AE+DE+CD=AD+CD=16cm,故选D.【题目点拨】本题考查了平行四边形的性质,线段垂直平分线的性质,三角形的周长,熟练掌握相关性质定理是解题的关键.7、C【解题分析】

设第n个图形有an个菱形(n为正整数),观察图形,根据各图形中菱形个数的变化可得出变化规律“an=4n+1(n为正整数)”,再代入n=9即可求出结论.【题目详解】解:设第n个图形有an个菱形(n为正整数).观察图形,可知:a1=5=4+1,a2=9=4×2+1,a3=13=4×3+1,a4=17=4×4+1,∴an=4n+1(n为正整数),∴a9=4×9+1=1.故选:C.【题目点拨】本题考查了规律型:图形的变化类,根据各图形中菱形个数的变化找出变化规律“an=4n+1(n为正整数)”是解题的关键.8、C【解题分析】

首先判定△ABC≌△AEF,△ABD≌△AEH,可得∠5=∠BCA,∠4=∠BDA,然后可得∠1+∠5=∠1+∠BCA=90°,∠2+∠4=90°,然后即可求出答案.【题目详解】在△ABC和△AEF中,∴△ABC≌△AEF(SAS)∴∠5=∠BCA∴∠1+∠5=∠1+∠BCA=90°在△ABD和△AEF中∴△ABD≌△AEH(SAS)∴∠4=∠BDA∴∠2+∠4=∠2+∠BDA=90°∵∠3=45°∴∠1+∠2+∠3+∠4+∠5=90°+90°+45°=225°故答案选C.【题目点拨】本题考查的是全等三角形的判定与性质,能够根据全等将所求角转化是解题的关键.9、D【解题分析】

根据不等式的基本性质进行判断。【题目详解】A.∴,故A正确;B.,在不等式两边同时乘以(-1)则不等号改变,∴,故B正确;C.,在不等式两边同时乘以(-3)则不等号改变,∴,故C正确;D.,在不等式两边同时除以(-3)则不等号改变,∴,故D错误所以,选项D不正确。【题目点拨】主要考查了不等式的基本性质:1、不等式两边同时加(或减去)同一个数(或式子),不等号方向不变;2、不等式两边同时乘以(或除以)同一个正数,不等号方向不变;3、不等式两边同时乘以(或除以)同一个负数,不等号方向改变。10、D【解题分析】

用反证法进行证明;先假设原命题不成立,本题中应该先假设a不平行c,由此即可得答案.【题目详解】直线a,c的位置关系有平行和不平行两种,因而a∥c的反面是a与c不平行,因此用反证法证明“a∥c”时,应先假设a与c不平行,故选D.【题目点拨】本题结合直线的位置关系考查反证法,解此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.二、填空题(每小题3分,共24分)11、.【解题分析】

由可得,化简即可得到,再计算,即可求得=.【题目详解】∵,∴,∴,∴,∴=.故答案为:.【题目点拨】本题考查了完全平方公式的变形应用,正确求得是解决问题的关键.12、3【解题分析】

先把化成,然后再合并同类二次根式即可得解.【题目详解】原式=2.故答案为【题目点拨】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行然后合并同类二次根式.13、-1【解题分析】

根据判别式的意义及一元二次方程的定义得到,且,然后解不等式即可求得k的范围,从而得出答案.【题目详解】解:根据题意知,且,解得:且,则非正整数k的值是,故答案为:.【题目点拨】本题考查了一元二次方程的根的判别式:当,方程有两个不相等的实数根;当,方程有两个相等的实数根;当,方程没有实数根.14、x≥-3【解题分析】

根据被开方数必须大于或等于0可得:3+x≥0,解不等式即可.【题目详解】因为要使有意义,所以3+x≥0,所以x≥-3.故答案是:x≥-3.【题目点拨】本题考查了函数自变量的取值范围,主要涉及二次根式有意义的条件,解题关键是熟记二次根式有意义的条件为:被开方数必须大于或等于0.15、;【解题分析】

根据在直角三角形中,角所对的边是斜边的一半,即可的BC的长.【题目详解】根据题意中,若所以可得BC=故答案为1【题目点拨】本题主要考查在直角三角形中,角所对的边是斜边的一半,这是一个重要的直角三角形的性质,应当熟练掌握.16、【解题分析】

首先利用列举法可得:等可能的结果有:619,691,169,196,961,916;然后直接利用概率公式求解即可求得答案.【题目详解】解:∵等可能的结果有:619,691,169,196,961,916;∴他能一次打开旅行箱的概率是:,故答案为:.【题目点拨】此题考查了列举法求概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.17、【解题分析】

设B的坐标为(2a,2b),E点坐标为(x,2b),D点坐标为(2a,y),因为D、E、M在反比例函数图象上,则ab=k,2bx=k,2ay=k,根据四边形ODBE的面积列式,求得k值,再由2bx×2ay=4abxy=k2=9,求得xy的值,然后根据所求的结果求出△BED的面积,则△ODE的面积就是四边形ODBE的面积和△BED的面积之差.【题目详解】解:设B的坐标为(2a,2b),则M点坐标为(a,b),

∵M在AC上,∴ab=k(k>0),设E点坐标为(x,2b),D点坐标为(2a,y),则2bx=k,2ay=k,∴S四边形ODBE=2a×2b-×(2bx+2ay)=9,即4k-(k+k)=9,解得k=3,∵2bx×2ay=4abxy=k2=9,∴4abxy=9,解得:xy=,则S△BED=BE×BD=,∴

S△ODE=

S四边形ODBE-S△BED=9-【题目点拨】本题主要考查反比函数与几何综合,解题关键在于利用面积建立等式求出k.18、y=2x+1【解题分析】试题分析:由原直线上的两点坐标得到平移后的点的坐标,再用待定系数法即可求出平移后的解析式.解:由图象可知,点(0,0)、(2,4)在直线OA上,∴向上平移1个单位得到的点是(0,1)(2,5),那么这两个点在将直线OA向上平移1个单位,得到一个一次函数的图象y=kx+b上,则b=1,2k+b=5解得:k=2.∴y=2x+1.故答案为:y=2x+1.点睛:本题主要考查待定系数法求一次函数的解析式.解题的关键在于根据图象确定出平移后的点的坐标.三、解答题(共66分)19、如图,连接EG,DG.∵CE是AB边上的高,∴CE⊥AB.在Rt△CEB中,G是BC的中点,∴.同理,.∴EG=DG.又∵F是ED的中点,∴FG⊥DE.【解题分析】根据题意连接EG,DG,利用直角三角形斜边上的中线的性质可得EG=DG,然后根据等腰三角形“三线合一”的性质即可解决.20、(1)60,0.2;(2)见解析;(3)在之间;(1)【解题分析】

(1)用频数除以对应的频率可得调查的总人数,再用总人数乘以0.3即可得a的值,用10除以总人数即可得b的值;(2)根据a的值补图即可;(3)根据总人数和中位数的定义可知中位数所在的小组,即为小芳的视力范围;(1)根据表格数据求出视力大于等于1.9的学生人数,再除以总人数即可得百分比.【题目详解】(1)调查总人数为(人)则,故答案为:60,0.2.(2)如图所示,(3)调查总人数为200人,由表可知中位数在之间,∴小芳同学的视力在之间(1)视力大于等于1.9的学生人数为60+10=70人,∴视力正常的人数占被调查人数的百分比是:【题目点拨】本题考查读频数直方图和利用统计图获取信息,理解统计表与直方图的关系,掌握中位数的定义是解题的关键.21、(1)-(2)【解题分析】【分析】(1)把每一个二次根式都化成最简二次根式,然后再对同类二次根式进行合并即可得;(2)根据二次根式乘除法的法则进行计算即可.【题目详解】(1)原式=-=-;(2)原式===.【题目点拨】本题考查了二次根式的混合运算,熟练掌握运算法则是解题的关键.22、(1)60,68;(2)小亮在甲组;(3)乙组的方差是116;乙组的方差小于甲组,选乙组同学代表学校参加复赛.【解题分析】

(1)根据中位数和平均数的计算公式分别进行解答即可求出a,b的值;

(2)根据中位数的意义进行判断即可;

(3)根据方差公式先求出乙组的方差,再根据方差的意义即可得出答案.【题目详解】解:(1)甲组的中位数a=(分);

乙组的平均数是:(50+60+60+60+70+70+70+70+80+90)÷10=68(分);故答案为:60,68;

(2)根据中位数判断,甲组中位数60分,乙组中位数70分,所以小亮是在甲组.(3)乙组的方差是:[(50-68)2+3×(60-68)2+4×(70-68)2+(80-68)2+(90-68)2]=116;∵乙组的方差小于甲组,

∴选乙组同学代表学校参加复赛.【题目点拨】本题考查了平均数、中位数及方差,熟练掌握平均数、中位数及方差的定义是解题的关键.23、(1)B(0,6);(2)y=3x+6;(3)见解析.【解题分析】

(1)先把A点坐标代入y=-x+b求出b=6,得到直线AB的解析式为y=-x+6,然后求自变量为0时的函数值即可得到点B的坐标;(2)利用OB:OC=3:1得到OC=2,C点坐标为(-2,0),然后利用待定系数法求直线BC的解析式;(3)根据两直线相交的问题,通过解方程组得E(3,3),解方程组得F(-3,-3),然后根据三角形面积公式可计算出S△EBO=9,S△FBO=9,S△EBO=S△FBO.【题目详解】(1)把A(6,0)代入y=-x+b得-6+b=0,解得b=6,所以直线AB的解析式为y=-x+6,当x=0时,y=-x+6=6,所以点B的坐标为(0,6);(2)解:∵OB:OC=3:1,而OB=6,∴OC=2,∴C点坐标为(-2,0),设直线BC:y=mx+n,把B(0,6),C(-2,0)分别代入得,解得,∴直线BC的解析式为y=3x+6;(3)证明:解方程组得,则E(3,3),解方程组得,则F(-3,-3),所以S△EBO=×6×3=9,S△FBO=×6×3=9,所以S△EBO=S△FBO.【题目点拨】本题考查了两条直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.24、(1)(x−12)米;(2)的值为20或1.【解题分析】

(1)由甲和乙为正方形,且该地长为x米,宽为12米,可得出丙的长,也是乙的边长;(2)由(1)求得丙的长,再求出丙的宽,即可得出丙的面积,由此列出方程,求解即可.【题目详解】解:(1)因为甲和乙为正方形,结合图形可得丙的长为:(x−12)米.同样乙的边长也为(x−12)米,故答案为:(x−12)米;(2)结合(1)得,丙的长为:(x−12)米,丙的宽为12−(x−12)=(24−x)米,所以丙的面积为:(x−12)(24−x),列方程得,(x−12)(24−x)=32解方程得x1=20,x2=1.答:的值为20或1.【题目点拨】本题考查了一元二次方程

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论