江苏省盐城市大丰区城东实验2023年九年级数学第一学期期末统考模拟试题含解析_第1页
江苏省盐城市大丰区城东实验2023年九年级数学第一学期期末统考模拟试题含解析_第2页
江苏省盐城市大丰区城东实验2023年九年级数学第一学期期末统考模拟试题含解析_第3页
江苏省盐城市大丰区城东实验2023年九年级数学第一学期期末统考模拟试题含解析_第4页
江苏省盐城市大丰区城东实验2023年九年级数学第一学期期末统考模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省盐城市大丰区城东实验2023年九年级数学第一学期期末统考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.有四张背面一模一样的卡片,卡片正面分别写着一个函数关系式,分别是y=2x, y=x2-3A.14B.12C.32.在平面直角坐标系中,二次函数与坐标轴交点个数()A.3个 B.2个 C.1个 D.0个3.如图,在△ABC中,∠B=90°,AB=6,BC=8,将△ABC沿DE折叠,使点C落在△ABC边上C’处,并且C'D//BC,则CD的长是()A. B. C. D.4.已知抛物线的对称轴为直线,与x轴的一个交点坐标,其部分图象如图所示,下列结论:抛物线过原点;;;抛物线的顶点坐标为;当时,y随x增大而增大其中结论正确的是A. B. C. D.5.如图,二次函数的图象与x轴相交于(﹣2,0)和(4,0)两点,当函数值y>0时,自变量x的取值范围是()A.x<﹣2 B.﹣2<x<4 C.x>0 D.x>46.如图,平行四边形ABCD中,对角线AC、BD相交于点O,且AC=6,BD=8,P是对角线BD上任意一点,过点P作EF∥AC,与平行四边形的两条边分别交于点E、F.设BP=x,EF=y,则能大致表示y与x之间关系的图象为()A. B.C. D.7.如图,在△OAB中,∠AOB=55°,将△OAB在平面内绕点O顺时针旋转到△OA′B′的位置,使得BB′∥AO,则旋转角的度数为()A.125° B.70° C.55° D.15°8.在如图所示的网格纸中,有A、B两个格点,试取格点C,使得△ABC是等腰三角形,则这样的格点C的个数是()A.4 B.6 C.8 D.109.如图,是一个几何体的三视图,则这个几何体是()A.长方体 B.圆柱体 C.球体 D.圆锥体10.若抛物线与坐标轴有一个交点,则的取值范围是()A. B. C. D.11.已知两个相似三角形的相似比为4:9,则这两个三角形的对应高的比为()A. B. C. D.12.在一个不透明的盒子中有20个除颜色外均相同的小球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.3,由此可估计盒中红球的个数约为()A.3 B.6 C.7 D.14二、填空题(每题4分,共24分)13.已知二次函数的顶点坐标为,且与轴一个交点的横坐标为,则这个二次函数的表达式为__________.14.某种药原来每瓶售价为40元,经过两次降价,现在每瓶售价为25.6元,若设平均每次降低的百分率为,根据题意列出方程为______________________.15.如图,扇形OAB的圆心角为110°,C是上一点,则∠C=_____°.16.如图,函数y=的图象所在坐标系的原点是_______.17.若,则=______18.不透明的口袋里有除颜色外其它均相同的红、白、黑小球共计120个,玲玲通过多次摸球实验后发现,摸到红球和黑球的概率稳定在和,那么口袋中白球的个数极有可能是_______个.三、解答题(共78分)19.(8分)如图,,点是线段的一个三等分点,以点为圆心,为半径的圆交于点,交于点,连接(1)求证:是的切线;(2)点为上的一动点,连接.①当时,四边形是菱形;②当时,四边形是矩形.20.(8分)中国经济的快速发展让众多国家感受到了威胁,随着钓鱼岛事件、南海危机、萨德入韩等一系列事件的发生,国家安全一再受到威胁,所谓“国家兴亡,匹夫有责”,某校积极开展国防知识教育,九年级甲、乙两班分别选5名同学参加“国防知识”比赛,其预赛成绩如图所示:(1)根据上图填写下表:平均数中位数众数方差甲班8.58.5乙班8.5101.6(2)根据上表数据,分别从平均数、中位数、众数、方差的角度分析哪个班的成绩较好.21.(8分)已知:△ABC内接于⊙O,过点A作直线EF.(1)如图甲,AB为直径,要使EF为⊙O的切线,还需添加的条件是(写出两种情况,不需要证明):①或②;(2)如图乙,AB是非直径的弦,若∠CAF=∠B,求证:EF是⊙O的切线.(3)如图乙,若EF是⊙O的切线,CA平分∠BAF,求证:OC⊥AB.22.(10分)解方程:x2-7x-18=0.23.(10分)如图1,抛物线与轴交于点,与轴交于点.(1)求抛物线的表达式;(2)点为抛物线的顶点,在轴上是否存在点,使?若存在,求出点的坐标;若不存在,说明理由;(3)如图2,位于轴右侧且垂直于轴的动直线沿轴正方向从运动到(不含点和点),分别与抛物线、直线以及轴交于点,过点作于点,求面积的最大值.24.(10分)如图,中,顶点的坐标是,轴,交轴于点,顶点的纵坐标是,的面积是.反比例函数的图象经过点和,求反比例函数的表达式.25.(12分)已知二次函数.求证:不论为何实数,此二次函数的图像与轴都有两个不同交点.26.如图,已知l1∥l2,Rt△ABC的两个顶点A,B分别在直线l1,l2上,,若l2平分∠ABC,交AC于点D,∠1=26°,求∠2的度数.

参考答案一、选择题(每题4分,共48分)1、C【解析】分析:从四张卡片中,抽出y随x的增大而增大的有y=2x, ∵四张卡片中,抽出y随x的增大而增大的有y=2x, ∴取出的卡片上的函数是y随x的增大而增大的概率是342、B【分析】首先根据根的判别式判定与轴的交点,然后令,判定与轴的交点,即可得解.【详解】由题意,得∴该函数与轴有一个交点当时,∴该函数与轴有一个交点∴该函数与坐标轴有两个交点故答案为B.【点睛】此题主要考查利用根的判别式判定二次函数与坐标轴的交点,熟练掌握,即可解题.3、A【分析】先由求出AC,再利用平行条件得△AC'D∽△ABC,则对应边成比例,又CD=C′D,那么就可求出CD.【详解】∵∠B=90°,AB=6,BC=8,∴AC==10,∵将△ABC沿DE折叠,使点C落在AB边上的C'处,∴CD=C'D,∵C'D∥BC,∴△AC'D∽△ABC,∴,即,∴CD=,故选A.【点睛】本题考查了翻折变换(折叠问题),相似三角形的判定与性质,熟练掌握和灵活运用相关知识是解题的关键.4、C【解析】∵抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标(4,0),∴抛物线与x轴的另一个交点为(0,0),故①正确,当x=﹣1时,y=a﹣b+c>0,故②错误,∵,得4a+b=0,b=﹣4a,∵抛物线过点(0,0),则c=0,∴4a+b+c=0,故③正确,∴y=ax2+bx=a(x+)2﹣=a(x+)2﹣=a(x﹣2)2﹣4a=a(x﹣2)2+b,∴此函数的顶点坐标为(2,b),故④正确,当x<1时,y随x的增大而减小,故⑤错误,故选C.点睛:本题考查二次函数的图象和性质.熟练应用二次函数的图象和性质进推理判断是解题的关键.5、B【详解】当函数值y>0时,自变量x的取值范围是:﹣2<x<1.故选B.6、A【分析】根据图形先利用平行线的性质求出△BEF∽△BAC,再利用相似三角形的性质得出x的取值范围和函数解析式即可解答【详解】当0≤x≤4时,∵BO为△ABC的中线,EF∥AC,∴BP为△BEF的中线,△BEF∽△BAC,∴,即,解得y,同理可得,当4<x≤8时,.故选A.【点睛】此题考查动点问题的函数图象,解题关键在于利用三角形的相似7、B【分析】据两直线平行,内错角相等可得,根据旋转的性质可得,然后利用等腰三角形两底角相等可得,即可得到旋转角的度数.【详解】,,又,中,,旋转角的度数为.故选:.【点睛】本题考查了旋转的性质,等腰三角形两底角相等的性质,熟记性质并准确识图是解题的关键.8、C【分析】分AB是腰长时,根据网格结构,找出一个小正方形与A、B顶点相对的顶点,连接即可得到等腰三角形,AB是底边时,根据线段垂直平分线上的点到线段两端点的距离相等,AB垂直平分线上的格点都可以作为点C,然后相加即可得解.【详解】解:如图,分情况讨论:①AB为等腰△ABC的底边时,符合条件的C点有4个;②AB为等腰△ABC其中的一条腰时,符合条件的C点有4个.故选C.【点睛】本题考查等腰三角形的判定,解题的关键是掌握等腰三角形的判定,分情况讨论解决.9、B【分析】根据三视图的规律解答:主视图表示由前向后观察的物体的视图;左视图表示在侧面由左向右观察物体的视图,俯视图表示由上向下观察物体的视图,由此解答即可.【详解】解:∵该几何体的主视图和左视图都为长方形,俯视图为圆∴这个几何体为圆柱体故答案是:B.【点睛】本题主要考察简单几何体的三视图,熟练掌握简单几何体的三视图是解题的关键.10、A【分析】根据抛物线y=x2+(2m-1)x+m2与坐标轴有一个交点,可知抛物线只与y轴有一个交点,抛物线与x轴没有交点,据此可解.【详解】解:∵抛物线y=x2+(2m-1)x+m2与坐标轴有一个交点,

抛物线开口向上,m2≥0,

∴抛物线与x轴没有交点,与y轴有1个交点,

∴(2m-1)2-4m2<0

解得故选:A.【点睛】本题考查了二次函数与一元二次方程的关系,解决本题的关键是掌握判别式和抛物线与x轴交点的关系.11、B【分析】根据相似三角形的性质即可得出答案.【详解】根据“相似三角形对应高的比等于相似比”可得对应高的比为4:9,故答案选择B.【点睛】本题考查相似三角形的性质,相似三角形对应边、对应高、对应中线以及周长比都等于相似比.12、B【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,【详解】解:根据题意列出方程,解得:x=6,故选B.考点:利用频率估计概率.二、填空题(每题4分,共24分)13、【分析】已知抛物线的顶点坐标,则可设顶点式,把(3,0)代入求出的值即可.【详解】设二次函数的解析式为,∵抛物线与轴一个交点的横坐标为,则这个点的坐标为:(3,0),∴将点(3,0)代入二次函数的解析式得,解得:,∴这个二次函数的解析式为:,故答案为:【点睛】本题主要考查了用待定系数法求二次函数解析式,在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.14、【分析】设平均每次降低的百分率为x,根据某种药原来每瓶为40元,经过两次降价,现在每瓶售价25.1元列出方程,解方程即可.【详解】设平均每次降低的百分率为x,根据题意得:40(1﹣x)2=25.1.故答案为:40(1﹣x)2=25.1.【点睛】本题考查了一元二次方程的应用,解题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.15、1【分析】作所对的圆周角∠ADB,如图,根据圆周角定理得到∠ADB=∠AOB=55°,然后利用圆内接四边形的性质计算∠C的度数.【详解】解:作所对的圆周角∠ADB,如图,∴∠ADB=∠AOB=×110°=55°,∵∠ADB+∠C=180°,∴∠C=180°﹣55°=1°.故答案为1.【点睛】本题考查了圆的综合问题,掌握圆周角定理、圆内接四边形的性质是解题的关键.16、M【分析】由函数解析式可知函数关于y轴对称,即可求解;【详解】解:由已知可知函数y=的图象关于y轴对称,所以点M是原点;

故答案为:M.【点睛】本题考查反比例函数的图象及性质;熟练掌握函数的解析式与函数图象的关系是解题的关键.17、【分析】可设x=4k,根据已知条件得到y=3k,再代入计算即可得到正确结论.【详解】解:∵,∴y=3k,x=4k;代入=故答案为【点睛】本题考查了比例的性质的应用,主要考查学生的计算能力,题目比较好,难度不大.18、1【分析】由摸到红球和黑球的概率稳定在50%和30%附近得出口袋中得到白色球的概率,进而求出白球个数即可.【详解】设白球个数为:x个,∵摸到红球和黑球的概率稳定在50%和30%左右,∴口袋中得到白色球的概率为1−50%−30%=20%,∴=20%,解得:x=1,即白球的个数为1个,故答案为:1.【点睛】此题主要考查了利用频率估计概率,根据大量反复试验下频率稳定值即概率得出是解题关键.三、解答题(共78分)19、(1)见解析;(2)①60°,②120°.【分析】(1)连接,由,得到为等边三角形,得到,即可得到,则结论成立;(2)①连接BD,由圆周角定理,得到∠ABD=30°,则∠DBE=60°,又有∠BEP=120°,根据同旁内角互补得到PE//DB,然后证明,即可得到答案;②由圆周角定理,得∠ABD=60°,得到∠EBD=90°,然后由直径所对的圆周角为90°,得到,即可得到答案.【详解】证明:连接,,.,为等边三角形,.点是的三等分点,,,,即,是的切线.(2)①当时,四边形是菱形;如图,连接BD,∵,∴,∴,∵AB为直径,则∠AEB=90°,由(1)知,∴,∴,∴PE//DB,∵,,∴,∴四边形是菱形;故答案为:60°.②当时,四边形是矩形.如图,连接AE、AD、DB,∵,∴,∴,∵AB是直径,∴,∴四边形是矩形.故答案为:.【点睛】本题考查了圆的切线的判定和性质,圆周角定理,菱形的判定和矩形的判定,解题的关键是正确作出辅助线,利用圆的性质进行解题.20、(1);(2)答案见解析【分析】(1)根据“中位数”、“众数”的定义及“方差”的计算公式结合统计图中的数据进行分析计算即可;(2)按照题中要求,分别根据平均数、中位数、众数、方差的意义进行说明即可.【详解】解:(1)甲的众数为:,方差为:,乙的中位数是:8;故答案为;(2)从平均数看,两班平均数相同,则甲、乙两班的成绩一样好;从中位数看,甲班的中位数大,所以甲班的成绩较好;从众数看,乙班的众数大,所以乙班的成绩较好;从方差看,甲班的方差小,所以甲班的成绩更稳定.【点睛】理解“平均数、中位数、众数、方差的意义和计算方法”是正确解答本题的关键.21、(1)①OA⊥EF;②∠FAC=∠B;(2)见解析;(3)见解析.【分析】(1)添加条件是:①OA⊥EF或∠FAC=∠B根据切线的判定和圆周角定理推出即可.(2)作直径AM,连接CM,推出∠M=∠B=∠EAC,求出∠FAC+∠CAM=90°,根据切线的判定推出即可.(3)由同圆的半径相等得到OA=OB,所以点O在AB的垂直平分线上,根据∠FAC=∠B,∠BAC=∠FAC,等量代换得到∠BAC=∠B,所以点C在AB的垂直平分线上,得到OC垂直平分AB.【详解】(1)①OA⊥EF②∠FAC=∠B,理由是:①∵OA⊥EF,OA是半径,∴EF是⊙O切线,②∵AB是⊙0直径,∴∠C=90°,∴∠B+∠BAC=90°,∵∠FAC=∠B,∴∠BAC+∠FAC=90°,∴OA⊥EF,∵OA是半径,∴EF是⊙O切线,故答案为:OA⊥EF或∠FAC=∠B,(2)作直径AM,连接CM,即∠B=∠M(在同圆或等圆中,同弧所对的圆周角相等),∵∠FAC=∠B,∴∠FAC=∠M,∵AM是⊙O的直径,∴∠ACM=90°,∴∠CAM+∠M=90°,∴∠FAC+∠CAM=90°,∴EF⊥AM,∵OA是半径,∴EF是⊙O的切线.(3)∵OA=OB,∴点O在AB的垂直平分线上,∵∠FAC=∠B,∠BAC=∠FAC,∴∠BAC=∠B,∴点C在AB的垂直平分线上,∴OC垂直平分AB,∴OC⊥AB.【点睛】本题考查了切线的判定,圆周角定理,三角形的内角和定理等知识点,注意:经过半径的外端且垂直于半径的直线是圆的切线,直径所对的圆周角是直角.22、【分析】利用因式分解法求解即可.【详解】因式分解,得于是得或故原方程的解为:.【点睛】本题考查了一元二次方程的解法,其主要解法包括:直接开方法、配方法、公式法、因式分解法(十字相乘法)等,熟记各解法是解题关键.23、(1);(2)不存在,理由见解析;(3)最大值为.【分析】(1)利用待定系数法求出解析式;(2)设点N的坐标为(0,m),过点M做MH⊥y轴于点H,证得△MHN∽△NOB,利用对应边成比例,得到,方程无实数解,所以假设错误,不存在;(3)△PQE∽△BOC,得,得到,当PE最大时,最大,求得直线的解析式,设点P的坐标为,则E,再求得PE的最大值,从而求得答案.【详解】(1)把点A(-2,0)、B(8,0)、C(0,4)分别代入,得:,解得,则该抛物线的解析式为:;(2)不存在∵抛物线经过A(-2,0)、B(8,0),∴抛物线的对称轴为,将代入得:,∴抛物线的顶点坐标为:,假设在轴上存在点,使∠MNB=90,设点N的坐标为(0,m),过顶点M做MH⊥y轴于点H,∴∠MNH+∠ONB=90,∠MNH+∠HMN=90,∴∠HMN=∠ONB,∴△MHN∽△NOB,∴,∵

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论