




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
ENABLINGENABLINGTHETHENEXTNEXTGENERATIONGENERATION
OFOFCLOUDCLOUD&&AIAIUSINGUSING800GB/S800GB/S
OPTICALOPTICALMODULESMODULES
EnablingTheNextGenerationOf
Cloud&AiUsing800Gb/sOpticalModules
1.CloudExpansionSetsPacefor
OpticalModules
Cloudcomputingandstoragehavetakenoverasthetechnologicalbackbonetoamajorityofourmodernbusinessapplications
providinginfrastructure,platform,softwareorvirtuallyanythingasaservice,andtopersonalappliancescoveringphones,
laptopsandvarioussmartdevices.UnlikewirelessinfrastructureandstandardslikeLTEand5G,wherethestandardizationand
technologyareaheadoftheactualapplications,providinga“builditandtheywillcome”businessmodel,therapidandall-
encompassingexpansionofcloudapplicationsandservicesvigorouslypushesthedevelopmentofhigh-techelectronicsand
optics,whichoftenseemtorunbehindthepacesetbytheendusers.Theexponentialresourcegrowthofartificialintelligence
applicationsandtheinherentneedforhighbandwidthforthetransportofbigdataputsafurtherstrainondatacenter
architecturesandtheunderlyinginterconnects.Thus,thedeploymentsoftheAIcloud,aregainingmomentum.
Cloudapplications,AR/VR,AI,and5Gapplicationgeneratemoreandmoretraffic.Theexplosivegrowthoftrafficrequireshigher
bandwidth.AsshowninFigure1,globalinterconnectionbandwidthcapacitywillgrowata48%CAGRin2017-2021.
WORLDWIDEGROWTH
10,000(Tbps)
8,000CAGR:+48%
6,000
4,000
2,000
0
20172018201920202021
US.EUAPLATAM
Figure1–GlobalInterconnectionIndex(Source:Equinix)
AsshowninFigure2,marketanalystsareprojectingafirstadoptionof400GDatacommodulesin2020withalargeradoption
of2x400G/800Gmodulesin2022-23.
$7,000
$6,000
LIGHTCOUNTING
$5,000
$4,000
$3,000
Sales($M)
$2,000
$1,000
$-
20202021202220232024
100G200G400G2x400G
Figure2–Projectionofthemarketrevenuefordatacommodules(Source:LightCounting)
01www.800G
EnablingTheNextGenerationOf
Cloud&AiUsing800Gb/sOpticalModules
“OurLightCountingForecastmodelindicatesthatoperatorsofClouddatacenterswillneedtodeploy800Gopticsby2023-2024
tokeepupwiththegrowthofdatatraffic,”statedfounderandCEOofLightCountingMarketResearch,VladimirKozlov,PhD.
“Mostof800Gwillbestillpluggabletransceivers,butweexpecttoseesomeimplementationofco-packagedopticsaswell.”
DatacentercloudarchitecturesarebeingpacedbythecapacityscalingofswitchingASICs,whichisdoublingapproximately
everytwoyears,unfazedbythetalkabouttheendofMoore’sLaw.Today,12.8Tb/sEthernetswitchingchipsarebeing
commerciallydeployedwithfirstchipdesignfirmsalreadyprototyping25.6Tb/ssiliconfordeploymentnextyear,asshownin
Figure3.Thisputsfurtherpressureontothedensificationofopticalinterconnects,whichdonotscaleatthespeedofCMOSdue
tothelackofacommondesignmethodologyacrossthevariouscomponentsandacommonlargescaleprocess.
Inthepastfewyears,therapidexpansionofcloudserviceswasfueledbytherapidadoptionandpriceerosionof100Gshort
reachopticalmodulesbasedondirectdetectiontechnologyandnon-returntozero
(NRZ)modules.Afterthebeginningofthe400GbEBandwidthAssessmentactivity
inIEEEinMarch2011,initialdeploymentof400Gopticalmodulesisfinally
startingin2020withastrongerrampprojectedfor2021,asshowninFigure2.
Infact,intheinitialusecases,400Gmoduleswillbemainlyusedtotransport
4x100Gover500minDR4applicationand2x200GFR4opticsover2km,not
makinguseofthe400GbEMAC.Atthesametime,itseemsunlikelythat
IEEEwouldsoonstandardizethenextgenerationofoptics,suchas800GbE,
meaningthatthestandardizationofhigherdensityopticsforthetransportof
8x100GbEor2x400GbEforthe25.6Tb/sand51.2Tb/sswitchinggenerations
wouldbewellbehindactualmarkettimelinerequirementsof2021-22.This
raisestheneedfor800Gindustryinteroperabilityoutsideoftheestablished
standardbodies.
800G
QSFP112-DD&OSFP
400G32x@1U/64x@2U
QSFP56-DD&OSFP
32x@1U25.6T/51.2T
100GQSFP28
64x@2U12.8T256/512Lanes
100GQSFP28
32x@1U6.4T256Lanes
10GSerdes
40GQSFP+
32x@1U3.2T256Lanes25GSerdes
50GSedes
128Lanes
EthernetswitchingchipcapacityswitchingEthernet1.28T
100GSerdes
128Lanes
20132015201720192021-22
Figure3–Historicalevolutionofdatacenterswitchingchipcapacity
www.800G02
EnablingTheNextGenerationOf
Cloud&AiUsing800Gb/sOpticalModules
2.DataCenterArchitectures
Thehyperscaledatacentermarketisquitefragmentedwithrespecttotheuseddatacenterarchitecturesorthedemandfor
pluggableoptics.DatacentersforoperatorswithalargerexternalcustomerbaseofferingXaaSaremorelikelydominatedby
north-southclient-to-servertrafficandcouldhavemoresmallergeographicalclusters.Ontheotherhand,operatorswitha
largeinternaldemandforcloudcomputingandstorageseemoreeast-westtrafficbetweenserversandcouldoperatetheir
datacentersashugeclusterswithahigherradix.Evenincaseofsimilarusecases,theoperatorscandeployindividualflavorsof
networkarchitectureorhaveasubjectivepreferencetoacertaininterconnectssolutionsuchasPSM4orCWDM4orothercost-
downvariantsofthereof,suchas100GCWDM4-OCP.
Onecanderiveatleasttwomaintypesoftypicaldatacentersarchitectures.Figure4showsthecommonabstractionofahyper-
scaledatacenteranditsopticalinterconnectroadmap.Ingeneral,thesearchitecturesarelarger,haveacertainconvergence
fromlayertolayer,e.g.3:1,andrelyoncoherentZRinterconnectsattheSpinelayer.Animportantboundaryconstraintfor800G
networkinginthiscaseisthat200Ginterconnects,albeitnotserial,areusedattheservertoTORlayer,whereastheTOR-leaf/
spinelayerwouldtypicallyrelyonPSM44x200Ginafan-outconfiguration.
DC
TypicalOpticalmoduleevolution
Scenario4Scenario4100GQSFP28400GQ-DD800G
(DCI)DWDMZRZR
Spine.....
Scenario340GQSFP+100GQSFP28400GQ-DD800G
Scenario3(Spine-Leaf)eSR4/LR4CWDM4/PSM4DR4/FR4PSM4/FR4
.....
Leaf
Scenario240GQSFP+100GQSFP28400GQ-DD800G
Scenario2
(Leaf-TOR)SR4SR4/PSM4SR8/DR4PSM8/4
TOR.....
Scenario1Scenario110GSFP+25GSFP28100G200G
(TOR-Server)AOC/DACAOC/DACAOC/DACAOC
Server
2012201620192022
Figure4–Typicalhyperscaledatacenterinterconnectroadmap
Forthetypicalhyperscaledatacenternetwork(DCN),deploying200Gserverswillrequirean800Gfabric.It’satraffic
convergencenetwork,whichdependsonthebalancebetweenservicerequirementsandCapexoptimization.Table1showsthe
detailedreachrequirementsdependingontheDCNlayer.
03www.800G
EnablingTheNextGenerationOf
Cloud&AiUsing800Gb/sOpticalModules
Table1–DetailedrequirementsofthetypicalhyperscaleDCN
ScenarioServertoTORTORtoLeafLeaftoSpineDCI
Bandwidth200G800G800G800G
4mwithinrack;≥70m
Distance500m/2km80km-120km
20mcross-rack100mispreferred
ModulesizeQSFP-DD/OSFPQSFP-DD/OSFPQSFP-DD/OSFPQSFP-DD/OSFP
Figure5showsthedatacenternetworkarchitectureofanAIcluster,withlesslayersthanthehyperscalenetworkduetothe
factthatitlacksanyconvergencebetweenthelayers.ThedesignofanAIcloudimpliesdifferenttrafficflowswithmuchlarger
bigdataflowsandlessfrequentswitching.
.....
Spine
Opticalmodulerateevolution(AI/HPCCluster)
Scenario2
Scenario2
400GPSM4800GPSM8
(Spine-Leaf)
.....
Leaf
Scenario1
Scenario1
2*200GE2*400GE
(Leaf-Server)
Server
20192021
Figure5–AI/HPCopticalinterconnectroadmap
FortheAI/HPCclusterDCN,deploying400Gserverswillrequirean800Gfabric.ThisDCNdoesn’thaveanytrafficconvergence,
withfasterdeploymentthaninthecaseofFigure4.Table2showsthedetailedrequirements.
Table2–DetailedrequirementsoftheAI/HPCclusterDCN
ScenarioServertoLeafLeaftoSpine
Bandwidth400G800G
4mwithinrack;
Distance500m
20mcross-rack
ModulesizeQSFP-DD/OSFPQSFP-DD/OSFP
Latency92ns(IEEEPMAlayer)92ns(IEEEPMAlayer)
Notexplicitlyshown,butalsorelevant,areDCnetworksforsmallercloudorenterprises,wherethedownstreamtotheserveris
decoupledfromthefan-outratesoftheLeaf-Spinelayerandtypicallyhasslowerserverinterconnectspeeds.
www.800G04
EnablingTheNextGenerationOf
Cloud&AiUsing800Gb/sOpticalModules
3.8x100GSolutionforSRScenario
3.1800GSRscenariorequirementanalysis
Fortheclassof100m,theindustryisfacingthebasiclimitationsofVCSELsignalingatspeedsof100G/lane.Here,multi-mode
technologywilllikelyallowforreachesof30-50m,thusonlypartiallycoveringtheSRclass,whichisprimarilyemployedby
Chinesehyperscaledatacenteroperators.TheMSAtargetsthedevelopmentofalow-cost8x100GmoduleforSRapplications,
coveringthesweetspotof60-100m,asshowninFigure6.Particularly,theMSAisintendedtospecifyalowercosttransmitter
technologywiththepotentialtoleveragesub-linearcostscalingwithahighdegreeofintegration.Suchamodulewouldallow
foranearlytime-to-marketdense800Gsolution.Alowcost800GSR8couldalsosupportthepotentialtrendsofanincreasing
switchradixanddecreasingservercount-per-rack,whichmaycombinetofavormiddle-of-the-rack(MoR)andend-of-the-
rack(EoR)ortop-of-the-rack(ToR)architectures,byprovidingalowcostserial100Gserverinterconnect.AsshowninFigure
6,theMSAwilldefinealowercostPMDforsinglemodefiberinterconnectsbasedon100GPAM4.Duetothelowlatency
requirementsofSRapplications,KP4forwarderrorcorrection(FEC)willbeusedend-to-endwithasimpleclockrecoveryand
dataequalizationunitinthemodule.Finally,theMSAwillspecifyaconnectorforthePSM8moduleswhichenablesafan-out
to8x100G.
MACANDHIGHERLAYERS
RECONCILIATION
8x100G
400GMII400GMII
400GBASE-R400GBASE-R
PCSPCS
DSP
PMAPMA
400GAUI-4C2M400GAUI-4C2M
PMAPMA
800GMSA
PMDPMD
MEDIUMMEDIUM8x100G
PSM8
Figure6–800GSR8blockdiagrams
3.2TechnicalFeasibilityof8x100Gsolutions
Asmentionedabove,signalingrateupto100Gperlanemaylimittheevolvementofmulti-modefiber(MMF)basedsolution
from400G-SR8to800G-SR8.BasedonthetheoreticalmodelusedinIEEE,wecanreckonthatthetransmissiondistancethat
MMFcansupportisnomorethan50masthebaudrateupto50G(SeeTable3).Thelimitationfactorsarefromthelimited
bandwidthofVCSELandthemodaldispersionofMMF.Withtheoptimizationindevices,fibermediumaswellasenhanced
DSPalgorithms,100mMMFtransmissionmayberealizedatthecostofhigherexpense,higherlatency,andlargerpower
consumption.Hence,in800GPluggableMSA,werecommendthatthe800G-SR8scenarioistakenoverbySMFbasedsolution.
05www.800G
EnablingTheNextGenerationOf
Cloud&AiUsing800Gb/sOpticalModules
Table3–FiberchannelbandwidthandtransmissiondistanceofMMFreckonedbythetheoreticalmodelusedinIEEE
Fiberchannel
Transmission
BitrateSignalTypeFiberTypebandwidthIEEEstandards
Distance(m)
(GHz•km)
50GbpsPAM4OM42.301100m50G-SR,100G-SR2
200G-SR4,400G-
50GbpsPAM4OM31.54170mSR8
100GbpsPAM4OM4/OM52.301/2.37750mDefinednow
100GbpsPAM4OM31.54135m-
InordertoguaranteetheadvantagesonthecostandpowerconsumptionoftheSMFbasedsolution,reasonablePMD
standardrequirementsareindispensablein800G-SR8.ThePMDrequirementstobedefinedshouldensurethat1)diverse
transmittertechniques,suchasDML,EML,andsiliconphotonics(SiPh),canbeappliedinsuchscenario;2)allthepotentialof
thecomponentscanbereleasedadequatelytoachievethetargetinglinkperformance;3)keyparametersinPMDlayersshould
berelaxedasmuchaspossible,inthecontextofmaintainingareliablelinkperformance.Accordingtothesethreeprinciples,we
willconductsomebriefinvestigationsanddiscussionsasfollows.
ThepowerbudgetoftheSMFbased800G-SR8solutionwouldbequitesimilarwiththatdefinedinIEEE400G-SR8.Theonly
issuetobedeterminedistheinsertionlossofnewdefinedPSM8SMFconnectors.ItmeansthatthepowerbudgetinSR
scenariocanbeachievedwithoutahitchbasedoncurrentlymatureopticalandelectroniccomponentsandDSPASICsused
in400GEopticalinterconnection.Therefore,apartfromspecifyingtheconnectorforthePSM8modules,thekeyissueforthe
definitionofPMDparametersin800SR8scenarioistofindoutthesuitableopticalmodulationamplitude(OMA),extinction
ratio(ER),transmitterdispersioneyeclosurequaternary(TDECQ)ofthetransmitterandsensitivityofreceiver.Inordertoset
theseparametersintothesuitableposition,thebiterrorration(BER)performanceofthediversetransmittersisinvestigatedand
assessed.
EMLBERvs.OMASiPh.BERvs.OMADMLBERvs.OMA
1.00E-021.00E-021.00E-02
1.00E-031.00E-031.00E-03
1.00E-041.00E-041.00E-04
1.00E-051.00E-051.00E-05
BER1.00E-06BER1.00E-06BER1.00E-06
1.00E-071.00E-071.00E-07
FEC:KP4FEC:KP4FEC:KP4
1.00E-081.00E-081.00E-08
EMLonlinetestresultSiPh.onlinetestresultDMLonlinetestresult
1.00E-091.00E-091.00E-09
-10-8-6-4-202-10-8-6-4-202-10-8-6-4-202
OMA(dBm)OMA(dBm)OMA(dBm)
(a)(b)(c)
Figure7–(a)EMLBERvs.OMAresultsbasedoncommercialavailable400GDSPASICs;(b)SiliconPhotonicsBERvs.OMAresults
basedoncommercialavailable400GDSPASICs,(c)DMLBERvs.OMAresultsbasedoncommercialavailable400GDSPASICs
Figure7showsthreeBERvsOMAcurvesof100GbpsPAM4signal,whichcorrespondtodifferenttransmittertechnologies
respectively,asonlineresultsandobtainedusingcommercial400GDSPASICs.Actually,theBERperformancesofEMLandSiPh
for100GperlaneillustratedinFigure7(a)and(b)arewell-knownresultssincethesetwosolutionshavebeenextensively
discussedinthepastfewyears.ConsideringrelativelylowlaunchingopticalpowerofSiPhtransmitterandgoodenough
sensitivityofallthreesolutions,theminimumOMArequirementin800G-SR8isrecommendedtoberelaxedappropriately.
www.800G06
EnablingTheNextGenerationOf
Cloud&AiUsing800Gb/sOpticalModules
TheBERperformanceoftheDMLinFigure7(c)showsthattheOMAsensitivityinthiscaseiscomparablewiththatinthecase
ofEMLorSiPh,eventhoughthecommercialDMLusedinherehasrelativelylowerbandwidththanEMLandSiPh.Thisresult
impliesthatthecommercialDSPASICsusedinpracticehavemuchstrongerequalizationabilitythanthereferencereceiverIEEE
definedin400GE,andthusitcansupportthetransmitterwithcomparativelylowbandwidthtoachievethetargetingpower
budget800G-SRrequired.InordertoreleasethepotentialoftheDSPunitadequatelyfor800GSR8PMD,referencereceiverfor
compliancetest(i.e.TDECQ)requirestobere-definedtomatchthepracticalequalizationabilityofcommercialDSPs,i.e.more
tapsnumbersthancurrentlydefined5tapsaredesired.Meanwhile,consideringtherelativelylowsensitivityrequirementinSR
scenarioandrestrictionofthepowerconsumptionofthe800Gmodule,alowcomplexityDSPmodeisrecommendedinfuture
modules.AnotherkeyparameterisERthatisrelatedtothepowerconsumptiondirectly.AlowerERisfavoredaslongasitdoes
notimpactthereliabilityofthelink.Basedontheaboveanalysis,webelievethatalowcostandpowerconsumptionSMF-
basedsolutionisfeasibleandpromisingin800G-SR8scenario.
4.4x200GSolutionforFRScenario
4.1800GFRscenariorequirementanalysis
200GperlanePAM4technologyisthenextmajortechnologicalstepforopticalintensitymodulated,directdetection
interconnectsandwillbethefoundationfora4-lane800Gconnectivity,aswellasanessentialbuildingblockforfuture1.6Tb/
sinterconnects.AsshowninFigure8,theMSAwilldefinethefullPMDandpartialPMAlayersincludinganewlowpower,low
latencyFECasawrapperontopoftheKP4FECofthe112Gelectricalinputsignals,inordertoimprovethenetcodinggain
(NCG)ofthemodem.Oneofthekeygoalsofthisindustryalliancewillbethedevelopmentofnewwidebandwidthelectrical
andopticalanalogcomponentsforthetransmitterandreceiverassembliesincludingdigital-to-analogandanalog-to-digital(AD/
DA)converters.Inordertoachievetheaggressivepowerenveloptargetsofpluggablemodules,theDSPchipswillbedesigned
inCMOSprocesswithlowernmnodeandemploylowpowersignalprocessingalgorithmstoachieveequalizationofthechannel.
MACANDHIGHERLAYERS
RECONCILIATION
8x112G8x112G
400GMII400GMII
400GBASE-R400GBASE-R
PCSPCS
DSPDSP
PMAPMA
400GAUI-4C2M400GAUI-4C2M1234
PMAPMAMux
800GMSA
PMD
MEDIUM
NewPMD4x224G4x224G
PSM4CWDM4
Figure8–800GFR4/PSM4blockdiagrams
07
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025婚纱摄影工作室合作合同范本
- 2025水果销售居间合同
- 2025工程采购合同范本
- 2025聘请家庭保姆合同范本
- 2025写字楼租赁合同书范文
- 2025年进出口贸易合同范本
- 2025成都市土地流转合同
- 8.1《薪火相传的传统美德》教案 2024-2025学年统编版道德与法治七年级下册
- 《电子书下载流程》课件
- 《胃癌内科治疗》课件
- 苏州市施工图无障碍设计专篇参考样式(试行)2025
- 2025-2030中国锻造(锻件)行业投资策略及规划建议研究研究报告
- 影城员工考核试题及答案
- 新药临床试验合作协议
- 设备部门级安全培训
- 网络舆情分析与应对策略
- 华为经营管理丛书华为的研发管理
- 个人装载机租赁协议书范本
- 2022年高级经济师《运输经济》试题真题及答案
- 2023-2024学年沪科版(2019)高中信息技术必修一第三单元项目六《解决温标转换问题-认识程序和程序设计语言》教学设计
- 《猪的传染病》课件
评论
0/150
提交评论