版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年江苏省东台市第二教育联盟中考数学模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.2018年1月,“墨子号”量子卫星实现了距离达7600千米的洲际量子密钥分发,这标志着“墨子号”具备了洲际量子保密通信的能力.数字7600用科学记数法表示为()A.0.76×104 B.7.6×103 C.7.6×104 D.76×1022.已知二次函数的图象如图所示,若,是这个函数图象上的三点,则的大小关系是()A. B. C. D.3.如图,等腰三角形ABC底边BC的长为4cm,面积为12cm2,腰AB的垂直平分线EF交AB于点E,交AC于点F,若D为BC边上的中点,M为线段EF上一点,则△BDM的周长最小值为()A.5cm B.6cm C.8cm D.10cm4.一个几何体的三视图如图所示,则该几何体的形状可能是()A.B.C.D.5.四组数中:①1和1;②﹣1和1;③0和0;④﹣和﹣1,互为倒数的是()A.①② B.①③ C.①④ D.①③④6.如果一个扇形的弧长等于它的半径,那么此扇形称为“等边扇形”.将半径为5的“等边扇形”围成一个圆锥,则圆锥的侧面积为()A. B.π C.50 D.50π7.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,连接CD,若⊙O的半径r=5,AC=53,则∠B的度数是(
)A.30°B.45°C.50°D.60°8.统计学校排球队员的年龄,发现有12、13、14、15等四种年龄,统计结果如下表:年龄(岁)12131415人数(个)2468根据表中信息可以判断该排球队员年龄的平均数、众数、中位数分别为()A.13、15、14 B.14、15、14 C.13.5、15、14 D.15、15、159.如图,的三边的长分别为20,30,40,点O是三条角平分线的交点,则等于()A.1∶1∶1 B.1∶2∶3 C.2∶3∶4 D.3∶4∶510.如图,Rt△ABC中,∠C=90°,∠A=35°,点D在边BC上,BD=2CD.把△ABC绕着点D逆时针旋转m(0<m<180)度后,如果点B恰好落在初始Rt△ABC的边上,那么m=()A.35° B.60° C.70° D.70°或120°二、填空题(共7小题,每小题3分,满分21分)11.函数y=中,自变量x的取值范围是________.12.如图,在矩形ABCD中,AB=5,BC=3,将矩形ABCD绕点B按顺时针方向旋转得到矩形GBEF,点A落在矩形ABCD的边CD上,连接CE,则CE的长是________.13.如图,从一块直径是8m的圆形铁皮上剪出一个圆心角为90°的扇形,将剪下的扇形围成一个圆锥,圆锥的高是_________m.14.把直线y=-x+3向上平移m个单位后,与直线y=2x+4的交点在第一象限,则m的取值范围是_________________.15.如果实数x、y满足方程组,求代数式(+2)÷.16.如图,在矩形ABCD中,顺次连接矩形四边的中点得到四边形EFGH.若AB=8,AD=6,则四边形EFGH的周长等于__________.17.因式分解.三、解答题(共7小题,满分69分)18.(10分)如图,的直角顶点P在第四象限,顶点A、B分别落在反比例函数图象的两支上,且轴于点C,轴于点D,AB分别与x轴,y轴相交于点F和已知点B的坐标为.填空:______;证明:;当四边形ABCD的面积和的面积相等时,求点P的坐标.19.(5分)如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PA、PB、AB、OP,已知PB是⊙O的切线.(1)求证:∠PBA=∠C;(2)若OP∥BC,且OP=9,⊙O的半径为3,求BC的长.20.(8分)如图,已知AB是⊙O的直径,CD与⊙O相切于C,BE∥CO.(1)求证:BC是∠ABE的平分线;(2)若DC=8,⊙O的半径OA=6,求CE的长.21.(10分)某公司投入研发费用80万元(80万元只计入第一年成本),成功研发出一种产品.公司按订单生产(产量=销售量),第一年该产品正式投产后,生产成本为6元/件.此产品年销售量y(万件)与售价x(元/件)之间满足函数关系式y=﹣x+1.求这种产品第一年的利润W1(万元)与售价x(元/件)满足的函数关系式;该产品第一年的利润为20万元,那么该产品第一年的售价是多少?第二年,该公司将第一年的利润20万元(20万元只计入第二年成本)再次投入研发,使产品的生产成本降为5元/件.为保持市场占有率,公司规定第二年产品售价不超过第一年的售价,另外受产能限制,销售量无法超过12万件.请计算该公司第二年的利润W2至少为多少万元.22.(10分)如图,已知⊙O是以AB为直径的△ABC的外接圆,过点A作⊙O的切线交OC的延长线于点D,交BC的延长线于点E.(1)求证:∠DAC=∠DCE;(2)若AB=2,sin∠D=,求AE的长.23.(12分)如图,已知二次函数的图象与x轴交于A,B两点,与y轴交于点C,的半径为,P为上一动点.点B,C的坐标分别为______,______;是否存在点P,使得为直角三角形?若存在,求出点P的坐标;若不存在,请说明理由;连接PB,若E为PB的中点,连接OE,则OE的最大值______.24.(14分)某商人制成了一个如图所示的转盘,取名为“开心大转盘”,游戏规定:参与者自由转动转盘,转盘停止后,若指针指向字母“A”,则收费2元,若指针指向字母“B”,则奖励3元;若指针指向字母“C”,则奖励1元.一天,前来寻开心的人转动转盘80次,你认为该商人是盈利的可能性大还是亏损的可能性大?为什么?
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:7600=7.6×103,故选B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2、A【解析】
先求出二次函数的对称轴,结合二次函数的增减性即可判断.【详解】解:二次函数的对称轴为直线,∵抛物线开口向下,∴当时,y随x增大而增大,∵,∴故答案为:A.【点睛】本题考查了根据自变量的大小,比较函数值的大小,解题的关键是熟悉二次函数的增减性.3、C【解析】
连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再根据EF是线段AB的垂直平分线可知,点B关于直线EF的对称点为点A,故AD的长为BM+MD的最小值,由此即可得出结论.【详解】如图,连接AD.∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=BC•AD=×4×AD=12,解得:AD=6(cm).∵EF是线段AB的垂直平分线,∴点B关于直线EF的对称点为点A,∴AD的长为BM+MD的最小值,∴△BDM的周长最短=(BM+MD)+BD=AD+BC=6+×4=6+2=8(cm).故选C.【点睛】本题考查的是轴对称﹣最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.4、D【解析】试题分析:由主视图和左视图可得此几何体上面为台,下面为柱体,由俯视图为圆环可得几何体为.故选D.考点:由三视图判断几何体.视频5、C【解析】
根据倒数的定义,分别进行判断即可得出答案.【详解】∵①1和1;1×1=1,故此选项正确;②-1和1;-1×1=-1,故此选项错误;③0和0;0×0=0,故此选项错误;④−和−1,-×(-1)=1,故此选项正确;∴互为倒数的是:①④,故选C.【点睛】此题主要考查了倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.6、A【解析】
根据新定义得到扇形的弧长为5,然后根据扇形的面积公式求解.【详解】解:圆锥的侧面积=•5•5=.故选A.【点睛】本题考查圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.7、D【解析】根据圆周角定理的推论,得∠B=∠D.根据直径所对的圆周角是直角,得∠ACD=90°.
在直角三角形ACD中求出∠D.则sinD=AC∠D=60°∠B=∠D=60°.故选D.“点睛”此题综合运用了圆周角定理的推论以及锐角三角函数的定义,解答时要找准直角三角形的对应边.8、B【解析】
根据加权平均数、众数、中位数的计算方法求解即可.【详解】,15出现了8次,出现的次数最多,故众数是15,从小到大排列后,排在10、11两个位置的数是14,14,故中位数是14.故选B.【点睛】本题考查了平均数、众数与中位数的意义.数据x1、x2、……、xn的加权平均数:(其中w1、w2、……、wn分别为x1、x2、……、xn的权数).一组数据中出现次数最多的数据叫做众数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.9、C【解析】
作OF⊥AB于F,OE⊥AC于E,OD⊥BC于D,根据角平分线的性质得到OD=OE=OF,根据三角形的面积公式计算即可.【详解】作OF⊥AB于F,OE⊥AC于E,OD⊥BC于D,
∵三条角平分线交于点O,OF⊥AB,OE⊥AC,OD⊥BC,
∴OD=OE=OF,
∴S△ABO:S△BCO:S△CAO=AB:BC:CA=20:30:40=2:3:4,
故选C.【点睛】考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.10、D【解析】
①当点B落在AB边上时,根据DB=DB1,即可解决问题,②当点B落在AC上时,在RT△DCB2中,根据∠C=90°,DB2=DB=2CD可以判定∠CB2D=30°,由此即可解决问题.【详解】①当点B落在AB边上时,∵DB=DB∴∠B=∠DB∴m=∠BDB②当点B落在AC上时,在RT△DCB∵∠C=90°,DB∴∠CB∴m=∠C+∠CB故选D.【点睛】本题考查的知识点是旋转的性质,解题关键是考虑多种情况,进行分类讨论.二、填空题(共7小题,每小题3分,满分21分)11、x≤1【解析】分析:根据二次根式有意义的条件解答即可.详解:∵二次根式有意义,被开方数为非负数,∴1-x≥0,解得x≤1.故答案为x≤1.点睛:本题考查了二次根式有意义的条件,熟知二次根式有意义,被开方数为非负数是解题的关键.12、【解析】
解:连接AG,由旋转变换的性质可知,∠ABG=∠CBE,BA=BG=5,BC=BE,由勾股定理得,CG==4,∴DG=DC﹣CG=1,则AG==,∵,∠ABG=∠CBE,∴△ABG∽△CBE,∴,解得,CE=,故答案为.【点睛】本题考查的是旋转变换的性质、相似三角形的判定和性质,掌握勾股定理、矩形的性质、旋转变换的性质是解题的关键.13、【解析】分析:首先连接AO,求出AB的长度是多少;然后求出扇形的弧长弧BC为多少,进而求出扇形围成的圆锥的底面半径是多少;最后应用勾股定理,求出圆锥的高是多少即可.详解:如图1,连接AO,∵AB=AC,点O是BC的中点,∴AO⊥BC,又∵∴∴∴弧BC的长为:(m),∴将剪下的扇形围成的圆锥的半径是:(m),∴圆锥的高是:故答案为.点睛:考查圆锥的计算,正确理解圆锥的侧面展开图与原来扇形之间的关系式解决本题的关键.14、m>1【解析】试题分析:直线y=-x+3向上平移m个单位后可得:y=-x+3+m,求出直线y=-x+3+m与直线y=2x+4的交点,再由此点在第一象限可得出m的取值范围.试题解析:直线y=-x+3向上平移m个单位后可得:y=-x+3+m,联立两直线解析式得:,解得:,即交点坐标为(,),∵交点在第一象限,∴,解得:m>1.考点:一次函数图象与几何变换.15、1【解析】解:原式==xy+2x+2y,方程组:,解得:,当x=3,y=﹣1时,原式=﹣3+6﹣2=1.故答案为1.点睛:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.16、20.【解析】分析:连接AC,BD,根据勾股定理求出BD,根据三角形中位线定理,菱形的判定定理得到四边形EHGF为菱形,根据菱形的性质计算.解答:连接AC,BD在Rt△ABD中,BD=∵四边形ABCD是矩形,∴AC=BD=10,∵E、H分别是AB、AD的中点,∴EH∥BD,EF=BD=5,同理,FG∥BD,FG=BD=5,GH∥AC,GH=AC=5,∴四边形EHGF为菱形,∴四边形EFGH的周长=5×4=20,故答案为20.点睛:本题考查了中点四边形,掌握三角形的中位线定理、菱形的判定定理是解答本题的关键.17、【解析】试题分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,先提取公因式后继续应用平方差公式分解即可:.三、解答题(共7小题,满分69分)18、(1)1;(2)证明见解析;(1)点坐标为.【解析】
由点B的坐标,利用反比例函数图象上点的坐标特征可求出k值;设A点坐标为,则D点坐标为,P点坐标为,C点坐标为,进而可得出PB,PC,PA,PD的长度,由四条线段的长度可得出,结合可得出∽,由相似三角形的性质可得出,再利用“同位角相等,两直线平行”可证出;由四边形ABCD的面积和的面积相等可得出,利用三角形的面积公式可得出关于a的方程,解之取其负值,再将其代入P点的坐标中即可求出结论.【详解】解:点在反比例函数的图象,.故答案为:1.证明:反比例函数解析式为,设A点坐标为轴于点C,轴于点D,点坐标为,P点坐标为,C点坐标为,,,,,,,.又,∽,,.解:四边形ABCD的面积和的面积相等,,,整理得:,解得:,舍去,点坐标为.【点睛】本题考查了反比例函数图象上点的坐标特征、相似三角形的判定与性质、平行线的判定以及三角形的面积,解题关键是:根据点的坐标,利用反比例函数图象上点的坐标特征求出k值;利用相似三角形的判定定理找出∽;由三角形的面积公式,找出关于a的方程.19、(1)证明见解析;(2)BC=1.【解析】
(1)连接OB,根据切线的性质和圆周角定理求出∠PBO=∠ABC=90°,即可求出答案;
(2)求出△ABC∽△PBO,得出比例式,代入求出即可.【详解】(1)连接OB,∵PB是⊙O的切线,∴PB⊥OB,∴∠PBA+∠OBA=90°,∵AC是⊙O的直径,∴∠ABC=90°,∠C+∠BAC=90°,∵OA=OB,∴∠OBA=∠BAO,∴∠PBA=∠C;(2)∵⊙O的半径是3,∴OB=3,AC=6,∵OP∥BC,∴∠BOP=∠OBC,∵OB=OC,∴∠OBC=∠C,∴∠BOP=∠C,∵∠ABC=∠PBO=90°,∴△ABC∽△PBO,∴=,∴=,∴BC=1.【点睛】本题考查平行线的性质,切线的性质,相似三角形的性质和判定,圆周角定理等知识点,能综合运用知识点进行推理是解题关键.20、(1)证明见解析;(2)4.1.【解析】试题分析:(1)由BE∥CO,推出∠OCB=∠CBE,由OC=OB,推出∠OCB=∠OBC,可得∠CBE=∠CBO;(2)在Rt△CDO中,求出OD,由OC∥BE,可得,由此即可解决问题;试题解析:(1)证明:∵DE是切线,∴OC⊥DE,∵BE∥CO,∴∠OCB=∠CBE,∵OC=OB,∴∠OCB=∠OBC,∴∠CBE=∠CBO,∴BC平分∠ABE.(2)在Rt△CDO中,∵DC=1,OC=0A=6,∴OD==10,∵OC∥BE,∴,∴,∴EC=4.1.考点:切线的性质.21、(1)W1=﹣x2+32x﹣2;(2)该产品第一年的售价是16元;(3)该公司第二年的利润W2至少为18万元.【解析】
(1)根据总利润=每件利润×销售量﹣投资成本,列出式子即可;(2)构建方程即可解决问题;(3)根据题意求出自变量的取值范围,再根据二次函数,利用而学会设的性质即可解决问题.【详解】(1)W1=(x﹣6)(﹣x+1)﹣80=﹣x2+32x﹣2.(2)由题意:20=﹣x2+32x﹣2.解得:x=16,答:该产品第一年的售价是16元.(3)由题意:7≤x≤16,W2=(x﹣5)(﹣x+1)﹣20=﹣x2+31x﹣150,∵7≤x≤16,∴x=7时,W2有最小值,最小值=18(万元),答:该公司第二年的利润W2至少为18万元.【点睛】本题考查二次函数的应用、一元二次方程的应用等知识,解题的关键是理解题意,学会构建方程或函数解决问题.22、(1)证明见解析;(2).【解析】
(1)由切线的性质可知∠DAB=90°,由直角所对的圆周为90°可知∠ACB=90°,根据同角的余角相等可知∠DAC=∠B,然后由等腰三角形的性质可知∠B=∠OCB,由对顶角的性质可知∠DCE=∠OCB,故此可知∠DAC=∠DCE;(2)题意可知AO=1,OD=3,DC=2,由勾股定理可知AD=,由∠DAC=∠DCE,∠D=∠D可知△DEC∽△DCA,故此可得到DC2=DE•AD,故此可求得DE=,于是可求得AE=.【详解】解:(1)∵AD是圆O的切线,∴∠DAB=90°.∵AB是圆O的直径,∴∠ACB=90°.∵∠DAC+∠CAB=90°,∠CAB+∠ABC=90°,∴∠DAC=∠B.∵OC=OB,∴∠B=∠OCB.又∵∠DCE=∠OCB,∴∠DAC=∠DCE.(2)∵AB=2,∴AO=1.∵sin∠D=,∴OD=3,DC=2.在Rt△DAO中,由勾股定理得AD==.∵∠DAC=∠DCE,∠D=∠D,∴△DEC∽△DCA,∴,即.解得:DE=,∴AE=AD﹣DE=.23、(1)B(1,0),C(0,﹣4);(2)点P的坐标为:(﹣1,﹣2)或(,)或(,﹣﹣4)或(﹣,﹣4);(1).【解析】试题分析:(1)在抛物线解析式中令y=0可求得B点坐标,令x=0可求得C点坐标;(2)①当PB与⊙相切时,△PBC为直角三角形,如图1,连接BC,根据勾股定理得到BC=5,BP2的值,过P2作P2E⊥x轴于E,P2F⊥y轴于F,根据相似三角形的性质得到=2,设OC=P
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- “鱼米之乡”长江三角洲地区第课时课件-八年级地理下学期人教版
- 执行异议之诉合同范本
- 房屋认筹购房合同范本
- 工地员工安全合同范本
- 建材家具合作合同范本
- 宠物医院设计合同范本
- 工程抽成协议合同范本
- 实习生签合同几份协议
- 学校签订就业合同范本
- 天猫淘宝投资协议合同
- 安全生产培训包括哪些内容
- 2025年国有企业三项制度改革自查报告
- 赊销业务与企业财务风险控制-洞察及研究
- 钢笔修理课件
- (2024版)人教版 小学体育与健康 一年级全一册 教学设计
- 教研组长专业能力提升培训
- 高中教学经验交流课件
- 直播间设计装修合同范本
- 十五五特殊教育发展提升行动计划
- 2025年河南公务员遴选考试题库(附答案)
- 2025年可爱的中国测试题及答案
评论
0/150
提交评论