版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
天津市和平区汇文中学2024届数学八下期末监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.已知x=,y=,则x2+xy+y2的值为()A.2 B.4 C.5 D.72.一次函数y1=kx+b与y2=x+a图象如图:则下列结论①k<0;②a>0;③不等式x+a<kx+b的解集是x<3;④a−A.1个 B.2个 C.3个 D.4个3.关于的一元二次方程有两个不相等的实数根,则的取值范围是()A. B.且 C.且 D.4.已知点,、,是直线上的两点,下列判断中正确的是()A. B. C.当时, D.当时,5.如图,PA、PB分别与⊙O相切于点A、B,若∠P=50°,则∠C的值是()A.50° B.55° C.60° D.65°6.如图,证明矩形的对角线相等,已知:四边形是矩形.求证:.以下是排乱了的证明过程:①∴、.②∵③∵四边形是矩形④∴⑤∴.证明步骤正确的顺序是()A.③①②⑤④ B.②①③⑤④ C.③⑤②①④ D.②⑤①③④7.下列各组数是勾股数的是()A.6,7,8 B.1,,2C.5,4,3 D.0.3,0.4,0.58.若一次函数的图象经过第一、二、四象限,则下列不等式一定成立的是()A. B. C. D.9.下列各式中,一定是二次根式的是()A. B. C. D.10.如图,已知AB、CD、EF都与BD垂直,垂足分别是B、D、F,且AB=1,CD=3,那么EF的长是()A. B. C. D.11.如图,在中,点、分别是、的中点,平分,交于点,若,则的长是()A. B. C. D.12.在中,,,,则的长为()A.3 B.2 C. D.4二、填空题(每题4分,共24分)13.将一张长与宽之比为的矩形纸片ABCD进行如下操作:对折并沿折痕剪开,发现每一次所得到的两个矩形纸片长与宽之比都是(每一次的折痕如下图中的虚线所示).已知AB=1,则第3次操作后所得到的其中一个矩形纸片的周长是;第2016次操作后所得到的其中一个矩形纸片的周长是.14.如图,在▱ABCD中,AB=10,AD=6.对角线AC与BD相交于点O,AC⊥BC,则BD的长为____________.15.如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE,将△ADE沿AE对折至△AEF,延长EF交边BC于点G,连接AG,CF,则下列结论:①△ABG≌△AFG;②BG=CG;③AG∥CF;④S△EGC=S△AFE;⑤S△FGC=,其中正确的结论有__________.16.在中,,,将绕点A按顺时针方向旋转得到旋转角为,点B,点C的对应点分别为点D,点E,过点D作直线AB的垂线,垂足为F,过点E作直线AC的垂线,垂足为P,当时,点P与点C之间的距离是________.17.比较大小:_____.18.在一只不透明的袋子中装有2个红球、3个绿球和5个白球,这些球除颜色外都相同,摇匀后,从袋子中任意摸出1个球,摸出白球可能性_________摸出红球可能性.(填“等于”、“小于”或“大于”)三、解答题(共78分)19.(8分)古埃及人用下面的方法得到直角三角形,把一根长绳打上等距离的13个结(12段),然后用桩钉钉成一个三角形,如图1,其中∠C便是直角.(1)请你选择古埃及人得到直角三角形这种方法的理由(填A或B)A.勾股定理:在直角三角形边的两直角边的平方和等于斜边的平方B.勾股定理逆定理:如果三角形的三边长a、b、c有关系:a2+b2=c2,那么这个三角形是直角三角形(2)如果三个正整数a、b、c满足a2+b2=c2,那么我们就称a、b、c是一组勾股数,请你写出一组勾股数(3)仿照上面的方法,再结合上面你写出的勾股数,你能否只用绳子,设计一种不同于上面的方法得到一个直角三角形(在图2中,只需画出示意图.)20.(8分)如图,在平面直角坐标系中,直线交轴于点,交轴于点,正方形的点在线段上,点,在轴正半轴上,点在点的右侧,.将正方形沿轴正方向平移,得到正方形,当点与点重合时停止运动.设平移的距离为,正方形与重合部分的面积为.(1)求直线的解析式;(2)求点的坐标;(3)求与的解析式,并直接写出自变量的取值范围.21.(8分)如图,已知四边形ABCD为正方形,点E为线段AC上一点,连接DE,过点E作EF⊥DE,交射线BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)求证:矩形DEFG是正方形.(2)当点E从A点运动到C点时;①求证:∠DCG的大小始终不变;②若正方形ABCD的边长为2,则点G运动的路径长为.22.(10分)为了提高学生书写汉字的能力.增强保护汉字的意识,我区举办了“汉字听写大赛”,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:组别成绩x分频数(人数)第1组25≤x<304第2组30≤x<356第3组35≤x<4014第4组40≤x<45a第5组45≤x<5010请结合图表完成下列各题:(1)求表中a的值;(2)请把频数分布直方图补充完整;(3)若测试成绩不低于40分为优秀,则本次测试的优秀率是多少?23.(10分)现代互联网技术的广泛应用,催生了快递行业的高速发展,据调查,某家快递公司,今年三月份与五月份完成投递的快件总件数分别是5万件和万件,现假定该公司每月投递的快件总件数的增长率相同.求该公司投递快件总件数的月平均增长率;如果平均每人每月可投递快递万件,那么该公司现有的16名快递投递员能否完成今年6月份的快递投递任务?24.(10分)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC的顶点均在格点上,请按要求完成下列步骤:(1)画出将△ABC向上平移3个单位后得到的△A1B1C1;(2)画出将△A1B1C1绕点C1按顺时针方向旋转90°后所得到的△A2B2C1.25.(12分)在平面直角坐标系中,直线(且)与轴交于点,过点作直线轴,且与交于点.(1)当,时,求的长;(2)若,,且轴,判断四边形的形状,并说明理由.26.如图,抛物线与轴交于,(在的左侧),与轴交于点,抛物线上的点的横坐标为3,过点作直线轴.(1)点为抛物线上的动点,且在直线的下方,点,分别为轴,直线上的动点,且轴,当面积最大时,求的最小值;(2)过(1)中的点作,垂足为,且直线与轴交于点,把绕顶点旋转45°,得到,再把沿直线平移至,在平面上是否存在点,使得以,,,为顶点的四边形为菱形?若存在直接写出点的坐标;若不存在,说明理由.
参考答案一、选择题(每题4分,共48分)1、B【解题分析】试题分析:根据二次根式的运算法则进行运算即可.试题解析:.故应选B考点:1.二次根式的混合运算;2.求代数式的值.2、C【解题分析】
根据一次函数的性质对①②进行判断;根据一次函数与一元一次不等式的关系,利用两函数图象的位置对③进行判断,联立方程解答即可.【题目详解】∵一次函数y1=kx+b的图象经过第二、四象限,∴k<0,所以①正确;∵一次函数y2=x+a的图象与y轴的交点在x轴下方,∴a<0,所以②错误;∵x<3时,一次函数y1=kx+b的图象都在函数y2=x+a的图象下方,∴不等式kx+b<x+a的解集为x<3,所以③正确。∵a=y−x,b=y−kx,∴a−b=3k−3,正确;故选C【题目点拨】本题考查一次函数与一元一次不等式,熟练掌握运算法则是解题关键.3、B【解题分析】
由方程根的情况,根据判别式可得到关于的不等式,则可求得取值范围;【题目详解】解:因为一元二次方程有两个不相等的实数根,所以>0,且,所以>0,解得:<,又因为,所以,所以且,故选B.【题目点拨】本题考查利用一元二次方程的根的判别式求字母的取值范围,同时考查一元二次方程定义中二次项系数不为0,掌握知识点是解题关键.4、D【解题分析】
根据一次函数图象的增减性,结合一次函数图象上点的横坐标的大小关系,即可得到答案.【题目详解】解:一次函数上的点随的增大而减小,又点,、,是直线上的两点,若,则,故选:.【题目点拨】本题考查了一次函数图象上点的坐标特征,正确掌握一次函数图象的增减性是解题的关键.5、D【解题分析】
连接OA、OB,由已知的PA、PB与圆O分别相切于点A、B,根据切线的性质得到OA⊥AP,OB⊥PB,从而得到∠OAP=∠OBP=90°,然后由已知的∠P的度数,根据四边形的内角和为360°,求出∠AOB的度数,最后根据同弧所对的圆周角等于它所对圆心角度数的一半即可得到∠C的度数.【题目详解】解:连接OA、OB,
∵PA、PB与圆O分别相切于点A、B,
∴OA⊥AP,OB⊥PB,
∴∠OAP=∠OBP=90°,又∠P=50°,
∴∠AOB=360°-90°-90°-50°=130°,
又∵∠ACB和∠AOB分别是弧AB所对的圆周角和圆心角,
∴∠C=∠AOB=×130°=65°.
故选:D.【题目点拨】此题考查了切线的性质,以及圆周角定理.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题,同时要求学生掌握同弧所对的圆周角等于所对圆心角的一半.6、A【解题分析】
根据SAS定理证明三角形全等,进而得出对应边相等.【题目详解】解:∵四边形是矩形∴、∵∴∴所以正确顺序为③①②⑤④故答案为A【题目点拨】本题考查了全等三角形的证明,理清证明过程是排序的关键.7、C【解题分析】
欲求证是否为勾股数,这里给出三边的长,只要验证即可.【题目详解】解:、,故此选项错误;、不是整数,故此选项错误;、,故此选项正确;、0.3,0.4,0.5,勾股数为正整数,故此选项错误.故选:.【题目点拨】本题考查了勾股数的概念,一般是指能够构成直角三角形三条边的三个正整数.验证两条较小边的平方和与最大边的平方之间的关系,从而作出判断.8、D【解题分析】∵一次函数y=ax+b的图象经过第一、二、四象限,∴a<0,b>0,∴a+b不一定大于0,故A错误,a−b<0,故B错误,ab<0,故C错误,<0,故D正确.故选D.9、C【解题分析】
根据二次根式的定义逐个判断即可.【题目详解】解:A、不是二次根式,故本选项不符合题意;B、不是二次根式,故本选项不符合题意;C、是二次根式,故本选项符合题意;D、当x<0时不是二次根式,故本选项不符合题意;故选:C.【题目点拨】本题考查了二次根式的定义,熟记二次根式的定义是解此题的关键,注意:形如(a≥0)的形式,叫二次根式.10、C【解题分析】
易证△DEF∽△DAB,△BEF∽△BCD,根据相似三角形的性质可得=,=,从而可得+=+=1.然后把AB=1,CD=3代入即可求出EF的值.【题目详解】∵AB、CD、EF都与BD垂直,∴AB∥CD∥EF,∴△DEF∽△DAB,△BEF∽△BCD,∴=,=,∴+=+==1.∵AB=1,CD=3,∴+=1,∴EF=.故选C.【题目点拨】本题考查了相似三角形的判定及性质定理,熟练掌握性质定理是解题的关键.11、B【解题分析】
先证明DE是中位线,由此得到DE∥AB,再根据角平分线的性质得到DF=BD,由此求出答案.【题目详解】∵点、分别是、的中点,∴DE是△ABC的中位线,BD=BC=3,∴DE∥AB,∴∠ABF=∠DFB,∵平分,∴∠ABF=∠CBF,∴∠DFB=∠CBF,∴BD=FD,∴DF=3,故选:B.【题目点拨】此题考查三角形的中位线定理,等腰三角形的性质,角平分线的性质,熟记定理并运用解题是关键.12、D【解题分析】
根据,可得,再把AB的长代入可以计算出CB的长.【题目详解】解:∵cosB=,∴BC=AB•cosB=6×=1.故选:D.【题目点拨】此题主要考查了锐角三角函数的定义,关键是掌握余弦:锐角A的邻边b与斜边c的比叫做∠A的余弦.二、填空题(每题4分,共24分)13、第3次操作后所得到标准纸的周长是:,第2016次操作后所得到标准纸的周长为:.【解题分析】
分别求出每一次对折后的周长,从而得出变化规律求出即可:观察变化规律,得第n次对开后所得标准纸的周长=.【题目详解】对开次数:第一次,周长为:,第二次,周长为:,第三次,周长为:,第四次,周长为:,第五次,周长为:,第六次,周长为:,…∴第3次操作后所得到标准纸的周长是:,第2016次操作后所得到标准纸的周长为:.【题目点拨】本题结合规律和矩形的性质进行考察,题目新颖,解题的关键是分别求出每一次对折后的周长,从而得出变化规律.14、4【解题分析】
利用平行四边形的性质和勾股定理易求AC的长,进而可求出BD的长.【题目详解】解:∵AC⊥BC,AB=CD=10,AD=6,
∴AC=CD2-AD2=102-62=8,
∵▱ABCD的对角线AC与BD相交于点O,
∴BO=DO,AO=CO=12AC=4,
∴OD=AD2+OA2=62【题目点拨】本题考查平行四边形的性质以及勾股定理的运用,熟练掌握平行四边形的性质,由勾股定理求出OD是解题关键.15、①②③④⑤【解题分析】
由正方形和折叠的性质得出AF=AB,∠B=∠AFG=90°,由HL即可证明Rt△ABG≌Rt△AFG,得出①正确,设BG=x,则CG=BC-BG=6-x,GE=GF+EF=BG+DE=x+1,由勾股定理求出x=2,得出②正确;由等腰三角形的性质和外角关系得出∠AGB=∠FCG,证出平行线,得出③正确;分别求出△EGC,△AEF的面积,可以判断④,由,可求出△FGC的面积,故此可对⑤做出判断.【题目详解】解:解:∵四边形ABCD是正方形,
∴AB=AD=DC=6,∠B=D=90°,
∵CD=2DE,
∴DE=1,
∵△ADE沿AE折叠得到△AFE,
∴DE=EF=1,AD=AF,∠D=∠AFE=∠AFG=90°,
∴AF=AB,
∵在Rt△ABG和Rt△AFG中,,
∴Rt△ABG≌Rt△AFG(HL).
∴①正确;
∵Rt△ABG≌Rt△AFG,
∴BG=FG,∠AGB=∠AGF.
设BG=x,则CG=BC-BG=6-x,GE=GF+EF=BG+DE=x+1.
在Rt△ECG中,由勾股定理得:CG1+CE1=EG1.
∵CG=6-x,CE=4,EG=x+1,
∴(6-x)1+41=(x+1)1,解得:x=2.
∴BG=GF=CG=2.
∴②正确;
∵CG=GF,
∴∠CFG=∠FCG.
∵∠BGF=∠CFG+∠FCG,∠BGF=∠AGB+∠AGF,
∴∠CFG+∠FCG=∠AGB+∠AGF.
∵∠AGB=∠AGF,∠CFG=∠FCG,
∴∠AGB=∠FCG.
∴AG∥CF.
∴③正确;
∵S△EGC=×2×4=6,S△AEF=S△ADE=×6×1=6,
∴S△EGC=S△AFE;
∴④正确,
∵△CFG和△CEG中,分别把FG和GE看作底边,
则这两个三角形的高相同.
∴,
∵S△GCE=6,
∴S△CFG=×6=2.6,
∴⑤正确;
故答案为①②③④⑤.【题目点拨】本题考查了正方形性质,折叠性质,全等三角形的性质和判定,等腰三角形的性质和判定,平行线的判定等知识点的运用,依据翻折的性质找出其中对应相等的线段和对应相等的角是解题的关键.16、3或1.【解题分析】
由旋转的性质可知△ACB≌△AED,推出∠CAB=∠EAD=∠CBA,则当∠DAF=∠CBA时,分两种情况,一种是A,F,E三点在同一直线上,另一种是D,A,C在同一条直线上,可分别求出CP的长度.【题目详解】解:∵AC=BC=10,
∴∠CAB=∠CBA,
由旋转的性质知,△ACB≌△AED,
∴AE=AC=10,∠CAB=∠EAD=∠CBA,
①∵∠DAF=∠CBA,
∴∠DAF=∠EAD,
∴A,F,E三点在同一直线上,如图1所示,
过点C作CH⊥AB于H,
则AH=BH=AB=7,
∵EP⊥AC,
∴∠EPA=∠CHA=90°,
又∵∠CAH=∠EAP,CA=EA,
∴△CAH≌△EAP(AAS),
∴AP=AH=7,
∴PC=AC-AP=10-7=3;
②当D,A,C在同一条直线上时,如图2,
∠DAF=∠CAB=∠CBA,
此时AP=AD=AB=7,
∴PC=AC+AP=10+7=1.
故答案为:3或1.【题目点拨】本题考查了旋转的性质,等腰三角形的性质,全等三角形的判定等,解题的关键是能够分类讨论,求出两种情况的结果.17、<【解题分析】
先算−、-的倒数值,再比较−、-的值,判断即可.【题目详解】∵,,∵+2>+2,∴-<-,故答案为<.【题目点拨】本题考查了实数大小比较法则,任意两个实数都可以比较大小.根据两正数比较倒数大的反而小得出是解题关键.18、大于【解题分析】
分别求出摸到白球与摸到红球的概率,比较这两个概率即可得答案.【题目详解】∵共有球:2+3+5=10个,∴P白球==,P红球==,∵>,∴摸出白球可能性大于摸出红球可能性.故答案为:大于【题目点拨】本题考查概率的求法,概率=所求情况数与总情况数之比;熟练掌握概率公式是解题关键.三、解答题(共78分)19、(1)B(2)(6,8,10)(3)见解析【解题分析】
(1)根据对勾股定理和勾股定理的逆定理的理解即可写出答案;(2)根据题中所给勾股数的定义写出一组即可,注意答案不唯一;(3)由(2)中所写的勾股数画出图形即可.【题目详解】(1)古埃及人得到直角三角形这种方法的依据是运用了勾股定理逆定理,故选B;(2)根据勾股数的定义写出一组勾股数为(6,8,10);(3)所画图形如下所示.【题目点拨】此题考查了勾股定理的证明,属于基础题,注意仔细阅读题目所给内容,得到解题需要的信息,比较简单.20、(1);(2);(3).【解题分析】
(1)将A,E的坐标代入解析式即可解答(2)根据题意可知CD=2,将其代入解析式,即可求出点C(3)根据题意可分情况讨论:当时,;当时,,即可解答【题目详解】(1)设直线的解析式为,因为经过点,点.,解得:,∴.(2)当时,,,∴.(3)当时,如图1.点的横坐标为,点的横坐标为.∴当时,,∴,∴当时,,∴.∴.当时,如图2.∴综上.【题目点拨】此题考查一次函数与几何图形,解题关键在于将已知点代入解析式21、(1)详见解析;(2)①详见解析;②【解题分析】
(1)要证明矩形DEFG为正方形,只需要证明它有一组临边(DE和EF)相等即可,而要证明两条线段相等,需证明它们所在的三角形全等,如下图本小题的关键是证明△EMF≌△END,∠MEF=∠NED可用等角的余角证明,EM=EN可用角平分线上的点到角两边距离相等,∠EMF和∠END为一组直角相等,所以可以用ASA证明它们全等;(2)此类题,前面的问题是给后面做铺垫,第一问已经证明四边形DEFG为正方形,结合第一问我们很容易发现并证明△ADE≌△CDG,从而得到∠DCG=∠CAD=45°;(3)当当E点在A处时,点G在C处;当E点在C处时,点G在AD的延长线上,并且AD=DG,以CD为边作正方形,我们会发现G点的运动轨迹刚好是正方形的对角线,它的长度等于.【题目详解】证明:(1)作EM⊥BC,EN⊥CD,∵四边形ABCD为正方形∴∠DCB=90°,∠ACB=∠ACD=45°又∵EM⊥BC,EN⊥CD,∴EM=EN(角平分线上的点到角两边距离相等),∠MEN=90°,∴∠MEF+∠NEF=90°,∵四边形DEFG为矩形,∴∠DEF=90°,∴∠NED+∠NEF=90°,∴∠MEF=∠NED,在△EMF和△END中∵∴△EMF≌△END,∴DE=DF,∴矩形DEFG为正方形;(2)①证明:∵正方形ABCD、DEFG∴AD=CD,ED=GD∵∠ADE+∠DEC=90°,∠CDG+∠EDC=90°∴∠ADE=∠CDG在△ADE和△CDG中,∵AD=CD,∠ADE=∠CDG,ED=GD∴△ADE≌△CDG∴∠DCG=∠EAD=45°∴∠DCG的大小始终保持不变②以CD为边作正方形DCPQ,连接QC∴∠DCQ=45°,又∵∠DCG=45°∴C、G、Q在同一条直线上,当E点在A处时,点G在C处;当E点在C处时,点G在Q处,∴G点的运动轨迹为QC,∵正方形ABCD的边长为2所以QC=,即点G运动的路径长为【题目点拨】(1)本题考查正方形的判定定理,有一组临边相等的矩形为正方形,所以此题的关键是证明DE=DF,我们可通过化辅助线,证明△ADE≌△CDG;(2)①本题考查的是全等三角形的判定定理和性质定理,结合第一问通过观察图象,我们会发现△ADE≌△CDG,所以∠DCG=∠EAD=45°;②做这道题时,我们先构造模型,观察一下G点的起始位置和终点位置,结合①,我们会发现其实G点的运动轨迹刚好是正方形DCPQ的对角线,所以点G运动的路径长为.22、(1)16;(2)详见解析;(3)52%【解题分析】
(1)直接总数减去其他组的人数,即可得到a(2)直接补充图形即可(3)先算出不低于40分的人数,然后除以总人数即可【题目详解】(1)a=50-4-6-14-10=16(2)如图所示.(3)本次测试的优秀率是=52%答:本次测试的优秀率是52%【题目点拨】本题主要考查频数分布直方图,比较简单,基础知识扎实是解题关键23、该公司投递快件总件数的月平均增长率为该公司现有的16名快递投递员不能完成今年6月份的快递投递任务【解题分析】
设该公司投递快件总件数的月平均增长率为x,根据该公司今年三月份与五月份完成投递的快件总件数,即可得出关于x的一元二次方程,解之取其正值即可得出结论;根据6月份的快件总件数月份的快递总件数增长率,可求出6月份的快件总件数,利用6月份可完成投递快件总件数每人每月可投递快件件数人数可求出6月份可完成投递快件总件数,二者比较后即可得出结论.【题目详解】解:设该公司投递快件总件数的月平均增长率为x,根据题意得:,解得:,舍去.答:该公司投递快件总件数的月平均增长率为.月份快递总件数为:万件,万件,,该公司现有的16名快递投递员不能完成今年6月份的快递投递任务.【题目点拨】本题考查了一元二次方程的应用,解题的关键是:找准等量关系,正确列出一元二次方程;根据数量关系,列式计算.24、(1)作图见解析;(2)作图见解析.【解题分析】
(1)直接利用平移的性质得出对应点位置进而得出答案;(2)直接利用旋转的性质得出对应点位置进而得出答案.【题目详解】(1)如图所示:△A1B1C1是所求的三角形.(2)如图所示:△A2B2C1为所求作的三角形.【题目点拨】此题主要考查了旋转变换以及平移变换,正确得出对应点位置是解题关键.25、(1)BC=1;(2)四边形OBDA是平行四边形,见解析.【解题分析】
(1)理由待定系数法求出点D坐标即可解决问题;(2)四边形OBDA是平行四边形.想办法证明BD=OA=3即可解决问题.【题目详解】解:(1)当m=-2,n=1时,直线的解析式为y=-2x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年餐厅主管笔试餐厅员工奖惩制度制定与执行实务练习题及答案
- 2026年高危行业安全生产管理制度考核实施重难点办法及解析
- 护肝知识科普
- 人工智能A股投资机会与风险
- 企业网络安全防护技术产业生态建设指南
- 2026年口腔医疗管理公司员工晋升与调岗管理制度
- 软环境集中整治活动整改方案
- 2026年剧本杀运营公司品牌故事传播管理制度
- 环保包装设备生产项目2025年智能化环保包装机械技术创新可行性分析报告
- 2026年教育行业智慧校园建设报告
- 电力系统调频辅助服务市场交易实施细则
- 风电、光伏项目前期及建设手续办理流程汇编
- DB41T 1522-2018 可燃气体和有毒气体报警仪检查检测技术规范
- 内河船舶制造行业发展前景及投资风险预测分析报告
- QBT 1815-2002 指甲钳行业标准
- NeuViz 16 射线计算机断层摄影设备产品信息手
- 2021修订《城市规划设计计费指导意见》
- 吕梁职业技术学院单招《英语》考试复习题库(含答案)
- 叔叔在侄子订婚宴致辞
- 电子地图的基本构成与数据类型
- 2023上海物理水平等级考+答案
评论
0/150
提交评论