版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
PAGE
PAGE
1
IntervalAnalysisanditsApplicationstoOptimizationinBehaviouralEcology
by
JustinTung
CS490IndependentResearchReport
Instructor:DavidSchwartz
Date:December19,2001
TableofContents
Abstract 4
Introduction 5
IntervalAnalysis 5
BasicsandNotation 5
UncertaintyandApproximatingValues 5
IntervalArithmeticandFunctions 6
ForagingTheory 7
BasicsofForagingModels 7
SimplisticAnalyticForagingModel 8
TheOptimalResidenceTime 11
2.ResearchProblemandMethods 12
Motivation 12
ProblemswithFixedPointOptimizationinForagingModels 12
IntervalAnalysisasUncertaintyinMethod 13
ResearchProblem 13
Software 14
Methodology 14
Fixed-PointAnalysis 14
GeneralMethod 14
Algorithm:BisectionMethod 15
IntervalAnalysis 16
GeneralMethod 16
Algorithm:IntervalNewton’sMethod 16
VariationandConstraintsonParameters 17
3.NumericalAnalysisofModel 18
FixedPointAnalysis 18
GraphicalAnalysis 18
OptimizationandAnalysis 23
IntervalAnalysis 26
TrueSolutionsandIntervalOptimization 26
StabilityAnalysis 29
4.ConclusionsandFutureExploration 30
ResultsofNumericalStudy 30
ComparisonofFixedPointandIntervalRoots 30
ApplicationstoForagingModel 30
FutureExploration 32
Bibliography 33
Abstract
IntervalAnalysisisameansofrepresentinguncertaintybyreplacingsingle(fixed-point)valueswithintervals.Inthisproject,intervalanalysisisappliedtoaforagingmodelinbehaviouralecology.Themodeldescribesanindividualforaginginacollectionofcontinuouslyrenewingresourcepatches.Thismodelisusedtodeterminetheoptimalresidencetimeoftheforagerinaresourcepatchassumingtheforagerwantstomaximizeitsrateofresourceintake.Beforeapplyingintervalanalysis,fixed-point(non-interval)optimizationwillbedonetoserveasabasis.Certainparametersinthemodelwillthenbereplacedwithintervalsandinterval-basedoptimizationconducted.Acomparisonoftheintervalandfixed-pointresultswillbedoneaswellasanalysisofparameterintervalsandtheirconstraints,rootapproximations,andapplicationstothemodel.
Chapter1:Introduction
1.1IntervalAnalysis
1.1.1BasicsandNotation
ThispaperwillexplainonlythebasicsofIntervalAnalysis(IA)neededtounderstandthetopicscoveredandassumessomepriorknowledgeofIAandMatlab(see2.1.4regardingMatlab).ForaformalmathematicalintroductionandindepthcoverageofconceptsseeSchwartz(1999)orMoore(1966)listedinthereferences.Intervalanalysiswasinitiallydevelopedinthelate1960’stoboundcomputationalerroranditisadeterministicwayofrepresentinguncertaintyinvaluesbyreplacinganumberwitharangeofvalues(Schwartz17).Fixed-pointanalysisissimplyanalysisusingnon-intervalvalueswherethereisnouncertaintyinthevalues.Asaresult,IAuncertaintyconceptscanbeusedtomodelvaryingbiologicalparametersintheecologicalmodeltobeexploredinsection1.2andalsotoframefixed-pointresults.
IA’smathematicaldefinitionsandnotationsareextendedfromsettheoryandorderednumericalsetscalledintervals(Schwartz30).Thispaperconsidersclosedintervalanalysiswiththefollowingdefinitionsofaninterval(usingMatlabupperbound,lowerboundstylenotation):
inf(x)–denotestheinfinum,orlowerboundofx
sup(x)–denotesthesupremumorupperboundofx
1.1.2UncertaintyandApproximatingValues
Thereareaseveralusefulquantitiesrelatedtotheconceptoftheinterval:size,radius,andmidpoint.Thesize(orthickness)ofanintervalindicatestheuncertaintyinavalueandisspecifiedasawidth:w(x)=sup(x)-inf(x)(Schwartz32-33).Intervalswithzerothicknessarecrispintervalswhereasnon-crispintervalssaidtobethick.Theconceptsofradiusandmidpointareusefulindescribingintervalsaswellasconstructingthem.Theradiusandmidpointaredefinedas(Schwartz33):
rad(x)=w(x)/2
mid(x)=(sup(x)+inf(x))/2
Toconstructanewinterval,onewayistouseanoriginalvalue,whichisavaluethatsuppliesthemidpointpointofanewinterval.Then,acertainradius(uncertainty)canbeaddedtoandsubtractedfromtheoriginalvaluetoobtainanewinterval(Schwartz35).Similarly,themidpointcanalsoserveasanapproximationtoavaluewithanerrorofplusorminustheradius.Usingthesedefinitions,thepercentageuncertaintyinamidpointvaluewouldbe:p=100*rad(x)/mid(x)(Schwartz148).
1.1.3IntervalArithmeticandFunctions
Theresultsandpropertiesofintervalarithmeticwillbeomittedforthissection;however,IrecommendreferringtoSchwartz(1999)tounderstandthebasicsofintervalarithmetic.Thefundamentalprinciplesinintervaloperationsareindependenceandextremes.Independencemeansnumericalvaluesvaryindependentlybetweenintervalsandextremesmeansintervaloperationsgeneratethewidestpossibleboundsgiventherangesofvalues(Schwartz37-38).Interval-valuedfunctionsfollowfromintervalarithmeticofwhichtherearetwotypes:intervalextensionsandunitedextensions(ortruesolutionsets).Intervalextensionsarefunctionswhereintervalarithmeticisappliedtocalculateresults.Unitedextensionsaremorecomputationallyintensiveandinvolvecalculatingfixed-pointresultswithallpossiblecombinationsofvariableintervalendpoints.Thedisadvantageoftheintervalextensionsisthattheycanoverexpandthetruesolutionsetsofafunction(Schwartz45-49).Thisqualityofintervalextensionsisunfortunatesincebothtypesofextensionsguaranteecontainmentofallpossiblenumericalresultsofthefunctiongiventheinputs.Also,bothextensionssatisfyapropertycalledinclusionmonotonicity(giveninputs,anextensiongeneratesthewidestpossiblebounds),whichissimilartotheextremesprincipleofintervalarithmetic(Schwartz56).
1.2ForagingTheory
1.2.1BasicsofForagingModels
Foragingmodelsingeneralstudytwobasicproblemsofaforager:whichfood/preyitemstoconsumeandwhentoleaveanareacontainingfood(aresourcepatch).Thispaperwillconcentrateonthelatterasanoptimizationproblem.Beforegoingintodetailsofthemodel,itisimportanttounderstandtheframeworkofforagingmodels.StephensandKrebspointoutthatforagingandoptimalitymodelshavethreemaincomponents,decision,currency,andconstraintassumptions(5).Decisionassumptionsdeterminewhichproblems(orchoices)oftheforageraretobeanalyzedandthesechoicesareusuallyexpressedasvariables.Theoptimizationproblemcomesfromassumingbehaviourandevolutionarymechanismsoptimizetheoutcomeofaforager’schoices.Currencyassumptionsprovidemeansofevaluatingchoices.Thesechoicesusuallyinvolvemaximization,minimization,orstabilityofasituation.Choiceevaluationisembodiedinthecurrencyfunction(arealvaluedfunction),whichtakesthedecisionvariablesandevaluatestheiroutcomeintoasinglevalue.Constraintassumptionsarelimitationstothemodelandrelatedecisionvariableswiththecurrency.Limitationscanbegeneralizedto2types,extrinsic(environmentlimitsonanimal)andintrinsic(animal’sownlimitations).Also,therearethreegeneralconstraintassumptions(alsoassumedbythemodelinsection1.2.2)forconventionalforagingmodels:
1)Exclusivityofsearchandexploitation–thepredatorcanonlyconsumeorsearchforpatches/preyandnotperformbothactionsarethesametime
2)SequentialPoissonencounters–items(preyorpatches)areencounteredoneatatimeandthereisaconstantprobabilityregardingprey/patchmeetingsinashorttimeperiod
3)Completeinformation–theforagerbehavesasifitknowstherulesofthemodel
Thesethreeconceptsofdecision,currency,andconstraintprovidemeansofoptimizationgivenchoices,howtodeterminetheirsuccess,andlimitations(StephensandKrebs6-11).
1.2.2SimplisticAnalyticForagingModel
Giventhestructureofaforagingmodel,itiseasytoframeamodelexaminingtheforagingofasingleanimaloveracollectionofdistinctresourcepatches.Ihavetakenthemodelalongwithitsdecision,currency,andconstraintassumptionsfromWilson(2000)soderivationsofthemodel’sequations,itsorigins,andananalysisandextensionsofthemodelinCcanbefoundinhisbook.Therulesoftheforagerinthemodelarethattheanimalstaysforafixedtimebeforemovingtoanewresourcepatch,timeisdiscrete,andpatchresourcevalues(biomass,energy,etc)growlogistically.Thedecisionassumptionliesinthedeterminationofthefixedtimevalue.Thecurrencyfunctionallowsustooptimizetheanimal’ssituationgiventhisfixedtimeandalsoallowsustoapplyconstraintstothemodel(Wilson152).Despiteitsname,thesimplisticanalyticforagingmodelactuallycharacterizesforagingsimulationresultswellusingthemodel’sspecifications.Hereisalistofparameterstakeninbythemodel:
Toderivethemodel,wecanstartanalyzingtheresourcesideassumingthattheithpatchwithouttheforagerconsuminggrowslogistically:
Wheretistimeandriistheamountofresourcesintheithpatch.Ifaforagerentersagivenpatchf,resourcedynamicscanbemodeledasfollows:
Inthefthpatch,theconsumerdecreasestherateofgrowthbyafactorrelatedtobeta,theconsumingrate.Tomodeloverallpatchgrowth,averagepatchgrowthforN-1identicalpatchesisaddedtothepatchgrowth(ordecay)ofthefthpatch:
Toachieveanequilibriumresourcedensityr*,wesetdr/dt=0andsolveforryielding:
AquickanalysisofthelimitasNapproachesinfinityshowsthattheforager’seffectisinsignificantatequilibriumsincethetermcontainingbetagoestozeroandr*goestoKasexpected(Wilson153-154).Theresourcesideprovidesuswithanenvironmentandextrinsicconstraintsthatwillaffectthecurrencyfunctionwhichliesontheforagersideofthemodel.Keytoresourceexploitationmodelsisthegainfunction,g(t).Thegainfunctionspecifiestheamountconsumedfromaresourcepatchgiventimet.Assumingtheforagerlandsonaresourcepatchalwaysinequilibriumr*,g(t)isthetimeintegralofitsinstantaneousconsumptionrateminusitsmetaboliccosts.Metaboliccostsrepresentintrinsicconstraintssincetheanimalmust“pay”thesecostswhenforaging.
Thextandxmconstraintsactasintrinsiclimitationsonthemodelsincethetravelingcostspreventstheforagerfrommovingquicklyfrompatchtopatchandskimmingresources,whilethemetaboliccostcausestheforagertogatherresourcesforthreatofdeath.Inordertoevaluateg(t),werequireananalyticalsolutiontorf,whichmeasurestheresourcesinthepatchtheforagerisin.Solvingthefirstorderdifferentialequationfromtheresourcesidederivationsforrfusingseparationofvariablesyields:
Thensubstitutingthisequationintog(t)andsolvingtheintegralweget:
Usingthisgainfunction,thecrucialequationfromtheforagerperspective,thenetforagingratefunctioncanbecalculatedas:
R(t)isthecurrencyfunctionforourmodelsinceitisthebasisofchoiceevaluationandoptimizationforthemodel(Wilson154-155).Italsocombinesthedecisionvariablesandconstraintsintoonevalueandwillbeabasisforgraphicalanalysislateron.
1.2.3TheOptimalResidenceTime
Assumingbehaviouralandevolutionarymechanismsdriveforagerstooptimizethetimespentoneachpatch.Thisassumptionimpliesthattheywillstaylongenoughtooptimizetherateofresourceconsumption,r(t).Mathematically,thischoiceimpliesthemaximizationofr(t):
wheret*iscalledtheoptimalresidencetime.Forratemaximization,r’’(t*)<0mustalsobechecked;however,assumingr(t*)isatamaximum,weobtaintheequation:
whichrelatesr(t)tothederivativeofthegainfunction.Thesecondfunctionaboveisthefunctiontobeusedforrootfinding.Essentially,theoptimaltimetoleaveapatchiswhentheexpectedrateofresourcereturndecreasestotheaveragerateofreturnofanewpatch.Thisresult,whichisastatementofthemarginalvaluetheoremforforaging,isareasonableestimationofanimalbehaviourconsideringaforager’sdesiretomaximizeonitsresourceintake(Wilson156-157).Oneprobleminoptimizationproblemsisfiguringoutwhetheranoptimalpointexistsandinthiscase,wemustbesurer’’(t*)<0andbesuresuchat*exists.Unfortunately,duetothecomplexityofg(t)isitnotpossibletosolveforanexplicitsolutionoft*sotojustifyexistenceofasolution,weturntotheoreticaljustificationsand,laterinsection3.1.1,graphicalmeans.Duetotheconditionsspecifiedinforagingmodels,gainfunctionsare“well-defined,continuous,deterministic,andnegativelyaccelerated”functions(StephensandKrebs25-26).Thisoutcomeresultsfromassumingpatchresourcesaresufficient(i.e.theequilibriumresourceissufficientlylarge)enoughthat,whentheforagerentersapatch,r(t)willreachamaximumandthendecreaseuntilthegainfunctionreachesanasymptoticmaximumwhenfurthertimespentintheresourcepatchdoesnotyieldsignificantlymoregaininresources.Thereasonforthegainfunction’spropertiesistheassumptionthatpatchescontainafinitenumberofresourcesandforagingdepletesthem.Thisassumption;however,reliesontheassumptionsaboutresidencetime,foragingrates,andresourcepatchdynamicsingeneral(StephensandKrebs25-26).Duetothesimplenatureofthemodel,thesegainfunctionpropertiesholdsor(t)doesreachamaximumatt*andr’’(*t)<0.
Chapter2:ResearchProblemsandMethods
2.1Motivation
2.1.1ProblemswithFixedPointOptimizationinForagingModels
StephensandKrebs(1986)discussvariouslimitationsandcriticismsofbehaviouralecologyoptimalitymodels.Onecriticismhastodowith“staticversusdynamic”modelingsincebasicforagingmodelsoftendonottaketheanimal’sstateintoaccount(i.e.whetherananimalisstarvingorfullyrestedandfed)(StephensandKrebs34).Also,aproblemthatoccursduringtestingphasesofamodeliswhenitbreaksdown.Atthatpoint,theecologistmustre-analyzethemodeltofindwhatisincorrect,oftencheckingconstraints(StephensandKrebs208)
2.1.2IntervalAnalysisasanUncertaintyMethod
IAcanaddressbutnotcompletelysolvetheproblemsstatedabove.OneofthestrengthsofIAisitsabilitytoevaluateawholerangeofvaluesinonecalculationthatwouldtakeaninfinitenumberoffixed-pointcalculationstoproduce.Asaresult,IAcouldsimulatethepresenceofmultiplestatesofananimaland/oritsenvironmentbyplacinguncertaintyinthemodel’sparameters.Thismethodprovideseasydeterministicimplementationofmultiplestatemodelsandproducesrangesofvaluesforevaluation.Thismethodpartiallyaddressesthesecondproblemofwhenamodelbreaksdown.Amodelcouldbreakdownduetoincorrectassumptionsaboutconstantforagerorenvironmentstates.AnotherapplicationofIAtotestingisthatIAisnumericallysuperiorwhenitcomestotestingdifferentacceptableuncertaintiesinvaluescouldhelpidentifyproblemsinthemodelorunrealisticassumptions.
2.1.3ResearchProblem
ThepurposeofthispaperistointroduceIAmethodstothesimplisticanalyticforagingmodelandcalculateintervaloptimalresidencetimesforintervalparameters.Atsametime,solvingthefixedpointoptimalresidencetimewillprovideframeworkfromwhichtoanalyzetheintervalresults.TheoptimizationwillbedoneforpatchsizesN=3,5,10,and20.Theparameterswithuncertaintywillbe:
Theseuncertaintiescouldbestrengthenedwithfieldworkstudies;however,forsimplicitytheyaredeterminedapriori.Aftercomputingintervaloptimalresidencetimes,theintervalsandtheirfixed-pointapproximationswillbecomparedtothefixed-pointoptimaltimestocomparealgorithmsandtoanalyzethefunctions’behaviourunderbothmethods.Onamoretheoreticalside,stabilityanalysisofthemodelwillbeconducted.Thisanalysisinvolvesvaryingoneuncertainparameter,whileholdingtheothersconstantuntilthemodelfails.Therefore,stabilityanalysisisusedtoseeperformanceofthemodelunderparameteruncertaintyperturbations.Conditionsforfailurewillbespecifiedinsection.
2.1.4Software
ThelanguagetobeusedisMatlabversion5.3withanadd-ontoolboxcalledINTLABprogrammedbySiegfriedRump(2001).RefertothereferencesfordocumentationontheINTLABtoolbox.Forthispaper,theINTLABtoolboxisusedtoprovideintervaldatastructures,implementationofintervalarithmeticandinterval-valuedfunctions,aswellasbasicfunctionsforradius,midpoint,andintersectionintervalfunctionsinMatlab.
2.2Methodology
2.2.1Fixed-PointAnalysis
GeneralMethod
Rootfunc(t)specifiedbelowisthefunctionwhoserootweareseeking:
Sincerootfunc(t)hasrelativelycheapfunctionevaluationsitisusefultoperforma“graphicalsearch”fortheroot(VanLoan294).Thisprocedureinvolvesplottingthefunctioninthetimeintervalofinterestandexaminingitsroots.Inadditiontothisfunction,duringthefixed-pointanalysis,wewillalsoplotr(t)tosearchfortheexistenceofmaximumsaswellasrootfunc’’(t)toconfirmthatrootfunc’’(t)isindeednegativeintheintervalofinterest.Although,graphicalsearchesarerathertrivial,theyprovidealargeamountofinformationconfirmingtheoreticalconclusionsinsection1.2aswellasenablingapictorialviewoftheobjectiveandrelatedfunctions.Anotheruseoftheplottingoffunctionsbeforeoptimizationistousetheplotstogeneratestartingintervalsforiterationsofrootfindingmethods.Inordertoplotrootfunc,r(t),andr’’(t)itisnecessarytoimplementequationsforg(t),g’(t),andr’’(t).Thedetailsforcalculatingg’(t)andr’’(t)areleftoutsinceg(t)isarathermessyfunction,butthederivativesareimplementedintheMatlabcodeforsection3.1.1.Assumingthepropertiesofthegainfunctiondiscussedin1.2.3,whichwillbeconfirmedinsection3.1.1,itisnecessarytochooseanalgorithmthatwillproducearootgiventheconditionsofrootfunc(t).
Algorithm:BisectionMethod
Sincerootfunc(t)iscontinuousandchangessignwithintheintervalofinterest,thebisectionmethodcanbeused.Thismethodinvolvescalculatingasequenceofsmallerandsmallerintervalsthatbracket(contain)therootofrootfunc(t).Themainalgorithmproceedsasfollows(ifrootfunct(t)=f(t))givenabracketinginterval[a,b]:
assumef(a)f(b)0andletm=(a+b)/2
eitherf(a)f(m)0orf(m)f(b)0
inthefirstcaseweknowtherootisin[a,m]elseitisit[m,b]
Ineithersituation,thesearchintervalishalvedandthisprocesscanbecontinueduntilasmallenoughintervalisobtained.Sincethesearchintervalishalvedwitheachiteration,thebisectionmethodexhibitsO(n)convergence.Theonlytrickypointsaretooptimizethemethodsothatonlyonefunctionevaluationisrequiredperiterationafterthefirstandtoestablishasafeconvergencecriterionsothatthetoleranceintervalisnotsmallerthanthegapinthefloatingpointnumbersbetweenaandb.VanLoanprovidesthecoreofthecodeforthebisectionmethodwithslightmodificationstofittheparametersofthemodel(280).AlthoughthebisectionmethoddoesnotexperienceO(n^2)convergenceliketheNewtonmethod,rootfunc(t)issimpleenoughthatitconvergesquicklyforpracticalpurposes.Also,itissimple(algorithmicallyanddoesn’trequirerootfunc’(t)implementation)andtranslateswellintotheideaofsearchingusingastartinginterval[a,b],whichwewilluselaterintheintervalrootfinding.
2.2.2IntervalAnalysis
GeneralMethod
Whenchangingfromfixed-pointtointervalbasedrootfindingtherearesomeimmediatedifferences.Therootisnolongeracrispintervalsinceiterationsusinganinterval-valuedfunctionproduceintervals.Asaresult,convergencecriterionsandthegeneralmethodsofrootfindingmusthaveasetvaluedapproach.Becausetheoptimalresidencetimeswillinherentlybethickintervalssincetherootfunc(t)isnowanintervalfunctionwithuncertainparameters,convergencewillbesolvedsimplebysettingamaximumnumberofiterations.ThereasonthisconvergenceguaranteesanenclosureoftherootisduetotheIntervalNewtonmethod,whichisbasedonthefixed-pointone.
IntervalNewtonMethod
Fordetailsofthemathandconvergencepropertiesofthealgorithm,refertoKulischetal.(2001).Thisalgorithm,whenfindingrootsoffixed-pointfunctionsexhibitsO(n^2)convergence.LiketheBisectionMethod,itrequiresabracketingintervaltobeginandwitheachiterationgeneratessmallerandsmallerintervals(ifpossible),whichareboundedbyintersectionswithpreviousiterations.Thealgorithmisasfollows:
wherethex’sareintervals,m(x)isthemidpointofatheintervalx,andfisthefunctionwhoserootweseek(Kulischetal.35-36).Thesimilarityofthisalgorithmtothefixed-pointNewtonmethodisthatastartingintervalmustbesuppliedandtheintervalsizeisdecreasedusingaf(x)/f’(x)termduringiterations.Thisalgorithmisalmostassimpleasthebisectionmethodsinceaneasyconvergencecriterionhasbeenspecified;however,theintervalNewtonrequiresimplementationofrootfunc’(t)andrequiresforanevaluatedintervalx.Throughcomputationaltrials,Ihavedecidedtoincreasethecomplexityofthefunctionevaluationsforthef(x)/f’(x)bycomputingitsunitedextensioninsteadofaintervalextension.Sincebothf(x)andf’(x)involvemanyintervalarithmeticcalculationsinanintervalextension,thevaluesareoverexpandedfromtheirtruesolutionsetandincomputingoptimalresidencetimesweareinterestedinfindingtightboundsontherootgivenmodeluncertainties.Asaresult,theintervalNewtonstepiscalculatedbyfindingtheminimumsandmaximumsoff(x)andf’(x)givenallthecombinationsoftheendpointsoftheparametersandthetimeintervalandproducingunitedextensionvaluesforbothquantities.
VariationandConstraintsonParameters
Asoutlinedin2.1.3,percentuncertaintiesinthealpha,beta,xt,andxmparameterswillbeaddedwhenanalyzingthemodelusingintervalrootfinding.Thisvariationofparametersservestoaddresstheproblemswithfixed-pointoptimizationoutlinedin2.1.1.Thepotentialuseforintervalparametersliesinmodeltesting,simulatingarangeofenvironmentandforagerstates,andrelaxationofconstraints.Besidesreplacingparameterswithintervals,wealsowanttoconductthestabilityanalysismentionedin2.1.3.Thisprocessinvolvesincreasinguncertaintiesofagivenparameterwhilekeepingallotherparametersconstantuntilthemodelfails.AfterspecifyingtheintervalNewtonalgorithmwecanconstructafailurecondition.FailureofthemodelcanbeconsideredtooccurwhentheintervalNewtonmethodreturnsoftheinitialintervalsuppliedtotheintervalrootfinderastheoptimaltimeintervalforanyNnumberofpatches(i.e.thealgorithmwasunabletoprovidetighterboundsforoptimalresidencetimethantheinitialinterval).Thisinitialintervalwillbechosentobeasufficientlythickintervalfromfixed-pointanalysis,whichenclosesthetimeintervalofinterest.Asaresult,theintervalwillbetheonechosentoinitiatethebisectionmethod.Thereareotherconditionsthatcouldclassifyfailure;however,fromamodelstandpoint,averythickintervalforanoptimalresidencetimeisnotveryusefulsinceitimpliestoomuchvariabilityinaforager’sbehaviour.Consequently,stabilityanalysisisanumericallyintensiveprocedureinvolvinggradualincreaseduncertaintiesofaparameteruntilmodelfailure.Itisinterestingmorefromatheoreticalstandpointsinceitdescribeslimitationsofthemodelaswellasextremesituationsandtheireffectsonaforager’soptimalresidencetime.
Chapter3:NumericalAnalysisofModel
Inthischapter,IwillincludeMatlabcodeofkeyfunctionsimplementingthegeneralmethodsdiscussedin2.2,supportingfunctions,andalgorithmsastheyareusedinthenumericalanalysisofthemodel.
3.1Fixed-PointAnalysis
3.1.1GraphicalAnalysis
Insection,thegraphsofr(t),rootfunc(t)androotfunc’(t)wereseentobeinformativeforselectinganinitialintervaltobeginthebisectionandintervalNewtonmethods.Also,thesegraphshelpvisualizethebehaviourofthemodelastimepassesaswellasconfirminganoptimalresidencetimeexists.Thefollowingfunctionsarerequiredtoimplementthefunctionsandgraphthem.Also,thefollowingparameterspecificationsfromWilsonareused(155):
functiongain=gain(t,alpha,K,beta,xt,xm,N)
%GAIN(t,alpha,K,beta,xt,xm,N)GainFunction
%
%Generalevaluationoftheg(t)functionwhich
%takesinthevariablesinorder:time,patchgrowth
%rate,patchcarryingcapacity,consumingrate,
%travelcost,metabolicrate,andnumberof
%resourcepatches
rstar=(1-beta/alpha/N)*K;
deltaBA=beta-alpha;
num=(alpha*rstar+...
K*(deltaBA))*exp(deltaBA*t)-...
alpha*rstar;
denom=K*deltaBA;
inLog=num/denom;
gain=(beta*K/alpha)*(log(inLog)-deltaBA*t)-...
(xt+xm*t);
functionintakeRate=r(t,alpha,K,beta,xt,xm,N)
%R(t,alpha,K,beta,xt,xm,N)IntakeRateFunction
%
%Calculatesthenetintakerate.Takesinthevariables
%inorder:time,patchgrowthrate,patchcarrying
%capacity,consumingrate,travelcost,metabolicrate,
%andnumberofresourcepatches
g=gain(t,alpha,K,beta,xt,xm,N);
intakeRate=g./t;
functiongainprime=gainprime(t,alpha,K,beta,xt,xm,N)
%GAINP(t,alpha,K,beta,xt,xm,N)GainFunctionDerivative
%
%Generalevaluationoftheg'(t)function
%
%Takesinthevariablesinorder:time,patchgrowth
%rate,patchcarryingcapacity,consumingrate,
%travelcost,metabolicrate,andnumberof
%resourcepatches
rstar=(1-beta/alpha/N)*K;
deltaBA=beta-alpha;
exppart=(alpha*rstar+K*deltaBA)*exp(deltaBA*t);
num=deltaBA*exppart;
denom=exppart-alpha*rstar;
gainprime=(beta*K/alpha)*(num./denom-deltaBA)-xm;
functionrootfunc=rootfunc(t,alpha,K,beta,xt,xm,N)
%ROOTFUNC(t,alpha,K,beta,xt,xm,N)RootFunction
%
%Thisfunctiontheonewewanttofindtherootof
%Takesinthevariablesinor
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 培训垃圾分类管理制度
- 早教培训教室管理制度
- 保洁安全培训与教育制度
- 市场部新员工培训制度
- 摩托车驾驶培训教学管理制度
- 规范培训支出管理制度
- 新员工培训课程规章制度
- 村医继续教育培训制度
- 麻醉医生培训管理制度
- 医院专科规范化培训制度
- 2024年风电、光伏项目前期及建设手续办理流程汇编
- 不良资产合作战略框架协议文本
- 2025年盐城中考历史试卷及答案
- 2026年孝昌县供水有限公司公开招聘正式员工备考题库完整参考答案详解
- 2025年郑州工业应用技术学院马克思主义基本原理概论期末考试模拟试卷
- 测绘资料档案汇交制度
- 2026年孝昌县供水有限公司公开招聘正式员工备考题库及完整答案详解
- 2025年六年级上册道德与法治期末测试卷附答案(完整版)
- 附件二;吊斗安全计算书2.16
- 学校食堂改造工程施工组织设计方案
- 2025年浙江省辅警考试真题及答案
评论
0/150
提交评论