版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
数字通信实验报告电子电路Multisim设计和仿真学院:专业和班级:姓名:学号:数字时钟的Multisim设计和仿真一、设计和仿真要求学习综合数字电子电路的设计、实现和调试1.设计一个24或12小时制的数字时钟。2.要求:计时、显示精确到秒;有校时功能。采用中小规模集成电路设计。3.发挥:增加闹钟功能。二、总体设计和电路框图1.设计思路1).由秒时钟信号发生器、计时电路和校时电路构成电路。2).秒时钟信号发生器可由555定时器构成。3).计时电路中采用两个60进制计数器分别完成秒计时和分计时;24进制计数器完成时计时;采用译码器将计数器的输出译码后送七段数码管显示。4).校时电路采用开关控制时、分、秒计数器的时钟信号为校时脉冲以完成校时。2.电路框图分计数器分计数器时计数器秒计数器译码器译码器译码器校时电路秒信号发生器数码管显示数码管显示数码管显示图1.数字钟电路框图三、子模块具体设计1.由555定时器构成的1Hz秒时钟信号发生器。由下面的电路图产生1Hz的脉冲信号作为总电路的初输入时钟脉冲。图图2.时钟信号发生电路2.分、秒计时电路及显示部分在数字钟的控制电路中,分和秒的控制都是一样的,都是由一个十进制计数器和一个六进制计数器串联而成的,在电路的设计中我采用的是统一的器件74LS160D的反馈置数法来实现十进制功能和六进制功能,根据74LS160D的结构把输出端的0110(十进制为6)用一个与非门74LS00引到CLR端便可置0,这样就实现了六进制计数。由两片十进制同步加法计数器74LS160级联产生,采用的是异步清零法。显示部分用的是七段数码管和两片译码器74LS48D。图图3.分秒计时电路3.时计时电路及显示部分由两片十进制同步加法计数器74LS160级联产生,采用的是同步置数法,u1输出端为0011(十进制为3)与u2输出端0010(十进制为2)经过与非门接两片的置数端。显示部分用的是七段数码管和两片译码器74LS48D。图图4.时计时电路4.校时电路校时电路采用开关控制时、分、秒计数器的时钟信号为校时脉冲以完成校时。如图,当开关A,B闭合,C,D断开时,电路进行正常的计时工作;当开关A,B断开,C,D闭合时,就可以自动进行校时。当然也可以手动校准时间,这是需要不断地闭合、断开开关,每次只改变一个数。其中C是校时开关,D是较分开关,开关E用来控制秒得校准,断开时,秒显示为0。图5.图5.校时电路四、整体电路原理图整体电路共分为五大模块:脉冲产生部分、计数部分、译码部分、显示部分、校时部分。主要由震荡器、秒计数器、分计数器、时计数器、BCD-七段显示译码/驱动器、LED七段显示数码管、时间校准电路构成。数字钟数字显示部分,采用译码与二极管串联电路,将译码器、七段数码管连接起来,组成十进制数码显示电路,即时钟显示。要完成显示需要6个数码管,八段的数码管需要译码器械才能显示,然后要实现时、分、秒的计时需要60进制计数器和24进制计数器,在在仿真软件中发生信号可以用函数发生器仿真,频率可以随意调整。60进制可能由10进制和6进制的计数器串联而成,频率振荡器可以由晶体振荡器分频来提供,也可以由555定时来产生脉冲并分频为1Hz。计数器的输出分别经译码器送显示器显示。计时出现误差时,可以用校时电路校时、校分。图6.图6.整体电路图五、仿真结果1.1hz脉冲产生电路仿真振荡器可由晶振组成,也可以由555与RC组成的多谐振荡器。由555定时器得到1Hz的脉冲,功能主要是产生标准秒脉冲信号和提供功能扩展电路所需要的信号。仿真分析开始前可双击仪器图标打开仪器面板。准备观察被测试波形。按下程序窗口右上角的启动/停止开关状态为1,仿真分析开始。若再次按下,启动/停止升关状态为0,仿真分析停止。电路启动后,需要调整示波器的时基和通道控制,使波形显示正常。为了便于观察特把频率加大。由图可见,所设计的电路可以产生方波。图7(b).产生图7(b).产生1Hz的脉冲波形图7(a).产生1kHz的脉冲波形脉冲输出电压观察在仪表栏里选用万用表接到555定时电路的输出端,设置万用表输出为直流电压。点击运行按钮,由仿真结果可知脉冲输出电压较稳定,开始小幅度变化,最后稳定在3.33v。与最初设计基本相符。图8.图8.脉冲数出电压电路3.60进制计数器计数仿真结果如图连接好电路,点击运行按钮,经过观察电路仿真结果所设计的电路是正确的,可以正常工作。计数显示从0到59。当计数器数到59后有一个短暂的60显示,这是异步清零的原因。实际工作后不会出现计数不准的现象。图图9.60进制计数器计数仿真电路4.24进制计数器计数仿真结果给电路加脉冲信号源,频率可以加大。如图,频率为1kHz,经过观察电路的仿真结果可以看到显示数字是从0到23与设计相符。特别注意74LS160的连接。图图10.24进制计数器计数仿真电路5.总体电路仿真结果1).秒计数向分计数进位仿真。如图连接好电路,点击运行后,可以看到秒计数计到59后可以向分计数器进位,电路运行正常。2).分计数向时计数进位仿真。给分计数器的个位计数片上加1kHz的时钟信号源,经过运行仿真后,可以看出分位计数到59时可以向时位进位。电路运行正常。6.开关校时电路仿真结果校时电路由开关、或非门和反相器构成,当A、B、E闭合,C、D断开时,电路正常计时;当A、B随意,C、D闭合时,时,分自动校时;当手动校时时,每开关一次示数增加1。E开关用来较秒的,闭合时正常工作,断开时秒显示器为零,整个电路不工作。可以起到较秒的作用。经过仿真实验开关设置合理,可以起到预定的效果,能够有效地校准时、分、秒。六、结论由震荡器、秒计数器、分计数器、时计数器、BCD-七段显示译码/驱动器、LED七段显示数码管设计了数字时钟电路,经过仿真得出较理想的结果,说明电路图及思路是正确的,可以实现所要求的基本功能:计时、显示精确到秒、时分秒校时。七、利用Multisim仿真软件设计体会通过对软件Multisim的学习和使用,进一步加深了对数字电路的认识。在仿真过程中遇到许多困难,但通过自己的努力和同学的帮助都一一克服了。首先,连接电路图过程中,数码管不能显示,后经图形放大后才发现是电路断路了。其次,布局的时候因元件比较多,整体布局比较困难,因子电路不如原电路直观,最后在不断努力下,终于不用子电路布好整个电路。调试时有的器件在理论上可行,但在实际运行中就无法看到效果,所以得换不少器件,有时无法找出错误便更换器件重新接线以使电路正常运行。在整个设计中,74LS160的接线比较困难,反复修改了多次,在认真学习其用法后采用归零法和置数法设计出60进制和24进制的计数器。同时,在最后仿真时,预置的频率一开始用的是1hz,结果仿真结果反应很慢,后把频率加大,这才在短时间内就能看到全部结果。总之,通过这次对数字时钟的设计与仿真,为以后的电路设计打下良好的基础,一些经验和教训,将成为宝贵的学习财富。中南大学数字通信原理实验报告指导老师学生姓名****学号*************目录实验一2实验目的2实验内容2基本原理2实验步骤9实验结果11实验一数字基带信号实验目的1、了解单极性码、双极性码、归零码、不归零码等基带信号波形特点。2、掌握AMI、HDB3码的编码规则。3、掌握从HDB3码信号中提取位同步信号的方法。4、掌握集中插入帧同步码时分复用信号的帧结构特点。5、了解HDB3(AMI)编译码集成电路CD22103。实验内容1、用示波器观察单极性非归零码(NRZ)、传号交替反转码(AMI)、三阶高密度双极性码(HDB3)、整流后的AMI码及整流后的HDB3码。2、用示波器观察从HDB3码中和从AMI码中提取位同步信号的电路中有关波形。3、用示波器观察HDB3、AMI译码输出波形。基本原理本实验使用数字信源模块和HDB3编译码模块。1、数字信源本模块是整个实验系统的发终端,模块内部只使用+5V电压,其原理方框图如图1-1所示,电原理图如图1-3所示(见附录)。本单元产生NRZ信号,信号码速率约为170.5KB,帧结构如图1-2所示。帧长为24位,其中首位无定义,第2位到第8位是帧同步码(7位巴克码1110010),另外16位为2路数据信号,每路8位。此NRZ信号为集中插入帧同步码时分复用信号,实验电路中数据码用红色发光二极管指示,帧同步码及无定义位用绿色发光二极管指示。发光二极管亮状态表示1码,熄状态表示0码。本模块有以下测试点及输入输出点:CLK 晶振信号测试点BS-OUT 信源位同步信号输出点/测试点(2个)FS 信源帧同步信号输出点/测试点NRZ-OUT(AK) NRZ信号(绝对码)输出点/测试点(4个)图1-1中各单元与电路板上元器件对应关系如下:晶振 CRY:晶体;U1:反相器7404分频器 U2:计数器74161;U3:计数器74193;U4:计数器40160并行码产生器 K1、K2、K3:8位手动开关,从左到右依次与帧同步码、数据1、数据2相对应;发光二极管:左起分别与一帧中的24位代码相对应八选一 U5、U6、U7:8位数据选择器4512三选一 U8:8位数据选择器4512倒相器 U20:非门74HC04抽样 U9:D触发器74HC74图1-1数字信源方框图图1-2帧结构下面对分频器,八选一及三选一等单元作进一步说明。(1)分频器74161进行13分频,输出信号频率为341kHz。74161是一个4位二进制加计数器,预置在3状态。74193完成÷2、÷4、÷8、÷16运算,输出BS、S1、S2、S3等4个信号。BS为位同步信号,频率为170.5kHz。S1、S2、S3为3个选通信号,频率分别为BS信号频率的1/2、1/4和1/8。74193是一个4位二进制加/减计数器,当CPD=PL=1、MR=0时,可在Q0、Q1、Q2及Q3端分别输出上述4个信号。40160是一个二一十进制加计数器,预置在7状态,完成÷3运算,在Q0和Q1端分别输出选通信号S4、S5,这两个信号的频率相等、等于S3信号频率的1/3。分频器输出的S1、S2、S3、S4、S5等5个信号的波形如图1-4(a)和1-4(b)所示。(2)八选一采用8路数据选择器4512,它内含了8路传输数据开关、地址译码器和三态驱动器,其真值表如表1-1所示。U5、U6和U7的地址信号输入端A、B、C并连在一起并分别接S1、S2、S3信号,它们的8个数据信号输入端x0~x7分别K1、K2、K3输出的8个并行信号连接。由表1-1可以分析出U5、U6、U7输出信号都是码速率为170.5KB、以8位为周期的串行信号。(3)三选一三选一电路原理同八选一电路原理。S4、S5信号分别输入到U8的地址端A和B,U5、U6、U7输出的3路串行信号分别输入到U8的数据端x3、x0、x1,U8的输出端即是一个码速率为170.5KB的2路时分复用信号,此信号为单极性不归零信号(NRZ)。图1-4分频器输出信号波形(4)倒相与抽样图1-1中的NRZ信号的脉冲上升沿或下降沿比BS信号的下降沿稍有点迟后。在实验二的数字调制单元中,有一个将绝对码变为相对码的电路,要求输入的绝对码信号的上升沿及下降沿与输入的位同步信号的上升沿对齐,而这两个信号由数字信源提供。倒相与抽样电路就是为了满足这一要求而设计的,它们使NRZ-OUT及BS-OUT信号满足码变换电路的要求。表1-14512真值表CBAINHDISZ00000x000100x101000x201100x310000x410100x511000x611100x7ΦΦΦ100ΦΦΦΦ1高阻FS信号可用作示波器的外同步信号,以便观察2DPSK等信号。FS信号、NRZ-OUT信号之间的相位关系如图1-5所示,图中NRZ-OUT的无定义位为0,帧同步码为1110010,数据1为11110000,数据2为00001111。FS信号的低电平、高电平分别为4位和8位数字信号时间,其上升沿比NRZ-OUT码第一位起始时间超前一个码元。图1-5FS、NRZ-OUT波形2.HDB3编译码原理框图如图1-6所示。本模块内部使用+5V和-5V电压,其中-5V电压由-12V电源经三端稳压器7905变换得到。本单元有以下信号测试点:NRZ 译码器输出信号BS-R 锁相环输出的位同步信号(AMI)HDB3 编码器输出信号BPF 带通滤波器输出信号DET (AMI)HDB3整流输出信号图1-6HDB3编译码方框图本模块上的开关K4用于选择码型,K4位于左边A(AMI端)选择AMI码,位于右边H(HDB3端)选择HDB3码。图1-6中各单元与电路板上元器件的对应关系如下:HDB3编译码器 U10:HDB3编译码集成电路CD22103A单/双极性变换器 U11:模拟开关4052双/单极性变换器 U12:非门74HC04相加器 U17:或门74LS32带通滤波器 U13、U14:运放UA741限幅放大器 U15:运放LM318锁相环 U16:集成锁相环CD4046信源部分的分频器、三选一、倒相器、抽样以及(AMI)HDB3编译码专用集成芯片CD22103等电路的功能可以用一片EPLD(EPM7064)芯片完成,说明见附录四。下面简单介绍AMI、HDB3码编码规律。AMI码的编码规律是:信息代码1变为带有符号的1码即+1或-1,1的符号交替反转;信息代码0的为0码。AMI码对应的波形是占空比为0.5的双极性归零码,即脉冲宽度τ与码元宽度(码元周期、码元间隔)TS的关系是τ=0.5TS。HDB3码的编码规律是:4个连0信息码用取代节000V或B00V代替,当两个相邻V码中间有奇数个信息1码时取代节为000V,有偶数个信息1码(包括0个信息1码)时取代节为B00V,其它的信息0码仍为0码;信息码的1码变为带有符号的1码即+1或-1;HDB3码中1、B的符号符合交替反转原则,而V的符号破坏这种符号交替反转原则,但相邻V码的符号又是交替反转的;HDB3码是占空比为0.5的双极性归零码。设信息码为00000110000100000,则NRZ码、AMI码,HDB3码如图1-8所示。分析表明,AMI码及HDB3码的功率谱如图1-9所示,它不含有离散谱fS成份(fS=1/TS,等于位同步信号频率)。在通信的终端需将它们译码为NRZ码才能送给数字终端机或数模转换电路。在做译码时必须提供位同步信号。工程上,一般将AMI或HDB3码数字信号进行整流处理,得到占空比为0.5的单极性归零码(RZ|τ=0.5TS)。这种信号的功率谱也在图1-9中给出。由于整流后的AMI、HDB3码中含有离散谱fS,故可用一个窄带滤波器得到频率为fS的正弦波,整形处理后即可得到位同步信号。图1-8NRZ、AMI、HDB3关系图图1-9AMI、HDB3、RZ|τ=0.5TS频谱可以用CD22103集成电路进行AMI或HDB3编译码。当它的第3脚(HDB3/AMI)接+5V时为HDB3编译码器,接地时为AMI编译码器。编码时,需输入NRZ码及位同步信号,它们来自数字信源单元,已在电路板上连好。CD22103编码输出两路并行信号+H-OUT和-H-OUT,它们都是半占空比的正脉冲信号,分别与AMI或HDB3码的正极性信号及负极性信号相对应。这两路信号经单/双极性变换后得到AMI码或HDB3。双/单极性变换及相加器构成一个整流器。整流后的DET信号含有位同步信号频率离散谱。本单元中带通滤波器实际是一个正反馈放大器。当无输入信号时,它工作在自激状态;而输入信号将放大器的自激信号频率向码速率方向牵引。它的输出BPF是一个幅度和周期都不恒定的准周期信号。对此信号进行限幅放大处理后得到幅度恒定、周期变化的脉冲信号,但仍不能将此信号作为译码器的位同步信号,需作进一步处理。当锁相环的自然谐振频率足够小时,对输入的电压信号可等效为窄带带通滤波器(关于锁相环的基本原理将在实验三中介绍)。本单元中采用电荷泵锁相环构成一个Q值约为35的的窄带带通滤波器,它可以输出一个符合译码器要求的位同步信号BS-R。译码时,需将AMI或HDB3码变换成两路单极性信号分别送到CD22103的第11、第13脚,此任务由双/单变换电路来完成。当信息代码连0个数太多时,从AMI码中较难于提取稳定的位同步信号,而HDB3中连0个数最多为3,这对提取高质量的位同信号是有利的。这也是HDB3码优于AMI码之处。HDB3码及经过随机化处理的AMI码常被用在PCM一、二、三次群的接口设备中。在实用的HDB3编译码电路中,发端的单/双极性变换器一般由变压器完成;收端的双/单极性变换电路一般由变压器、自动门限控制和整流电路完成,本实验目的是掌握HDB3编码规则,及位同步提取方法,故对极性变换电路作了简化处理,不一定符合实用要求。CD22103的引脚及内部框图如图1-10所示,详细说明如下:图1-10CD22103的引脚及内部框图(1)NRZ-IN 编码器NRZ信号输入端;(2)CTX 编码时钟(位同步信号)输入端;(3)HDB3/AMI 码型选择端:接TTL高电平时,选择HDB3码;接TTL低电平时,选择AMI码;(4)NRZ-OUT HDB3译码后信码输出端;(5)CRX 译码时钟(位同步信号)输入端;(6)RAIS 告警指示信号(AIS)检测电路复位端,负脉冲有效;(7)AIS AIS信号输出端,有AIS信号为高电平,无ALS信号时为低电平;(8)VSS 接地端;(9)ERR 不符合HDB3/AMI编码规则的误码脉冲输出端;(10)CKR HDB3码的汇总输出端;(11)+HDB3-IN HDB3译码器正码输入端;(12)LTF HDB3译码内部环回控制端,接高电平时为环回,接低电平时为正常;(13)-HDB3-IN HDB3译码器负码输入端;(14)-HDB3-OUT HDB3编码器负码输出端;(15)+HDB3-OUT HDB3编码器正码输出端;(16)VDD 接电源端(+5V)CD22103主要由发送编码和接收译码两部分组成,工作速率为50Kb/s~10Mb/s。两部分功能简述如下。发送部分:当HDB3/AMI端接高电平时,编码电路在编码时钟CTX下降沿的作用下,将NRZ码编成HDB3码(+HDB3-OUT、-HDB3-OUT两路输出);接低电平时,编成AMI码。编码输出比输入码延迟4个时钟周期。接收部分:(1)在译码时钟CRX的上升沿作用下,将HDB3码(或AMI码)译成NRZ码。译码输出比输入码延迟4个时钟周期。(2)HDB3码经逻辑组合后从CKR端输出,供时钟提取等外部电路使用;(3)可在不断业务的情况下进行误码监测,检测出的误码脉冲从ERR端输出,其脉宽等于收时钟的一个周期,可用此进行误码计数。(4)可检测出所接收的AIS码,检测周期由外部RAIS决定。据CCITT规定,在RAIS信号的一个周期(500s)内,若接收信号中“0”码个数少于3,则AIS端输出高电平,使系统告警电路输出相应的告警信号,若接收信号中“0”码个数不少于3,AIS端输出低电平,表示接收信号正常。(5)具有环回功能实验步骤本实验使用数字信源单元和HDB3编译码单元。熟悉数字信源单元和HDB3编译码单元的工作原理。接好电源线,打开电源开关。 用示波器观察数字信源单元上的各种信号波形。用信源单元的FS作为示波器的外同步信号,示波器探头的地端接在实验板任何位置的GND点均可,进行下列观察:(1)示波器的两个通道探头分别接信源单元的NRZ-OUT和BS-OUT,对照发光二极管的发光状态,判断数字信源单元是否已正常工作(1码对应的发光管亮,0码对应的发光管熄);(2)用开关K1产生代码×1110010(×为任意代码,1110010为7位帧同步码),K2、K3产生任意信息代码,观察本实验给定的集中插入帧同步码时分复用信号帧结构,和NRZ码特点。 用示波器观察HDB3编译单元的各种波形。 仍用信源单元的FS信号作为示波器的外同步信号。示波器的两个探头CH1和CH2分别接信源单元的NRZ-OUT和HDB3单元的AMI-HDB3,将信源单元的K1、K2、K3每一位都置1,观察全1码对应的AMI码(开关K4置于左方AMI端)波形和HDB3码(开关K4置于右方HDB3端)波形。再将K1、K2、K3置为全0,观察全0码对应的AMI码和HDB3码。观察时应注意AMI、HDB3码的码元都是占空比为0.5的双极性归零矩形脉冲。编码输出AMI-HDB3比信源输入NRZ-OUT延迟了4个码元。 (2)将K1、K2、K3置于011100100000110000100000态,观察并记录对应的AMI码和HDB3码。 (3)将K1、K2、K3置于任意状态,K4先置左方(AMI)端再置右方(HDB3)端,CH1接信源单元的NRZ-OUT,CH2依次接HDB3单元的DET、BPF、BS-R和NRZ,观察这些信号波形。观察时应注意:HDB3单元的NRZ信号(译码输出)滞后于信源模块的NRZ-OUT信号(编码输入)8个码元。DET是占空比等于0.5的单极性归零码。BPF信号是一个幅度和周期都不恒定的准正弦信号,BS-R是一个周期基本恒定(等于一个码元周期)的TTL电平信号。信源代码连0个数越多,越难于从AMI码中提取位同步信号(或者说要求带通滤波的Q值越高,因而越难于实现),而HDB3码则不存在这种问题。本实验中若24位信源代码中连零很多时,则难以从AMI码中得到一个符合要求的稳定的位同步信号,因此不能完成正
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 护理生培训考核制度
- 设计师惩罚考核制度
- 生产标准化考核制度
- 厨房各岗位考核制度
- 爆破公司管理考核制度
- 计算机协会考核制度
- 医保基金使用考核制度
- 工厂定期全员考核制度
- 物业人员收费考核制度
- 软件工程师考核制度
- 智能网联汽车感知技术与应用 课件 项目1 智能网联汽车感知技术概述
- 低空经济在红河州乡村振兴中的实践与探索报告2025
- 港口复工复产安全培训课件
- 2023年高考历史真题新课标卷及解析
- 歌颂内蒙古的诗歌
- uom理论考试题库及答案2025
- 2025年文字排版与设计考试试题及答案
- 新能源充电桩施工方案
- 2015-2024年十年高考地理真题分类汇编专题03 地球上的大气(原卷版)
- 瘢痕早期预防胜于治疗
- DLT 572-2021 电力变压器运行规程
评论
0/150
提交评论