人教版七年级上册数学 第一章《有理数》第1讲 有理数 (答案+解析)_第1页
人教版七年级上册数学 第一章《有理数》第1讲 有理数 (答案+解析)_第2页
人教版七年级上册数学 第一章《有理数》第1讲 有理数 (答案+解析)_第3页
人教版七年级上册数学 第一章《有理数》第1讲 有理数 (答案+解析)_第4页
人教版七年级上册数学 第一章《有理数》第1讲 有理数 (答案+解析)_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

/第1讲有理数第一局部知识梳理知识点一:正数、负数1、正数:像1、2.5、这样大于0的数叫做正数;2、负数:在正数前面加上“-〞号,表示比0小的数叫做负数;3、0即不是正数也不是负数,0是一个具有特殊意义的数字,0是正数和负数的分界,不是表示不存在或无实际意义。概念剖析:=1\*GB3①、判断一个数是否是正数或负数,不能用数的前面加不加“+〞“-〞去判断,要严格按照“大于0的数叫做正数;0小的数叫做负数〞去识别。=2\*GB3②、正数和负数的应用:正数和负数通常表示具有相反意义的量。=3\*GB3③、所有正整数组成正整数集合;所有负整数组成负整数集合;正整数、0、负整数统称为整数,正整数、0、负整数组成整数集合;=4\*GB3④、常常有温差、时差、高度差(海拔差)等等差之说,其算法为高温减低温等等;知识点二:有理数整数和分数统称为有理数。有理数的分类如下:〔1〕按定义分类:〔2〕按性质符号分类:概念剖析:=1\*GB3①、整数和分数统称为有理数,也就是说如果一个数是有理数,那么它就一定可以化成整数或分数;=2\*GB3②、正有理数和0又称为非负有理数,负有理数和0又称为非正有理数=3\*GB3③、整数和分数都可以化成小数局部为0或小数局部不为0的小数,但并不是所有小数都是有理数,只有有限小数和无限循环小数是有理数;知识点三:数轴标有原点、正方向和单位长度的直线叫作数轴。数轴有三要素:原点、正方向、单位长度。画一条水平直线,在直线上取一点表示0〔叫做原点〕,选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。在数轴上所表示的数,右边的数总比左边的数大,即从数轴的左边到右边所对应的数逐渐变大,所以正数都大于0,负数都小于0,正数大于负数。概念剖析:=1\*GB3①、画数轴时数轴的三要素原点、正方向、单位长度缺一不可;=2\*GB3②、数轴的方向不一定都是水平向右的,数轴的方向可以是任意的方向;=3\*GB3③、数轴上的单位长度没有明确的长度,但单位长度与单位长度要保持相等;=4\*GB3④、有理数在数轴上都能找到点与之对应,一般地,设是一个正数,那么数轴上表示数的点在原点的右边,与原点的距离是个单位长度;表示数的点在原点的左边,与原点的距离是个单位长度。=5\*GB3⑤、在数轴上求任意两点a、b的距离L,那么有公式,这两个公式选择那个都一样。知识点四:相反数如果两个数只有符号不同,那么其中一个数就叫另一个数的相反数。0的相反数是0,互为相反的两个数,在数轴上位于原点的两那么,并且与原点的距离相等。概念剖析:=1\*GB3①、“如果两个数只有符号不同,那么其中一个数就叫另一个数的相反数〞,不要茫然的认为“如果两个数符号不同,那么其中一个数就叫另一个数的相反数〞。=2\*GB3②、显然,数的相反数是,即与互为相反数。要把它与倒数区分开。=3\*GB3③、互为相反数的两个数在数轴上对应的点一个在原点的左边,一个在原点的右边,且离原点的距离相等,也就是说它们关于原点对称。=4\*GB3④、在数轴上离某点的距离等于的点有两个。=5\*GB3⑤、如果数和数互为相反数,那么+=0;或;=6\*GB3⑥、求一个数的相反数,只要在这个数的前面加上“—〞即可;例如的相反数是;知识窗口:=1\*GB3①一个数前面加上“—〞号,该数就成了它的相反数;=2\*GB3②一个数前面的符号确定方法:奇数个负号相当于一个负号,偶数个负号相当于一个正号,而与正号的个数无关。知识点五:绝对值数轴上表示数的点与原点的距离叫做数的绝对值。〔1〕绝对值的几何意义:一个数的绝对值就是数轴上表示该数的点与原点的距离。〔2〕绝对值的代数意义:一个正数的绝对值是它本身;0的绝对值是0;一个负数的绝对值是它的相反数,可用字母a表示如下:〔3〕两个负数比拟大小,绝对值大的反而小。概念剖析:=1\*GB3①、“一个数的绝对值就是数轴上表示该数的点与原点的距离〞,而距离是非负,也就是说任何一个数的绝对值都是非负数,即。=2\*GB3②、互为相反数的两个数离原点的距离相等,也就是说互为相反数的两个数绝对值相等。第二局部考点精讲精练考点1、正数和负数例1、如果规定收入为正,支出为负,收入500元记作+500元,那么支出237元应记作〔〕A、-500元B、-237元C、237元D、500元例2、以下说法中错误的选项是〔〕A、0既不是正数,也不是负数B、0是自然数,也是整数,也是有理数C、如果仓库运进货物5t记作+5t,那么运出货物5t记作-5tD、一个数不是正数,那它一定是负数例3、在以下选项中,具有相反意义的量是〔〕A、收入20元与支出30元B、上升了6米和后退了7米C、卖出10斤米和盈利10元D、向东行30米和向北行30米例4、阅览室某一书架上原有图书20本,规定每天归还图书为正,借出图书为负,经过两天借阅情况如下:〔-3,+1〕,〔-1,+2〕,那么该书架上现有图书本.例5、在抗洪抢险中,解放军战士的冲锋舟加满油沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B地,约定向东为正方向,当天的航行路程记录如下〔单位:千米〕:14,-9,+8,-7,13,-6,+12,-5.〔1〕请你帮助确定B地位于A地的什么方向,距离A地多少千米?〔2〕假设冲锋舟每千米耗油0.5升,油箱容量为28升,求冲锋舟当天救灾过程中至少还需补充多少升油?〔3〕救灾过程中,冲锋舟离出发点A最远处有多远?举一反三:1、如果零上5℃记作+5℃,那么零下7℃可记作〔〕A、-7℃B、+7℃C、+12℃D、-12℃2、一种面粉的质量标识为“25±0.25千克〞,那么以下面粉中合格的是〔〕A、24.70千克B、25.30千C、24.80千克 D、25.51千克3、小明的妈妈在超市买了一瓶消毒液,发现在瓶上印有这样一段文字:“净含量〔750±5〕ml〞,这瓶消毒液至少有______ml.4、出租车司机小李某天下午营运全是在东西走向的人民大道上进行的.如果规定向东为正,向西为负,他这天下午行车里程〔单位:千米〕如下:+15,-2,+5,-1,+10,-3,-2,+12,+4,-5,+6〔1〕将最后一名乘客送到目的地时,小李距下午出车时的出发点多远?〔2〕假设汽车耗油量为3升/千米,这天下午小李开车共耗油多少升?5、某人用400元购置了8套儿童服装,准备以一定价格出售,如果以每套儿童服装55元的价格为标准,超出的记作正数,缺乏的记作负数,记录如下:+2,﹣3,+2,+1,﹣2,﹣1,0,﹣2.〔单位:元〕〔1〕当他卖完这八套儿童服装后是盈利还是亏损?〔2〕盈利〔或亏损〕了多少钱?考点2、有理数例1、以下说法正确的选项是〔〕A、整数包括正整数和负整数B、分数包括正分数和负分数C、正有理数和负有理数组成有理数集合D、0既是正整数也是负整数例2、在有理数中,下面四句话中正确句子的个数是〔〕〔1〕有最小的正整数;〔2〕没有最大的的负整数;〔3〕有最小的有理数A、0个B、1个C、2个D、3个例3、所有的正数组成正数集合,所有的负数组成负数集合,所有的整数组成整数集合,所有的分数组成分数集合.请把以下各数填入相应的集合中:-2,3.2,0,

,,3负数集合:{___________};整数集合:{__________}.例4、将以下一组数有选择的填入相应集合的圈内:举一反三:1、以下几种说法中,正确的选项是〔〕A、0是最小的数B、最大的负有理数是-1C、任何有理数的绝对值都是正数D、平方等于本身的数只有0和12、以下说法正确的个数是〔〕①.一个有理数不是整数就是分数;②.一个有理数不是正数就是负数;③.一个整数不是正的,就是负的;④.一个分数不是正的,就是负的.A、1B、2C、3D、43、统称有理数.4、将以下各数填在相应的集合里.考点3、数轴例1、如下图的图形为四位同学画的数轴,其中正确的选项是〔〕例2、如图,数轴上有A,B,C,D四个点,其中到原点距离相等的两个点是〔〕A、点B与点DB、点A与点CC、点A与点DD、点B与点C例3、小明写作业时,不慎将墨水滴在数轴上,根据图中数值,请你确定墨迹盖住局部的整数共有个。例4、星期天,亮亮从家里骑车出发向东走了2千米到达小明家,继续走了0.5千米到达小美家,然后向西走了5.5千米到达王老师家,最后回到自已家.〔1〕以亮亮家为原点,以向东的方向为正方向,用1个单位长度表示1千米,请你在数轴上表示出小明家,小美家,王老师家的位置.〔2〕王老师家距小明家多远?______〔列式计算〕〔3〕亮亮一共骑了多少千米的路程?______〔列式计算〕例5、如图,数轴上点A表示的数为6,B是数轴上一点,且AB=10.动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t〔t>0〕秒.〔1〕写出数轴上点B表示的数______,点P表示的数______〔用含t的代数式表示〕;〔2〕动点R从点B出发,以每秒4个单位长度的速度沿数轴向左匀速运动,假设点P、R同时出发,问点P运动多少秒时追上点R?点P追上点R时在什么位置?举一反三:1、数轴上一点A,一只蚂蚁从A出发爬了4个单位长度到了原点,那么点A所表示的数是〔〕A、4B、﹣4C、±4D、a2、a、b、c三个数在数轴上对应点的位置如下图,以下几个判断:①a<c<b;②﹣a<b;③a+b>0;④c﹣a<0中,错误的个数是〔〕个A、1B、2C、3D、43、甲、乙两人的住处与学校同在一条街道上,甲在离学校8千米的地方,乙在离学校5千米的地方,那么甲、乙两人的住处相距。4、小虫从某点O出发在一条直线上来回爬行,假定向右爬行的路程为正数,向左爬行的路程为负数,爬过的各段路程依次为〔单位:厘米〕+5,-3,+10,-8,-6,+12,-10.〔1〕小虫最后是否回到出发点O?〔2〕小虫离开出发点O最远是多少厘米?5、在纸面上有一数轴〔如图〕,折叠纸面.〔1〕假设表示数1的点与表示数-1的点重合,那么表示-2的点与表示数的点重合;〔2〕假设表示数-1的点与表示数3的点重合,答复以下问题:①表示数5的点与表示数的点重合;②假设数轴上A、B两点之间的距离为9〔A在B的左侧〕,且A、B两点经折叠后重合,求A、B两点表示的数是多少?考点4、相反数例1、以下说法:①假设a、b互为相反数,那么a+b=0;②假设a+b=0,那么a、b互为相反数;③假设a、b互为相反数,那么ab=-1;④假设ab=-1,那么a、b互为相反数.其中正确的结论有〔〕个.A、1B、2C、3D、4例2、一个数比它的相反数小,这个数是〔〕A、正数B、零C、负数D、非负数例3、数轴上A、B表示的数互为相反数,并且两点间的距离是6,点A在点B的左边,那么点A、B表示的数分别是.例4、如图,数轴的单位长度为1,如果R表示的数是-1,那么数轴上表示相反数的两点是.例5、-m-n+p的相反数是.例6、在数轴上点A表示7,点B、C表示互为相反数的两个数,且点C与点A间的距离为2,求点B、C对应的数是什么?举一反三:1、相反数不大于它本身的数是〔〕A、正数B、负数C、非正数D、非负数2、一个数的相反数是非负数,这个数是〔〕A、负数B、非负数C、正数D、非正数3、-a-b+c的相反数是.4、化简:-[+〔-6〕]=.5、a,b互为相反数,c、d互为倒数,那么代数式2〔a+b〕-3cd的值为多少?考点5、绝对值例1、以下说法中错误的个数是〔〕①符号不同的两个数互为相反数;②互为相反数的两个数,绝对值相等;③只有负数的绝对值才是它的相反数,只有正数的绝对值才是它本身;④两数比拟大小,绝对值大的反而小.A、1个B、2个C、3个D、4个例2、x=4,|y|=5且x>y,那么2x-y的值为〔〕A、13B、3C、13或3D、-13或-3例3、实数a、b、c在数轴上的对应点如下图,化简:|a|-|a+b|+|c+a|+|c-b|=

.例4、绝对值不大于100的所有整数的和是,积是.例5、|a|=3,|b|=2且|a-b|=b-a,求a+b的值.例6、小红和小明在研究绝对值的问题时,碰到了下面的问题:“当式子|x+1|+|x-2|取最小值时,相应的x的取值范围是______,最小值是______〞.小红说:“如果去掉绝对值问题就变得简单了.〞小明说:“利用数轴可以解决这个问题.〞他们把数轴分为三段:x<-1,-1≤x≤2和x>2,经研究发现,当-1≤x≤2时,值最小为3.请你根据他们的解题解决下面的问题:〔1〕当式子|x-2|+|x-4|+|x-6|+|x-8|取最小值时,相应的x的取值范围是______,最小值是______.〔2〕y=|2x+8|-4|x+2|,求相应的x的取值范围及y的最大值.写出解答过程.举一反三:1、如图,数轴上的点A所表示的数为k,化简|k|+|1-k|的结果为〔〕A、1B、2k-1C、2k+1D、1-2k2、以下说法正确的选项是〔〕A、有理数的绝对值一定是正数B、如果两个数的绝对值相等,那么这两个数也相等C、如果一个数是正数,那么这个数的绝对值是它本身D、如果一个数的绝对值是它本身,那么这个数是正数3、以下各组数中,不相等的一组是〔〕A、-〔+7〕,-|-7|B、-〔+7〕,-|+7|C、+〔-7〕,-〔+7〕D.+〔+7〕,-|-7|4、如果m,n互为相反数,那么|m+n-2019|=.5、阅读:

表示5与2差的绝对值,也可理解为5与2两数在数轴上所

对应的两点之间的距离;可以看做,表示5与-2的差的绝对值,也可理解为5与-2两数在数轴上所对应的两点之间的距离.

探索:

〔1〕=___________

〔2〕利用数轴,找出所有符合条件的整数,使所表示的点到5和—2的距离之和为7

〔3〕由以上探索猜测,对于任何有理数,是否有最小值?如果有,写出最

小值;如果没有,说明理由第三局部课堂小测1、如果+20%表示增加20%,那么-6%表示〔〕A、增加14%B、增加6%C、减少6%D、减少26%2、一只蚂蚁从数轴上A点出发爬了4个单位长度到了表示1的点B,那么点A所表示的数是〔〕A、3或5B、5或3C、5D、33、以下各对数中互为相反数的是〔〕A、-〔+5〕和+〔-5〕B、-〔-5〕和+〔-5〕C、-〔+5〕和-5D、+〔-5〕和-54、如下图,a,b是有理数,那么式子|a|+|b|+|a+b|+|b-a|化简的结果为〔〕A、3a+bB、3a-bC、3b+aD、3b-a5、在学校秋季运动会中,小明的跳远比赛跳出了4.25米,假设小明的跳远成绩记做+0.25米,那么小东跳出了3.85米,记作_________米6、A,B是数轴上的点,点A表示3,如果A,B间距离7个单位,那么点B表示数是______.7、m,n互为相反数,那么3+m+n=.8、把以下各数填入表示它所在的集合里.9、某巡警骑摩托车在一条南北大道上巡逻,某天他从岗亭出发,晚上停留在A处,规定向北方向为正,当天行驶记录如下(单位:千米)+10,-9,+7,-15,+6,-14,+4,-2(1)A在岗亭何方?距岗亭多远?(2)假设摩托车行驶1千米耗油0.05升,这一天共耗油多少升?10、m、n互为相反数,p、q互为倒数,且a为最大的负整数时,那么的值为多少?11、假设a、b互为相反数,c、d互为倒数,且|x|=4,求100〔a+b

〕+5cd-x的值.12、同学们,我们在本期教材的第一章?有理数?中曾经学习过绝对值的概念:一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|.实际上,数轴上表示数-3的点与原点的距离科技做|-3-0|:数轴上表示数-3的点与表示数2的点的距离可记作|-3-2|,那么,〔I〕①数轴上表示数3的点与表示数1的点的距离可记作______②数轴上表示数a的点与表示数2的点的距离可记作______③数轴上表示数a的点与表示数-3的点的距离可记作______〔II〕数轴上表示到数-2的点的距离为5的点有几个?并求出它们表示的数.〔III〕根据〔I〕中②、③两小题你所填写的结论,请同学们利用数轴探究这两段距离之和的最小值,并简述你的思考过程.第四局部提高训练1、假设x=-7,那么-x的相反数是〔〕A、+7B、-7C、±7D、2、下表是国外城市与北京的时差〔带正号的数表示同一时刻比北京时间早的时数〕,如果现在是北京时间10月9日10:00,那么纽约时间是______.3、a的倒数是,b与c互为相反数,m与n互为倒数,那么b-a+c-mn=.4、根据下面给出的数轴,解答下面的问题:〔1〕请你根据图中A、B两点的位置,分别写出它们所表示的有理数A:_________;B:_________;〔2〕观察数轴,与点A的距离为4的点表示的数是:_________;〔3〕假设将数轴折叠,使得A点与﹣3表示的点重合,那么B点与数_________表示的点重合;〔4〕假设数轴上M、N两点之间的距离为2019〔M在N的左侧〕,且M、N两点经过〔3〕中折叠后互相重合,那么M、N两点表示的数分别是:M:_________N:_________.5、如下图,在直线l上有假设干个点A1、A2、…、An,每相邻两点之间的距离都为1,点P是线段A1An上的一个动点.

〔1〕当n=3时,那么点P分别到点A1、A2、A3的距离之和的最小值是

;〔2〕当n=11时,那么当点P在点的位置时,点P分别到点A1、A2、…、A11的距离之和有最小值,且最小值是.6、阅读以下材料并解决有关问题:我们知道,

,现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式|m+1|+|m-2|时,可令m+1=0和m-2=0,分别求得m=-1,m=2〔称-1,2分别为|m+1|与|m-2|的零点值〕.在实数范围内,零点值m=-1和m=2可将全体实数分成不重复且不遗漏的如下3种情况:〔1〕m<-1;〔2〕-1≤m<2;〔3〕m≥2.从而化简代数式|m+1|+|m-2|可分以下3种情况:〔1〕当m<-1时,原式=-〔m+1〕-〔m-2〕=-2m+1;〔2〕当-1≤m<2时,原式=m+1-〔m-2〕=3;〔3〕当m≥2时,原式=m+1+m-2=2m-1.综上讨论,通过以上阅读,请你解决以下问题:〔1〕分别求出|x-5|和|x-4|的零点值;〔2〕化简代数式|x-5|+|x-4|.〔3〕求代数式|x-5|+|x-4|的最小值.第五局部课后作业1、一运发动某次跳水的最高点离跳台2m,记作+2m,那么水面离跳台10m可以记作〔〕A、-10mB、-12mC、+10mD、+12m2、有四包真空包装的火腿肠,每包以标准质量450g为基准,超过的克数记作正数,缺乏的克数记作负数.下面的数据是记录结果,其中与标准质量最接近的是〔〕A、+2B、-3C、+4D、-13、以下关于零的说法,正确的有〔〕①自然数;②正数;③非正数;④有理数;⑤最小的非负数⑥最小的整数;⑦倒数等于它本身。A、4B、5C、6D、74、以下说法错误的选项是〔〕A、-〔-3〕的相反数是-3B、-〔+5〕的相反数是5C、-〔-2〕的相反数是-2D、0没有相反数5、以下说法中不正确的选项是〔〕A、正数的相反数是负数,负数的相反数是正数B、两个分别在原点两旁且和原点的距离相等的点所表示的数一定互为相反数C、两个符号不同的有理数一定互为相反数D、没有绝对值是-2的数6、绝对值大于2且不大于5的整数有〔〕A、3个B、4个C、5个D、6个7、小刚位于A点,在学校正北方向5km处,记作+5;小敏位于B点,在学校正南方向3km处,记作-3.小刚和小敏沿AB所在直线同时行进2km,他俩相距km.8、数轴上,点A距原点4个单位长度,且位于原点的右侧,假设将A点向左移动5个单位长度,刚好到达B点,那么B点对应的有理数是.9、把以下各数按要求分类.10、a与b互为相反数,c与d互为倒数,m的绝对值为6,那么-cd+|m|的值为

.11、七名学生的体重,以48.0㎏为标准,把超过标准体重的千克计记为正数,缺乏的千克记为负数,将其体重记录如下表:〔1〕最接近标准体重的学生体重是多少?〔2〕求七名学生的平均体重;〔3〕按体重的轻重排列时,恰好居中的是那个学生?12、邮递员骑车从邮局出发,先向西骑行3km到达A村,继续向西骑行2km到达B村,然后向东骑行7km到达C村,再继续向东骑行3km到达D村,最后骑回邮局.〔1〕C村离A村有多远?〔2〕邮递员一共骑行了多少千米?13、假设a、b互为相反数,c、d互为倒数,m的绝对值是最小的正整数,求+m2-3cd-2m的值.14、|x|=16,|y|=9,且|x+y|=-〔x+y〕,求x-y的值.15、有理数a、b、c在数轴上的位置如图:〔1〕判断正负,用“>〞或“<〞填空:b-c0,a+b0,c-a0.〔2〕化简:|b-c|+|a+b|-|c-a|.参考答案第1讲有理数第二局部考点精讲精练考点1、正数和负数例1、B例2、D例3、A例4、19例5、〔1〕∵14-9+8-7+13-6+12-5=20,答:B地在A地的东边20千米;〔2〕这一天走的总路程为:14+|-9|+8+|-7|+13+|-6|+12|+|-5|=74千米,应耗油74×0.5=37〔升〕,故还需补充的油量为:37-28=9〔升〕,答:冲锋舟当天救灾过程中至少还需补充9升油;〔3〕∵路程记录中各点离出发点的距离分别为:14千米;14-9=5〔千米〕;14-9+8=13〔千米〕;14-9+8-7=6〔千米〕;14-9+8-7+13=19〔千米〕;14-9+8-7+13-6=13〔千米〕;14-9+8-7+13-6+12=25〔千米〕;14-9+8-7+13-6+12-5=20〔千米〕,25>20>19>14>13>>6>5,∴最远处离出发点25千米。举一反三:1、A2、C3、7454、〔1〕〔+15〕+〔-2〕+〔+5〕+〔-1〕+〔+10〕+〔-3〕+〔-2〕+〔+12〕+〔+4〕+〔-5〕+〔+6〕=39千米;〔2〕|+15|+|-2|+|+5|+|-1|+|+10|+|-3|+|-2|+|+12|+|+4|+|-5|+|+6|=65〔千米〕,那么耗油65×3=195升.答:将最后一名乘客送到目的地时,小李距下午出发地点的距离是39千米;假设汽车耗油量为3升/千米,这天下午汽车共耗油195升.5、【解答】:根据题意得〔1〕2﹣3+2+1﹣2﹣1+0﹣2=﹣3,55×8+〔﹣3〕=437元,∵437>400,∴卖完后是盈利;〔2〕437﹣400=37元,故盈利37元.考点2、有理数例1、B例2、B例3、-2;-2;0;3例4、略举一反三:1、D2、B3、整数和分数4、-10,42,0-3.8,4.3,,4.3,42,-3.8,-10,考点3、数轴例1、D例2、C例3、3例4、解:〔1〕如下图:〔2〕根据数轴可知:王老师家距家小明家5个单位长度,2-〔-3〕=5,因而是5千米;〔3〕亮亮骑车的路程是:2+0.5+5.5+3=11千米.故答案为:5,11.例5、举一反三:1、C2、B3、13千米,或3千米4、5、试题分析:〔1〕根据对称的知识,假设1表示的点与-1表示的点重合,那么对称中心是原点,从而找到-2的对称点;〔2〕①假设-1表示的点与3表示的点重合,那么对称中心是1表示的点,从而找到5的对称点;②根据对应点连线被对称中心平分,那么点A和点B到1的距离都是4.5,从而求解.试题解析:〔1〕根据题意,得对称中心是原点,那么-2表示的点与数2表示的点重合;〔2〕∵-1表示的点与3表示的点重合,∴对称中心是1表示的点.∴①5表示的点与数-3表示的点重合;②假设数轴上A、B两点之间的距离为9〔A在B的左侧〕,那么点A表示的数是1-4.5=-3.5,点B表示的数是1+4.5=5.5.考点4、相反数例1、B例2、C例3、-3,3例4、P,Q.例5、m+n-p例6、解:∵数轴上A点表示7,且点C到点A的距离为2,∴C点有两种可能5或9.又∵B,C两点所表示的数互为相反数,∴B点也有两种可能-5或-9.故B:-5,C:5或B:-9,C:9.举一反三:1、D2、D3、a+b-c4、+65、a,b互为相反数,c、d互为倒数,那么代数式2〔a+b〕-3cd的值为多少?考点5、绝对值例1、B例2、A例3、-a

例4、0,0例5、例6、解:〔1〕当式子|x-2|+|x-4|+|x-6|+|x-8|取最小值时,相应的x的取值范围是4≤x≤6,最小值是8;〔2〕当x≥-2,时y=-2x,当x=-2时,y最大=4;当-4≤x≤-2时,y=6x+16,当x-2时,y最大=4;当x≤-4,时y=2x,当x=-4时,y最大=-8,所以x=-2时,y有最大值y=4.举一反三

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论