河南省商丘市榆厢乡中学高二数学文期末试题含解析_第1页
河南省商丘市榆厢乡中学高二数学文期末试题含解析_第2页
河南省商丘市榆厢乡中学高二数学文期末试题含解析_第3页
河南省商丘市榆厢乡中学高二数学文期末试题含解析_第4页
河南省商丘市榆厢乡中学高二数学文期末试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南省商丘市榆厢乡中学高二数学文期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知,则=()A.

B.

C.

D.参考答案:B略2.不等式组的解集记为D,有下面四个命题:p1:?(x,y)∈D,x+2y≥1,p2:?(x,y)∈D,x+2y≥2,p3:?(x,y)∈D,x+2y≤3,p4:?(x,y)∈D,x+2y≤﹣1.其中的真命题是(

) A.p2,p3 B.p1,p2 C.p1,p4 D.p1,p3参考答案:A考点:命题的真假判断与应用.专题:不等式的解法及应用.分析:作出不等式组的表示的区域D,对四个选项逐一分析即可.解答: 解:作出不等式组表示的区域:由图知,区域D为直线x+y=1与x﹣2y=4相交的上部角型区域,显然,区域D有一部分在x+2y=1的下方,故p1:?(x,y)∈D,x+2y≥1错误;区域D有一部分在x+2y=2的上方,故p2:?(x,y)∈D,x+2y≥2正确,区域D有一部分在x+2y=3的下方,故p3:?(x,y)∈D,x+2y≤3正确,区域D全部在x+2y=﹣1的上方,故p4:?(x,y)∈D,x+2y≤﹣1错误.综上所述p2,p3正确,故选:A点评:本题考查命题的真假判断与应用,着重考查作图能力,熟练作图,正确分析是关键,属于难题.3.下列说法:(1)命题“,使得”的否定是“,使得”(2)命题“函数在处有极值,则”的否命题是真命题(3)是(,0)∪(0,)上的奇函数,时的解析式是,则的解析式为其中正确的说法的个数是(

)A.0个 B.1个 C.2个 D.3个参考答案:C4.已知正四棱柱的体对角线的长为,且体对角线与底面所成角的余弦值为,则该正四棱柱的体积等于 .参考答案:8略5.已知函数f(x)=sinx–2x,若,则的最大值为(

)A.

B.3

C.12

D.16参考答案:D略6.已知焦点在轴上的椭圆的离心率为,它的长轴长等于圆的半径,则椭圆的标准方程是(

A.

B.

C.

D.参考答案:D7.若函数在(-∞,+∞)上单调递增,则实数a的取值范围是(

)A. B. C.[-1,1] D.参考答案:A【分析】根据题意函数在上单调递增,转化为在恒成立,利用换元法,结合一元二次函数的性质,列出相应的不等式,即可求解出的取值范围。【详解】因为函数在单调递增,所以恒成立,即恒成立,因为,所以,即.故答案选A。【点睛】本题考查了已知函数的单调性求参数的范围,解题时常与导数的性质与应用相结合。8.若复数(1+bi)(2+i)是纯虚数(i是虚数单位,bR),则b等于 (

)A.2 B.-2 C.- D.参考答案:A9.则大小关系是(

A

B

C

D参考答案:D10.用秦九昭算法计算多项式当时的值时,则(

)A.63 B.31 C.15 D.6参考答案:B多项式可改写为,按照从内向外的顺序,依次计算一次多项式当时的值:;;;。选B。

二、填空题:本大题共7小题,每小题4分,共28分11.经过两点A(﹣m,6)、B(1,3m)的直线的斜率是12,则m的值为.参考答案:﹣2【考点】I3:直线的斜率.【分析】利用两点间的斜率公式即可求得m的值.【解答】解:∵A(﹣m,6)、B(1,3m)的直线的斜率是12,∴kAB==12,∴m=﹣2.故答案为:﹣2.12.已知F1,F2是椭圆和双曲线的公共焦点,P是它们的一个公共点,且,设椭圆和双曲线的离心率分别为,则的最大值为_________参考答案:【分析】由题,根据椭圆和双曲线的定义可表示出,再利用余弦定理可得,最后再利用柯西不等式可的结果.【详解】由题,设椭圆为:,双曲线为:由定义可得在三角形中,由余弦定理可得:整理可得:由柯西不等式:所以,当且紧当时取等号.故答案为【点睛】本题考查了椭圆和双曲线的综合知识,熟悉性质和定义是解题的关键,还有了解余弦定理以及柯西不等式,综合性强,属于难题.13.已知P是直线3+4+8=0上的动点,PA、PB是圆=0的两切线,A、B是切点,C是圆心,那么四边形PACB面积的最小值为

.

参考答案:略14.执行右图的程序框图,如果输入,则输出的值为

.参考答案:略15.已知正方体ABCD-A1B1C1D1中,,异面直线AE与BD1所成角的余弦值是

;若,则x=

.参考答案:,如图建立空间坐标系,设正方体棱长为4易得:,,,∴,∴异面直线与所成角的余弦值是由可得:即,∴故答案为:,

16.把正整数排列成如图甲三角形数阵,然后擦去第偶数行中的奇数和第奇数行中的偶数,得到如图乙的三角形数阵,再把图乙中的数按从小到大的顺序排成一列,得到一个数列{an},若an=2015,则n=.参考答案:1030【考点】数列的应用.【分析】根据题意,分析图乙,可得其第k行有k个数,则前k行共有个数,第k行最后的一个数为k2,从第三行开始,以下每一行的数,从左到右都是公差为2的等差数列;进而由442<2015<452,可得2015出现在第45行,又由第45行第一个数为442+1=1937,由等差数列的性质,可得该行第40个数为2015,由前44行的数字数目,相加可得答案.【解答】解:分析图乙,可得①第k行有k个数,则前k行共有个数,②第k行最后的一个数为k2,③从第三行开始,以下每一行的数,从左到右都是公差为2的等差数列,又由442=1936,452=2025,则442<2015<452,则2015出现在第45行,第45行第一个数为442+1=1937,这行中第=40个数为2015,前44行共有=990个数,则2015为第990+40=1030个数.故答案为:1030.17.已知直线与直线垂直,那么的值是__________.参考答案:直线和直线垂直,则:,解得:.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数f(x)=(cosx﹣x)(π+2x)﹣(sinx+1)g(x)=3(x﹣π)cosx﹣4(1+sinx)ln(3﹣)证明:(Ⅰ)存在唯一x0∈(0,),使f(x0)=0;(Ⅱ)存在唯一x1∈(,π),使g(x1)=0,且对(Ⅰ)中的x0,有x0+x1<π.参考答案:【考点】利用导数研究函数的单调性;导数在最大值、最小值问题中的应用.【分析】(Ⅰ)根据x∈(0,)时,f′(x)<0,得出f(x)是单调减函数,再根据f(0)>0,f()<0,得出此结论;(Ⅱ)构造函数h(x)=﹣4ln(3﹣x),x∈[,π],令t=π﹣x,得u(t)=h(π﹣t),求出u(t)存在唯一零点t1∈(0,),即证g(x)存在唯一的零点x1∈(,π),满足x0+x1<π.【解答】证明:(Ⅰ)∵当x∈(0,)时,f′(x)=﹣(1+sinx)(π+2x)﹣2x﹣cosx<0,∴函数f(x)在(0,)上为减函数,又f(0)=π﹣>0,f()=﹣π2﹣<0;∴存在唯一的x0∈(0,),使f(x0)=0;(Ⅱ)考虑函数h(x)=﹣4ln(3﹣x),x∈[,π],令t=π﹣x,则x∈[,π]时,t∈[0,],记函数u(t)=h(π﹣t)=﹣4ln(1+t),则u′(t)=﹣?=﹣=﹣==,由(Ⅰ)得,当t∈(0,x0)时,u′(t)>0;在(0,x0)上u(x)是增函数,又u(0)=0,∴当t∈(0,x0]时,u(t)>0,∴u(t)在(0,x0]上无零点;在(x0,)上u(t)是减函数,且u(x0)>0,u()=﹣4ln2<0,∴存在唯一的t1∈(x0,),使u(t1)=0;∴存在唯一的t1∈(0,),使u(t1)=0;∴存在唯一的x1=π﹣t1∈(,π),使h(x1)=h(π﹣t1)=u(t1)=0;∵当x∈(,π)时,1+sinx>0,∴g(x)=(1+sinx)h(x)与h(x)有相同的零点,∴存在唯一的x1∈(,π),使g(x1)=0,∵x1=π﹣t1,t1>x0,∴x0+x1<π.19.(本小题满分14分)已知椭圆:两个焦点之间的距离为2,且其离心率为.(Ⅰ)求椭圆的标准方程;(Ⅱ)若为椭圆的右焦点,经过椭圆的上顶点B的直线与椭圆另一个交点为A,且满足,求外接圆的方程.参考答案:解:(Ⅰ)

椭圆的标准方程是

(Ⅱ)由已知可得,

设,则

,,

,即

代入,得:或

,即或.

当为时,,的外接圆是以为圆心,以1为半径的圆,该外接圆的方程为;

当为时,,所以是直角三角形,其外接圆是以线段为直径的圆.由线段的中点以及可得的外接圆的方程为.

综上所述,的外接圆的方程为或.20.(1)已知的解集为,求不等式的解集.(2)为何值时,的两根一个根大于2,一个根小于2参考答案:解:(1)条件知-1,2是方程ax2+bx+2=0的根且a<0∴∴不等式即∴故所求不等式的解集为[-1,]……………6分(2)由条件知即∴-1<m<5……………………6分

21.为了解某地区某种农产品的年产量x(单位:吨)对价格y(单位:千元/吨)和利润z的影响,对近五年该农产品的年产量和价格统计如表:x12345y7.06.55.53.82.2(Ⅰ)求y关于x的线性回归方程=x+;(Ⅱ)若每吨该农产品的成本为2千元,假设该农产品可全部卖出,预测当年产量为多少时,年利润z取到最大值?(保留两位小数)参考公式:==,=﹣.参考答案:【考点】线性回归方程.【分析】(I)根据回归系数公式计算回归系数;(II)求出利润z的解析式,根据二次函数的性质而出最大值.【解答】解:(Ⅰ),,,,,,∴,.∴y关于x的线性回归方程为.(Ⅱ)z=x(8.69﹣1.23x)﹣2x=﹣1.23x2+6.69x.所以x=2.72时,年利润z最大.22.已知双曲线C1:.(1)求与双曲线C1有相同焦点,且过点P(4,)的双曲线C2的标准方程;(2)直线l:y=x+m分别交双曲线C1的两条渐近线于A、B两点.当?=3时,求实数m的值.参考答案:【考点】直线与圆锥曲线的综合问题;双曲线的标准方程.【分析】(1)先确定双曲线C1:的焦点坐标,根据双曲线C2与双曲线C1有相同焦点,且过点P(4,),建立方程组,从而

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论