2024届安徽省淮北市五校联考数学八下期末调研试题含解析_第1页
2024届安徽省淮北市五校联考数学八下期末调研试题含解析_第2页
2024届安徽省淮北市五校联考数学八下期末调研试题含解析_第3页
2024届安徽省淮北市五校联考数学八下期末调研试题含解析_第4页
2024届安徽省淮北市五校联考数学八下期末调研试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届安徽省淮北市五校联考数学八下期末调研试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下列说法正确的是()A.全等的两个图形成中心对称B.成中心对称的两个图形必须能完全重合C.旋转后能重合的两个图形成中心对称D.成中心对称的两个图形不一定全等2.如图,四边形ABCD与四边形AEFG是位似图形,且AC:AF=2:3,则下列结论不正确的是()A.四边形ABCD与四边形AEFG是相似图形B.AD与AE的比是2:3C.四边形ABCD与四边形AEFG的周长比是2:3D.四边形ABCD与四边形AEFG的面积比是4:93.如果在一组数据中,23、25、28、22出现的次数依次为2、5、3、4次,并且没有其他的数据,则这组数据的众数和中位数分别是()A.24、25 B.25、24 C.25、25 D.23、254.下列二次拫式中,最简二次根式是()A.-2 B.12 C.155.某个函数自变量的取值范围是x≥-1,则这个函数的表达式为()A.y=x+1 B.y=x2+1 C.y= D.y=6.用换元法解方程时,如果设=y,则原方程可化为()A.y+= B.2y2﹣5y+2=0 C.6y2+5y+2=0 D.3y+=7.如图,在四边形ABCD中,AB=1,则四边形ABCD的周长为()A.1 B.4 C.2 D.28.已知一次函数y=(2m﹣1)x+3,如果函数值y随x的增大而减小,那么m的取值范围为()A.m<2 B. C. D.m>09.若正多边形的内角和是1080°,则该正多边形的一个外角为()A. B. C. D.10.如图,点A是反比例函数(x<0)的图象上的一点,过点A作平行四边形ABCD,使B、C在x轴上,点D在y轴上,则平行四边形ABCD的面积为()A.1 B.3 C.6 D.12二、填空题(每小题3分,共24分)11.已知中,,则的度数是_______度.12.若在平行四边形ABCD中,∠A=30°,AB=9,AD=8,则四边形ABCD=_____.13.使根式3-x有意义的x的取值范围是14.平面直角坐标系中,A、O两点的坐标分别为(2,0),(0,0),点P在正比例函数y=x(x>0)图象上运动,则满足△PAO为等腰三角形的P点的坐标为_____.15.阅读后填空:已知:如图,∠A=∠D=90∘,AC=DB,AC、DB相交于点求证:OB=OC.分析:要证OB=OC,可先证∠OCB=∠OBC;要证∠OCB=∠OBC,可先证ΔABC≅ΔDCB;而用______可证ΔABC≅ΔDCB(填SAS或AAS或HL).16.将分别写有“绿色闵行”、“垃圾分类”、“要先行”的三张大小、质地相同的卡片随机排列,那么恰好排列成“绿色闵行垃圾分类要先行”的概率是__________.17.甲,乙两人进行飞镖比赛,每人各投1次,甲的成绩(单位:环)为:9,8,9,1,10,1.甲,乙两人平均成绩相等,乙成绩的方差为4,那么成绩较为稳定的是______.(填“甲”或“乙”)18.在平面直角坐标系中,点A(x,y)在第三象限,则点B(x,﹣y)在第_____象限.三、解答题(共66分)19.(10分)已知:如图,在▱ABCD中,设=,=.(1)填空:=(用、的式子表示)(2)在图中求作+.(不要求写出作法,只需写出结论即可)20.(6分)(1)用“<”“>”或“=”填空:51+31______1×5×3;31+11______1×3×1.(﹣3)1+11_____1×(﹣3)×1;(﹣4)1+(﹣4)1______1×(﹣4)×(﹣4).(1)观察以上各式,你发现它们有什么规律吗?你能用一个含有字母a,b的式子表示上述规律吗?再换几个数试一试.(3)运用你所学的知识说明你发现的规律的正确性.21.(6分)计算:当时,求代数式的值22.(8分)为了贯彻落实市委政府提出的“精准扶贫”精神,某校特制定了一系列帮扶A、B两贫困村的计划,现决定从某地运送152箱鱼苗到A、B两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其运往A、B两村的运费如表:车型目的地A村(元/辆)B村(元/辆)大货车800900小货车400600(1)求这15辆车中大小货车各多少辆?(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A、B两村总费用为y元,试求出y与x的函数解析式.(3)在(2)的条件下,若运往A村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用.23.(8分)在学习了正方形后,数学小组的同学对正方形进行了探究,发现:(1)如图1,在正方形ABCD中,点E为BC边上任意一点(点E不与B、C重合),点F在线段AE上,过点F的直线MN⊥AE,分别交AB、CD于点M、N.此时,有结论AE=MN,请进行证明;(2)如图2:当点F为AE中点时,其他条件不变,连接正方形的对角线BD,MN与BD交于点G,连接BF,此时有结论:BF=FG,请利用图2做出证明.(3)如图3:当点E为直线BC上的动点时,如果(2)中的其他条件不变,直线MN分别交直线AB、CD于点M、N,请你直接写出线段AE与MN之间的数量关系、线段BF与FG之间的数量关系.图1图2图324.(8分)已知:如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD于点E,∠1=∠1.(1)若CE=1,求BC的长;(1)求证:AM=DF+ME.25.(10分)如图,四边形ABCD中,AC⊥BD交BD于点E,点F、M分别是AB、BC的中点,BN平分∠ABE交AM于点N,AB=AC=BD,连接MF,NF求证:(1)BN=MN;(2)△MFN∽△BDC.26.(10分)如图,已知各顶点的坐标分别为,,.(1)画出以点B为旋转中心,按顺时针方向旋转后得到的;(2)将先向右平移5个单位长度,再向上平移3个单位长度,得到.①在图中画出,并写出点A的对应点的坐标;②如果将看成是由经过一次平移得到的,请指出这一平移的平移方向和平移距离.

参考答案一、选择题(每小题3分,共30分)1、B【解题分析】

根据中心对称图形的概念,即可求解.【题目详解】解:A、成中心对称的两个图形全等,但全等的两个图形不一定成中心对称,故错误;B、成中心对称的两个图形必须能完全重合,正确;C、旋转180°能重合的两个图形成中心对称,故错误;D、成中心对称的两个图形一定全等,故错误.故选:B.【题目点拨】本题考查中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.2、B【解题分析】∵四边形ABCD与四边形AEFG是位似图形;A、四边形ABCD与四边形AEFG一定是相似图形,故正确;B、AD与AG是对应边,故AD:AE=2:3;故错误;C、四边形ABCD与四边形AEFG的相似比是2:3,故正确;D、则周长的比是2:3,面积的比是4:9,故正确.故选B.3、C【解题分析】

中位数:一组数据按从大到小(或从小到大)的顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数),叫做这组数据的中位数.众数:一组数据中出现次数最多的那个数据叫做这组数据的众数.【题目详解】已知可知这组数据中出现次数最多的是25,次数为5,所以这组数据的众数是25.由于2+5+3+4=14,因此中位数等于将这组数据按从小到大的顺序排列后中间两数的平均数,而这组数据从小到大排列后位于第7、8位的数都是25.故这组数据的中位数为25.故选C.【题目点拨】此题考查中位数和众数的概念,解题关键在于掌握其概念.4、A【解题分析】

检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【题目详解】解:A、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故A符合题意;B、被开方数含能开得尽方的因数或因式,故B不符合题意;C、被开方数含分母,故C不符合题意;D、被开方数含能开得尽方的因数或因式,故D不符合题意;故选:A.【题目点拨】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.5、C【解题分析】

根据被开方数大于等于0,分母不等于0分别求出各选项的函数的取值范围,从而得解.【题目详解】解:A、自变量的取值范围是全体实数,故本选项错误;B、自变量的取值范围是全体实数,故本选项错误;C、由x+1≥0得,x≥-1,故本选项正确;D、由x+10得,x-1,故本选项错误.故选:C.【题目点拨】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.6、D【解题分析】

因为已知设=y,易得=,即可转化为关于y的方程.【题目详解】设=y,则则原方程变形为:3y+=,故选:D.【题目点拨】本题主要考查了解分式方程中的换元法,换元的关键是仔细观察题目,看看可以把哪一部分看作一个整体,发现他们之间的联系,从而成功换元.7、B【解题分析】

先判定四边形ABCD是平行四边形,再判断是菱形,即可求得答案.【题目详解】由图可知:AB∥CD,BC∥AD,∴四边形ABCD是平行四边形,∵AB=BC,∴平行四边形ABCD是菱形,∴四边形ABCD的周长=4×1=4,故选B.【题目点拨】本题考查了菱形的判定和性质,熟记菱形的性质定理是解此题的关键.8、C【解题分析】

根据一次函数的性质,当函数值y随自变量x的增大而减小时,那么k<0,由此可得不等式2m﹣1<0,解不等式即可求得m的取值范围.【题目详解】∵函数值y随自变量x的增大而减小,∴2m﹣1<0,∴m<.故选C.【题目点拨】本题考查了一次函数的性质,熟练运用一次函数的性质是解决问题的关键.9、A【解题分析】

首先设这个正多边形的边数为n,根据多边形的内角和公式可得180(n-2)=1080,继而可求得答案.【题目详解】设这个正多边形的边数为n,∵一个正多边形的内角和为1080°,∴180(n-2)=1080,解得:n=8,∴这个正多边形的每一个外角是:360°÷8=45°.故选:A..【题目点拨】此题考查了多边形的内角和与外角和的知识.此题难度不大,注意掌握方程思想的应用,注意熟记公式是关键.10、C【解题分析】

作AH⊥OB于H,根据平行四边形的性质得AD∥OB,则S平行四边形ABCD=S矩形AHOD,再根据反比例函数y=(k≠0)系数k的几何意义得到S矩形AHOD=1,所以有S平行四边形ABCD=1.【题目详解】作AH⊥OB于H,如图,

∵四边形ABCD是平行四边形ABCD,

∴AD∥OB,

∴S平行四边形ABCD=S矩形AHOD,

∵点A是反比例函数y=−(x<0)的图象上的一点,

∴S矩形AHOD=|-1|=1,

∴S平行四边形ABCD=1.

故选C.【题目点拨】本题考查了反比例函数y=(k≠0)系数k的几何意义:从反比例函数y=kx(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.二、填空题(每小题3分,共24分)11、100【解题分析】

根据平行四边形对角相等的性质,即可得解.【题目详解】∵中,,∴故答案为100.【题目点拨】此题主要考查平行四边形的性质,熟练掌握,即可解题.12、36【解题分析】

根据题意作出图形,再根据平行四边形及含30°的直角三角形的性质进行求解.【题目详解】解:如图,过点D作DE⊥AB于点E,∵∠A=30°,DE⊥AB∴DE=AD=4∴S▱ABCD=BA×DE=9×4=36故答案为36【题目点拨】此题主要考查平行四边形的计算,解题的关键是作出图形求出DE.13、x【解题分析】

解:根据二次根式被开方数必须是非负数的条件,要使3-必须3解得:x故答案为:x≤314、(1,1)或(,)或(1,1)【解题分析】

分OP=AP、OP=OA、AO=AP三种情况考虑:①当OP1=AP1时,△AOP1为等腰直角三角形,根据等腰直角三角形的性质结合点A的坐标可得出点P1的坐标;②当OP1=OA时,过点P1作P1B⊥x轴,则△OBP1为等腰直角三角形,根据等腰直角三角形的性质结合点A的坐标可得出点P1的坐标;③当AO=AP3时,△OAP3为等腰直角三角形,根据等腰直角三角形的性质结合点A的坐标可得出点P3的坐标.综上即可得出结论【题目详解】∵点A的坐标为(1,0),∴OA=1.分三种情况考虑,如图所示.①当OP1=AP1时,∵∠AOP1=45°,∴△AOP1为等腰直角三角形.又∵OA=1,∴点P1的坐标为(1,1);②当OP1=OA时,过点P1作P1B⊥x轴,则△OBP1为等腰直角三角形.∵OP1=OA=1,∴OB=BP1=,∴点P1的坐标为(,);③当AO=AP3时,△OAP3为等腰直角三角形.∵OA=1,∴AP3=OA=1,∴点P3的坐标为(1,1).综上所述:点P的坐标为(1,1)或(,)或(1,1).故答案为:(1,1)或(,)或(1,1).【题目点拨】本题考查了一次函数图象上点的坐标特征、等腰三角形的性质以及等腰直角三角形的性质,分OP=AP、OP=OA、AO=AP三种情况求出点P的坐标是解题的关键.15、H【解题分析】

根据HL定理推出Rt△ABC≌Rt△DCB,求出∠ACB=∠DBC,再根据等角对等边证明即可.【题目详解】解:HL定理,理由是:∵∠A=∠D=90°,

∴在Rt△ABC和Rt△DCB中

BC=CBAC=DB

∴Rt△ABC≌Rt△DCB(HL),

∴∠ACB=∠DBC,

∴OB=OC【题目点拨】本题考查了全等三角形的判定定理和性质定理、等腰三角形的判定等知识点,能灵活运用定理进行推理是解此题的关键,注意:全等三角形的判定定理有SAS,AAS,ASA,SSS,直角三角形全等还有HL定理.16、【解题分析】

用树状图将所有的情况数表示出来,然后找到恰好排列成“绿色闵行垃圾分类要先行”的情况数,利用所求情况数与总数之比求概率即可.【题目详解】由树状图可知,总共有6种情况,其中恰好排列成“绿色闵行垃圾分类要先行”的情况只有1种,所以恰好排列成“绿色闵行垃圾分类要先行”的概率为.故答案为:.【题目点拨】本题主要考查用树状图求随机事件的概率,掌握树状图的画法及概率公式是解题的关键.17、甲.【解题分析】

先计算出甲的平均数,再计算甲的方差,然后比较甲乙方差的大小可判定谁的成绩稳定.【题目详解】甲的平均数,所以甲的方差,因为甲的方差比乙的方差小,所以甲的成绩比较稳定.故答案为:甲.【题目点拨】本题考查方差的定义:一般地设n个数据,,,…,的平均数为,则方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.18、二【解题分析】

根据各象限内点的坐标特征,可得答案.【题目详解】解:由点A(x,y)在第三象限,得x<0,y<0,∴x<0,-y>0,点B(x,-y)在第二象限,故答案为:二.【题目点拨】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).三、解答题(共66分)19、(1)-;(2)【解题分析】

(1)根据三角形法则可知:延长即可解决问题;(2)连接BD.因为即可推出【题目详解】解:(1)∵=,=∴故答案为-.(2)连接BD.∵∴∴即为所求;【题目点拨】本题考查作图﹣复杂作图、平行四边形的性质、平面向量等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20、(1)>,>,>,=;(1)如果a、b是两个实数,则有a1+b1≥1ab;(3)证明见解析.【解题分析】

(1)通过计算可比较上述算式的大小;

(1)由于(a-b)1≥0,所以a1+b1≥1ab

(3)证明结论时根据完全平方的计算结果是非负数证明即可.【题目详解】解:(1)51+31>1×5×3;31+11>1×3×1.(﹣3)1+11>1×(﹣3)×1;(﹣4)1+(﹣4)1=1×(﹣4)×(﹣4)(1)一般结论是:如果a、b是两个实数,则有a1+b1≥1ab;(3)∵(a﹣b)1≥0,∴a1﹣1ab+b1≥0,∴a1+b1≥1ab.【题目点拨】本题主要考查实数的大小的比较数字的变化规律,通过阅读题目,发现规律实质上是完全平方公式的变形:因为(a-b)1≥0,所以a1+b1≥1ab21、(1);(2)9【解题分析】

(1)先将所有的二次根式化为最简二次根式,再进行乘法运算,最后进行加法运算.(2)先将变形为再代入求解即可.【题目详解】解:原式原式当时原式=【题目点拨】本题考查的知识点是二次根式的混合运算,掌握二次根式混合运算的运算顺序以及运算法则是解此题的关键.22、(1)大货车用8辆,小货车用7辆;(2)y=100x+1.(3)见解析.【解题分析】

(1)设大货车用x辆,小货车用y辆,根据大、小两种货车共15辆,运输152箱鱼苗,列方程组求解;(2)设前往A村的大货车为x辆,则前往B村的大货车为(8-x)辆,前往A村的小货车为(10-x)辆,前往B村的小货车为[7-(10-x)]辆,根据表格所给运费,求出y与x的函数关系式;(3)结合已知条件,求x的取值范围,由(2)的函数关系式求使总运费最少的货车调配方案.【题目详解】(1)设大货车用x辆,小货车用y辆,根据题意得:解得:.∴大货车用8辆,小货车用7辆.(2)y=800x+900(8-x)+400(10-x)+600[7-(10-x)]=100x+1.(3≤x≤8,且x为整数).(3)由题意得:12x+8(10-x)≥100,解得:x≥5,又∵3≤x≤8,∴5≤x≤8且为整数,∵y=100x+1,k=100>0,y随x的增大而增大,∴当x=5时,y最小,最小值为y=100×5+1=9900(元).答:使总运费最少的调配方案是:5辆大货车、5辆小货车前往A村;3辆大货车、2辆小货车前往B村.最少运费为9900元.23、(1)证明见解析;(2)证明见解析;(3)AE与MN的数量关系是:AE=MN,BF与FG的数量关系是:BF=FG【解题分析】(1)作辅助线,构建平行四边形PMND,再证明△ABE≌△DAP,即可得出结论;(2)连接AG、EG、CG,构建全等三角形和直角三角形,证明AG=EG=CG,再根据四边形的内角和定理得∠AGE=90°,在R△AGE中,利用直角三角形斜边上的中线等于斜边的一半得BF=AE,FG=AE,则BF=GF;(3)①AE=MN,证明△AEB≌△NMQ;②BF=FG,同理得出BF和FG分别是直角△AEB和直角△AGF斜边上的中线,则BF=AE,FG=AE,所以BF=FG.证明:(1)在图1中,过点D作PD∥MN交AB于P,则∠APD=∠AMN∵正方形ABCD∴AB=AD,AB∥DC,∠DAB=∠B=90°∴四边形PMND是平行四边形且PD=MN∵∠B=90°∴∠BAE+∠BEA=90°∵MN⊥AE于F,∴∠BAE+∠AMN=90°∴∠BEA=∠AMN=∠APD又∵AB=AD,∠B=∠DAP=90°∴△ABE≌△DAP∴AE=PD=MN(2)在图2中连接AG、EG、CG由正方形的轴对称性△ABG≌△CBG∴AG=CG,∠GAB=∠GCB∵MN⊥AE于F,F为AE中点∴AG=EG∴EG=CG,∠GEC=∠GCE∴∠GAB=∠GEC由图可知∠GEB+∠GEC=180°∴∠GEB+∠GAB=180°又∵四边形ABEG的内角和为360°,∠ABE=90°∴∠AGE=90°在Rt△ABE和Rt△AGE中,AE为斜边,F为AE的中点,∴BF=AE,FG=AE∴BF=FG(3)AE与MN的数量关系是:AE=MNBF与FG的数量关系是:BF=FG“点睛”本题是四边形的综合题,考查了正方形、全等三角形、平行四边形的性质与判定,在有中点和直角三角形的前提下,可以利用直角三角形斜边上的中线等于斜边的一半来证明两条线段相等.24、(1)1;(1)见解析.【解题分析】试题分析:(1)根据菱形的对边平行可得AB∥CD,再根据两直线平行,内错角相等可得∠1=∠ACD,所以∠ACD=∠1,根据等角对等边的性质可得CM=DM,再根据等腰三角形三线合一的性质可得CE=DE,然后求出CD的长度,即为菱形的边长BC的长度;

(1)先利用“边角边”证明△CEM和△CFM全等,根据全等三角形对应边相等可得ME=MF,延长AB交DF于点G,然后证明∠1=∠G,根据等角对等边的性质可得AM=GM,再利用“角角边”证明△CDF和△BGF全等,根据全等三角形对应边相等可得G

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论