1.7第2课时多项式除以单项式学习任务单北师大版七年级数学下册_第1页
1.7第2课时多项式除以单项式学习任务单北师大版七年级数学下册_第2页
1.7第2课时多项式除以单项式学习任务单北师大版七年级数学下册_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1.7第2课时多项式除以单项式素养目标1.根据乘除的性质,能将多项式除以单项式转化为多项式乘以单项式.2.由单项式与多项式的乘法分配律,探究多项式与单项式的除法.3.能熟练运用多项式除以单项式的运算法则进行运算.◎重点:掌握多项式除以单项式法则.预习导学知识点一多项式除以单项式

阅读教材本课时“例2”之前的内容,回答下列问题.1.旧知回顾:由于乘法与除法互为逆运算,所以(ad+bd)÷d=(ad+bd)×.

2.思考:(1)将除法转化为乘法:(a+b+c)÷m=(a+b+c)×.

(2)由乘法分配律可得:(a+b+c)×1m=(3)将乘法再转化为除法:a×1m+b×1m+c×1m(4)总结:(a+b+c)÷m=a÷m+b÷m+c÷m.归纳总结多项式除以单项式,先把这个多项式的每一项这个单项式,再把所得的商.

【学法指导】由多项式乘以单项式的乘法分配律,我们发现多项式除以单项式也符合“分配”,故实际运算中可直接将多项式的每一项除以单项式,而不必再相互转化.【答案】1.12.(1)1(2)a×1m+b×1m(3)a÷m+b÷m+c÷m归纳总结除以相加知识点二多项式除以单项式法则的应用

阅读教材本课时“例2”与“做一做”的内容,回答下列问题.1.讨论:(1)课本“例2(1)”中,将多项式除以单项式转化为各运算,再把所得的相加.

(2)课本“例2(2)(3)”中,多项式中有一项带有负号,应将.

(3)课本“例2(4)”中,作为除式的单项式本身带有负号,可先确定各项商的,再将所得的相加.

2.在“做一做”中,小明爬山的总路程是,故下山的总路程是,下山的时间应为,

这是什么运算?【答案】1.(1)单项式除以单项式商(2)负号一并作为该项的一部分进行运算(3)符号商2.vt1+12vt2vt1+12vt2(vt1+12vt2)÷4v=14t1多项式除以单项式.对点自测1.计算(6x4+2xy4x)÷2x的正确结果等于()A.3x3y+y4 B.3x3+y2xC.3x3y+2 D.3x3+y22.计算:(14a27a)÷7a=.

【答案】1.D2.2a1合作探究任务驱动一已知7x5y3与一个多项式之积是28x7y3+98x6y521x5y5,则这个多项式是()A.4x23y2 B.4x2y3xy2C.4x23y2+14xy2 D.4x23y2+7xy3【答案】C任务驱动二计算:(1)23a4b719a2b6÷13ab32;(2)[(x+y)2y(2x+y)8x]÷2x.方法归纳交流整式的混合运算顺序:.

【答案】解:(1)原式=23a4b719a2b6÷19a2b6=23a4b7÷19a2b619a2b6÷19a2b6=6(2)原式=(x2+2xy+y22xyy28x)÷2x=(x28x)÷2x=x2÷2x8x÷2x=12x4方法归纳交流先乘方,后乘除,再加减,有括号先算括号里面的任务驱动三已知a=2,b=1,求代数式[5a4b2(3a2b)2÷a2]÷(2a2b)的值.方法归纳交流多项式除以单项式,实际上是先转化为单项式除以单项式.在进行多项式除以单项式的计算时注意不要漏项,所得结果的项数应与被除式中的项数相同,另外要明确除式与被除式中各项的符号,相除时要带着符号进行.【答案】解:[5a4b2(3a2b)2÷a2]÷(2a2b)=(5a4b29a4b2÷a2)÷(2a2b)=(5a4b29a2b2)÷(2a2b)=5a4b2÷2a2b+9a2b2÷2a2b=52a2b+92b.当a=2,b=1时,原式=52×22×(1)+92×(任务驱动四变式训练1已知A=2x,B是一个多项式,小马虎在计算B+A时,误把B+A写成了B·A,结果得到了x2+12x,请你帮助计算变式训练2已知A=2x,B是一个多项式,小马虎在计算B+A时,误把B+A写成了B÷A,结果得到了x2+12x,请你帮助计算【答案】解:因为A=2x,B·A=x2+12x所以B=x2+12x÷2x=12x+14所以B+A=12x+14+2x=52变式训练解:因为A=2x,B÷A=x2+12x所以B=x2+12x·2x=2x3+x2,所以B+A=2x3+x2+2x.任务驱动五已知三角形的面积是4a22a2b+ab

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论