湖南省双牌县2024届数学八下期末预测试题含解析_第1页
湖南省双牌县2024届数学八下期末预测试题含解析_第2页
湖南省双牌县2024届数学八下期末预测试题含解析_第3页
湖南省双牌县2024届数学八下期末预测试题含解析_第4页
湖南省双牌县2024届数学八下期末预测试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省双牌县2024届数学八下期末预测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.已知一次函数y=kx+b(k≠0)图象过点(0,2),且与两坐标轴围成的三角形面积为2,则一次函数的解析式为()A.y=x+2 B.y=﹣x+2 C.y=x+2或y=﹣x+2 D.y=-x+2或y=x-22.如图,在平面直角坐标系中,边长为1的正方形ABCD中,AD边的中点处有一动点P,动点P沿P→D→C→B→A→P运动一周,则P点的纵坐标y与点P走过的路程s之间的函数关系用图象表示大致是()A.B.C.D.3.如图1反映的过程是:矩形ABCD中,动点P从点A出发,依次沿对角线AC、边CD、边DA运动至点A停止,设点P的运动路程为x,S△ABP=y.则矩形ABCD的周长是()A.6 B.12 C.14 D.154.用科学记数法表示,结果为()A. B. C. D.5.八年级一班要在赵研、钱进、孙兰、李丁四名同学中挑选一名同学去参加数学竞赛,四名同学在5次数学测试中成绩的平均数x及方差S2如下表所示:甲乙丙丁85939386S2333.53.7如果选出一名成绩较好且状态稳定的同学去参赛,那么应选()A.赵研 B.钱进 C.孙兰 D.李丁6.下表记录了甲、乙、丙、丁四名同学参加某区“中华魂”主题教育演讲比赛的相关数据:根据表中数据,要从中选择一名成绩好且发挥稳定的同学参加市级比赛,应该选择甲乙丙丁平均数分90809080方差A.甲 B.乙 C.丙 D.丁7.下列函数中,表示y是x的正比例函数的是().A. B. C. D.8.如图,正方形ABCD中,点E、F、H分别足AB、BC,CD的中点,CE、DF交于G,连接AG、HG.下列论:①CE⊥DF;②AG=AD;③∠CHG=∠DAG;④HG=12CEA.1个 B.2个 C.3个 D.4个9.如图,已知的顶点A和AB边的中点C都在双曲线的一个分支上,点B在x轴上,则的面积为A.3 B.4 C.6 D.810.下列计算中正确的是()A. B. C. D.二、填空题(每小题3分,共24分)11.若反比例函数的图象经过点,则的图像在_______象限.12.如图,△ABC,∠A=90°,AB=AC.在△ABC内作正方形A1B1C1D1,使点A1,B1分别在两直角边AB,AC上,点C1,D1在斜边BC上,用同样的方法,在△C1B1B内作正方形A2B2C2D2;在△CB2C2内作正方形A3B3C3D3……,若AB=1,则正方形A2018B2018C2018D2018的边长为_____.13.一组数据2,3,4,5,3的众数为__________.14.用反证法证明“如果,那么.”是真命题时,第一步应先假设________

.15.如图,将直角三角形纸片置于平面直角坐标系中,已知点,将直角三角形纸片绕其右下角的顶点依次按顺时针方向旋转,第一次旋转至图位置,第二次旋转至图位置,···,则直角三角形纸片旋转次后,其直角顶点与坐标轴原点的距离为__________.16.已知y轴上的点P到原点的距离为7,则点P的坐标为_____.17.如图在菱形ABCD中,∠A=60°,AD=,点P是对角线AC上的一个动点,过点P作EF⊥AC交AD于点E,交AB于点F,将△AEF沿EF折叠点A落在G处,当△CGB为等腰三角形时,则AP的长为__________.18.如图,已知中,,将绕点A逆时针方向旋转到的位置,连接,则的长为__________.三、解答题(共66分)19.(10分)如图,在四边形ABCD中,∠ADC=90°,AB=AC,E,F分别为AC,BC的中点,连接EF,ED,FD.(1)求证:ED=EF;(2)若∠BAD=60°,AC平分∠BAD,AC=6,求DF的长.20.(6分)如图,在平行四边形ABCD中,BE平分∠ABC,且与AD边交于点E,∠AEB=45°,证明:四边形ABCD是矩形.21.(6分)益民商店经销某种商品,进价为每件80元,商店销售该商品每件售价高干8元且不超过120元若售价定为每件120元时,每天可销售200件,市场调查反映:该商品售价在120元的基础上,每降价1元,每天可多销售10件,设该商品的售价为元,每天销售该商品的数量为件.(1)求与之间的函数关系式;(2)商店在销售该商品时,除成本外每天还需支付其余各种费用1000元,益民商店在某一天销售该商品时共获利8000元,求这一天该商品的售价为多少元?22.(8分)列方程解应用题今年1月下旬以来,新冠肺炎疫情在全国范围内迅速蔓延,而比疫情蔓延速度更快的是口罩恐慌.企业复工复产急需口罩,某大型国有企业向生产口罩的A、B两厂订购口罩,向A厂支付了1.32万元,向B厂支付了2.4万元,且在B厂订购的口罩数量是A长的2倍,B厂的口罩每只比A厂低0.2元.求A、B两厂生产的口罩单价分别是多少元?23.(8分)如图,已知是的中线,且求证:若,试求和的长24.(8分)如图,直线AB与x轴交于点C,与y轴交于点B,点A(1,3),点B(0,2).连接AO(1)求直线AB的解析式;(2)求三角形AOC的面积.25.(10分)世界上大部分国家都使用摄氏温度(℃),但美国,英国等国家的天气预报都使用华氏温度(℉),两种计量之间有如下对应:摄氏温度(℃)…010…华氏温度(℉)…3250…已知华氏温度y(℉)是摄氏温度x(℃)的一次函数.求该一次函数的解析式;当华氏温度14℉时,求其所对应的摄氏温度.26.(10分)已知,如图,点D是△ABC的边AB的中点,四边形BCED是平行四边形.(1)求证:四边形ADCE是平行四边形;(2)在△ABC中,若AC=BC,则四边形ADCE是;(只写结论,不需证明)(3)在(2)的条件下,当AC⊥BC时,求证:四边形ADCE是正方形.

参考答案一、选择题(每小题3分,共30分)1、C【解题分析】

先求出一次函数y=kx+b与x轴和y轴的交点,再利用三角形的面积公式得到关于k的方程,解方程即可求出k的值.【题目详解】∵一次函数y=kx+b(k≠0)图象过点(0,1),∴b=1,令y=0,则x=-,∵函数图象与两坐标轴围成的三角形面积为1,∴×1×|-|=1,即||=1,解得:k=±1,则函数的解析式是y=x+1或y=-x+1.故选C.2、D【解题分析】试题解析:动点P运动过程中:①当0≤s≤时,动点P在线段PD上运动,此时y=2保持不变;②当<s≤时,动点P在线段DC上运动,此时y由2到1逐渐减少;③当<s≤时,动点P在线段CB上运动,此时y=1保持不变;④当<s≤时,动点P在线段BA上运动,此时y由1到2逐渐增大;⑤当<s≤4时,动点P在线段AP上运动,此时y=2保持不变.结合函数图象,只有D选项符合要求.故选D.考点:动点问题的函数图象.3、C【解题分析】试题分析:结合图象可知,当P点在AC上,△ABP的面积y逐渐增大,当点P在CD上,△ABP的面积不变,由此可得AC=5,CD=4,则由勾股定理可知AD=3,所以矩形ABCD的周长为:2×(3+4)=1.考点:动点问题的函数图象;矩形的性质.点评:本题考查的是动点问题的函数图象,解答本题的关键是根据矩形中三角形ABP的面积和函数图象,求出AC和CD的长.4、B【解题分析】

小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【题目详解】﹣0.0000014=﹣1.4×10﹣1.故选B.【题目点拨】本题考查了用科学记数法表示较小的数.一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.5、B【解题分析】

根据平均数和方差的意义解答.【题目详解】从平均数看,成绩最好的是钱进、孙兰同学,从方差看,钱进方差小,发挥最稳定,所以如果选出一名成绩较好且状态稳定的同学去参赛,那么应选钱进.故选:.【题目点拨】本题考查了平均数和方差,熟悉它们的意义是解题的关键.6、A【解题分析】

根据表格中的数据可知,甲、丙的平均成绩较好,再根据方差越小越稳定即可解答本题.【题目详解】由平均数可知,甲和丙成绩较好,

甲的方差小于丙的方差,故甲发挥稳定.故选A【题目点拨】本题考查方差、算术平均数,解答本题的关键是明确平均数和方差的意义.7、B【解题分析】

根据正比例函数的定义来判断:一般地,两个变量x,y之间的关系式可以表示成形如y=kx(k为常数,且k≠0)的函数,那么y就叫做x的正比例函数.【题目详解】A、该函数不符合正比例函数的形式,故本选项错误.B、该函数是y关于x的正比例函数,故本选项正确.C、该函数是y关于x的一次函数,故本选项错误.D、该函数是y2关于x的函数,故本选项错误.故选B.【题目点拨】主要考查正比例函数的定义:一般地,两个变量x,y之间的关系式可以表示成形如y=kx(k为常数,且k≠0)的函数,那么y就叫做x的正比例函数.8、C【解题分析】

连接AH,由四边形ABCD是正方形与点E、F、H分别是AB、BC、CD的中点,易证得△BCE≌△CDF与△ADH≌△DCF,根据全等三角形的性质,易证得CE⊥DF与AH⊥DF,根据垂直平分线的性质,即可证得AG=AD,由直角三角形斜边上的中线等于斜边的一半,即可证得HG=12AD,根据等腰三角形的性质,即可得∠CHG=∠DAG【题目详解】解:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠BCD=90°,∵点E、F、H分别是AB、BC、CD的中点,∴BE=CF,在△BCE与△CDF中,BE=CF∴△BCE≌△CDF(SAS),∴∠ECB=∠CDF,∵∠BCE+∠ECD=90°,∴∠ECD+∠CDF=90°,∴∠CGD=90°,∴CE⊥DF,故①正确;在Rt△CGD中,H是CD边的中点,∴HG=12CD=12连接AH,如图:同理可证得:AH⊥DF,∵HG=HD=12CD∴DK=GK,∴AH垂直平分DG,∴AG=AD,GH=DH,故②正确;∴∠DAG=2∠DAH,在△ADH与△CDF中,DH=CF∠ADH=∠DCF∴△ADH≌△DCF,∴∠DAH=∠CDF,∵GH=DH,∴∠HDG=∠HGD,∴∠GHC=∠HDG+∠HGD=2∠CDF,又∵AH垂直平分DG,∴∠DAH=∠GAH,∠DAG=2∠DAH,∴∠CHG=∠DAG.故③正确;故选:C.【题目点拨】此题考查了正方形的性质,全等三角形的判定与性质,等腰三角形的性质以及垂直平分线的性质等知识.此题综合性很强,难度较大,解题的关键是注意数形结合思想的应用.9、C【解题分析】

,结合图形可得:S△ABO=S△AOM+S△AMB,分别求解出S△AOM、S△AMB的值,过点A、C分别作AM⊥OB于M、CD⊥OB于D,设点A坐标为(x,y),设B的坐标为(a,0),已知点C是线段AB的中点,由点A位于反比例函数的图象上可得:xy=4,即S△AOM=2,接下来,根据点C的坐标为(),同理可解得S△CDO的面积,接下来,由S△AMB=×AM×BM,MB=|a−x|,AM=y,可解得S△AMB,即可确定△ABO的面积.【题目详解】解:过点A、C分别作AM⊥OB于M、CD⊥OB于D,设点A坐标为(x,y)∵顶点A在双曲线y=(x>0)图象上∴xy=4∵AM⊥OB∴S△AMO=×AM×OM=×xy,S△AMB=×AM×BM(三角形的面积等于一边与此边上高的乘积的一半)∵S△AMO=×xy,xy=4∴S△AMO=2设B的坐标为(a,0)∵点C是线段AB的中点点A、B坐标为(x,y)、(a,0)∴点C坐标为()∵CD⊥OB点C坐标为()∴S△CDO=×CD×OD=×()×()=2(三角形的面积等于一边与此边上高的乘积的一半)故ay=2∵S△AMB=×AM×BM,MB=|a−x|,AM=y∴S△AMB=×|a−x|×y=4∵S△ABO=S△AOM+S△AMB,S△AOM=2,S△AMB=4∴S△ABO=6即△ABO的面积是6,答案选C.【题目点拨】本题考查反比例函数系数k的几何意义,熟练掌握计算法则是解题关键.10、D【解题分析】分析:根据二次根式的加减法则对各选项进行逐一计算即可.详解:A、与不是同类项,不能合并,故本选项错误;B、与不是同类项,不能合并,故本选项错误;C、3与不是同类项,不能合并,故本选项错误;D、=,故本选项正确.故选:D.点睛:本题考查的是二次根式的加减法,在进行二次根式的加减运算时要把各二次根式化为最简二次根式,再合并同类项即可.二、填空题(每小题3分,共24分)11、二、四【解题分析】

用待定系数法求出k的值,根据反比例函数的性质判断其图像所在的象限即可.【题目详解】解:将点代入得,解得:因为k<0,所以的图像在二、四象限.故答案为:二、四【题目点拨】本题考查了反比例函数的性质,,当k>0时,图像在一、三象限,当k<0时,图像在二、四象限,正确掌握该性质是解题的关键.12、13×(23)【解题分析】

已知正方形A1B1C1D1的边长为13,然后得到正方形A2B2C2D2的边长为,然后得到规律,即可求解.【题目详解】解:∵正方形A1B1C1D1的边长为13正方形A2B2C2D2的边长为1正方形A3B3C3D3的边长为13…,正方形A2018B2018C2018D2018的边长为13故答案为13【题目点拨】本题考查了等腰直角三角形的性质和正方形的性质,解题关键是灵活应用等腰直角三角形三边的关系进行几何计算.13、1.【解题分析】

众数又是指一组数据中出现次数最多的数据,本题根据众数的定义就可以求解.【题目详解】本题中数据1出现了2次,出现的次数最多,所以本题的众数是1.故答案为1.【题目点拨】众数是指一组数据中出现次数最多的数据.14、a≥0【解题分析】

用反正法证明命题应先假设结论的反面成立,本题结论的反面应是.【题目详解】解:“如果,那么.”是真命题时

,用反证法证明第一步应假设.故答案为:【题目点拨】本题考查了反证法,熟练掌握反证法的证明步骤是解题的关键.15、【解题分析】

根据题意,由2019÷3=673可得,直角三角形纸片旋转2019次后图形应与图③相同,利用勾股定理与规律即可求得答案.【题目详解】解:由题意可知AO=3,BO=4,则AB=,∵2019÷3=673,则直角三角形纸片旋转次后,其直角顶点与坐标轴原点的距离为:673×(3+4+5)=8076.故答案为8076.【题目点拨】本题主要考查勾股定理,图形规律题,解此题的关键在于根据题意准确找到图形的变化规律,利用勾股定理求得边长进行解答即可.16、(0,7)或(0,-7)【解题分析】

点P在y轴上,分两种情况:正方向和负方向,即可得出点P的坐标为(0,7)或(0,-7).【题目详解】∵点P在y轴上,分两种情况:正方向和负方向,点P到原点的距离为7∴点P的坐标为(0,7)或(0,-7).【题目点拨】此题主要考查平面直角坐标系中点的坐标,只告知点到原点的距离,要分两种情况,不要遗漏.17、1或.【解题分析】

分两种情形①CG=CB,②GC=GB,分别求解即可解决问题.【题目详解】在菱形ABCD中,∵∠A=60°,AD=,∴AC=3,①当CG=BC=时,AG=AC=CG=3-,∴AP=AG=.②当GC=GB时,易知GC=1,AG=2,∴AP=AG=1,故答案为1或.【题目点拨】本题考查翻折变换、等腰三角形的性质、勾股定理、菱形的性质等知识,解题的关键是学会用分类讨论的思想思考问题18、【解题分析】

连接交于D,中,根据勾股定理得,,根据旋转的性质得:垂直平分为等边三角形,分别求出,根据计算即可.【题目详解】如图,连接交于D,如图,中,∵,∴,∵绕点A逆时针方向旋转到的位置,∴,∴垂直平分为等边三角形,∴,∴.故答案为:.【题目点拨】考查等腰直角三角形的性质,等边三角形的判定与性质,旋转的性质等,三、解答题(共66分)19、(1)见解析;(2)3.【解题分析】

(1)根据题意只要证明EF为△ABC的中位线,即可证明DE=EF.(2)只要证明为直角三角形,根据勾股定理即可计算DF的长【题目详解】(1)证明:∵∠ADC=90°,E为AC的中点,∴DE=AE=AC.∵E、F分别为AC、BC的中点,∴EF为△ABC的中位线,∴EF=AB.∵AB=AC,∴DE=EF.(2)解:∵∠BAD=60°,AC平分∠BAD,∴∠BAC=∠DAC=∠BAD=30°.由(1)可知EF∥AB,AE=DE,∴∠FEC=∠BAC=30°,∠DEC=2∠DAC=60°,∴∠FED=90°.∵AC=6,∴DE=EF=3,∴DF==3.【题目点拨】本题主要考查等腰三角形的性质,这是考试的重点知识,应当熟练掌握.20、见解析【解题分析】

利用平行线性质得到∠EBC=∠AEB=45°,因为BE平分∠ABC,所以∠ABE=∠EBC=45°,所以∠ABC=90°,所以四边形ABCD是矩形【题目详解】∵AD∥BC∴∠EBC=∠AEB=45°∵BE平分∠ABC∴∠ABE=∠EBC=45°∴∠ABC=∠ABE+∠EBC=90°又∵四边形ABCD是平行四边形∴四边形ABCD是矩形【题目点拨】本题主要考查角平分线性质、平行四边形性质、矩形的判定定理,本题关键在于能够证明出∠ABC是直角21、(1)y=−10x+1400;(2)这一天的销售单价为110元.【解题分析】

(1)首先利用当售价定为每件120元时每天可售出200件,该商品销售单价在120元的基础上,每降1元,每天可多售出10件,进而求出每天可表示出销售商品数量;

(2)设商场日盈利达到8000元时,每件商品售价为x元,根据每件商品的盈利×销售的件数=商场的日盈利,列方程求解即可.【题目详解】解:(1)由题意得:y=200+10(120−x)=−10x+1400;∴y=−10x+1400;

(2)由题意可得:

(−10x+1400)(x−80)−1000=8000,

整理得:x2−220x+12100=0,

解得:x1=x2=110,

答:这一天的销售单价为110元.【题目点拨】此题主要考查了一次函数的应用以及一元二次方程的应用,正确得出y与x的关系式是解题关键.22、A厂生产的口罩单价为2.2元,B厂生产的口罩单价为2元.【解题分析】

设B厂生产的口罩单价为x元,则A厂生产的口罩单价为(x+0.2)元,根据数量=总价÷单价结合在B厂订购的口罩数量是A厂的2倍,即可得出关于x的分式方程,解之经检验后即可得出结论.【题目详解】解:设B厂生产的口罩单价为x元,则A厂生产的口罩单价为(x+0.2)元,

依题意得:,解得:x=2,经检验,x=2是原方程的解,且符合题意,∴x+0.2=2.2,答:A厂生产的口罩单价为2.2元,B厂生产的口罩单价为2元.【题目点拨】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.23、(1)见解析;(2)【解题分析】

(1)通过利用等角的补角相等得到,又已知,即可得证(2)AD为中线,得到DC=4,又易证,利用比例式求出AC,再由(1)得到,列出比例式可得到AD【题目详解】证明:解:是的中线由得【题目点拨】本题主要考查相似三角形的判定与性质,第二问的关键在于找到相似三角形,利用对应边成比例求出线段24、(1)y=x+2;(2)1.【解题分析】

(1)设直线AB的解析式为y=kx+b,把A、B的坐标代入求出k、b的值即可,(2)把y=0代入(1)所求出的解析式,便能求出C点坐标,从而利用三角形的面积公式求出三角形AOC的面积即可.【题目详解】(1)设直线AB的解析式y=kx+b,把点A(1,1),B(0,2)代入解析式得:,解得:k=1,b=2,把k=1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论