山东省淄博市博山2024届八年级数学第二学期期末质量检测试题含解析_第1页
山东省淄博市博山2024届八年级数学第二学期期末质量检测试题含解析_第2页
山东省淄博市博山2024届八年级数学第二学期期末质量检测试题含解析_第3页
山东省淄博市博山2024届八年级数学第二学期期末质量检测试题含解析_第4页
山东省淄博市博山2024届八年级数学第二学期期末质量检测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省淄博市博山2024届八年级数学第二学期期末质量检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.菱形ABCD的对角线AC,BD相交于点O,AC=10,BD=24,则菱形ABCD的周长为()A.52 B.48 C.40 D.202.如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲乙丙丁平均数(cm)185180185180方差3.63.67.48.1根据表数据,从中选择一名成绩好且发挥稳定的参加比赛,应该选择()A.甲 B.乙 C.丙 D.丁3.下列分式中,是最简分式的是()A. B. C. D.4.人体内一种细胞的直径约为0.00000156m,数据0.00000156用科学记数法表示为()A.0.156×10﹣6 B.1.56×10﹣6 C.15.6×10﹣7 D.1.56×10-85.已知一次函数y=(k﹣2)x+k+1的图象不过第三象限,则k的取值范围是()A.k>2 B.k<2 C.﹣1≤k≤2 D.﹣1≤k<26.已知反比例函数y=kx-1的图象过点A(1,-2),则k的值为()A.1 B.2 C.-2 D.-17.某单位要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排10场比赛,则参加比赛的球队应有()A.7队 B.6队 C.5队 D.4队8.使代数式有意义的x的取值范围是()A. B. C. D.9.后面的式子中(1);(2);(3);(4);(5);(6);二次根式的个数有().A.2个 B.3个 C.4个 D.5个10.上周周末放学,小华的妈妈来学校门口接他回家,小华离开教室后不远便发现把文具盒遗忘在了教室里,于是以相同的速度折返回去拿,到了教室后碰到班主任,并与班主任交流了一下周末计划才离开,为了不让妈妈久等,小华快步跑到学校门口,则小华离学校门口的距离y与时间t之间的函数关系的大致图象是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图所示,将长方形纸片ABCD进行折叠,∠FEH=70°,则∠BHE=_______.12.某市出租车的收费标准如下:起步价5元,即千米以内(含千米)收费元,超过千米的部分,每千米收费元.(不足千米按千米计算)求车费(元)与行程(千米)的关系式________.13.如图,是直线上的一点,已知的面积为,则的面积为________.14.若方程的两根互为相反数,则________.15.已知直线与直线平行,那么_______.16.一次函数y=2x-6的图像与x轴的交点坐标为.17.若分式的值为零,则x=________.18.如图,在平行四边形ABCD中,AD=5,AB=3,AE平分∠BAD交BC边于点E,则EC的长为________.三、解答题(共66分)19.(10分)为了绿化环境,某中学八年级(3班)同学都积极参加了植树活动,下面是今年3月份该班同学植树情况的扇形统计图和不完整的条形统计图:请根据以上统计图中的信息解答下列问题.(1)植树3株的人数为;(2)扇形统计图中植树为1株的扇形圆心角的度数为;(3)该班同学植树株数的中位数是(4)小明以下方法计算出该班同学平均植树的株数是:(1+2+3+4+5)÷5=3(株),根据你所学的统计知识判断小明的计算是否正确,若不正确,请写出正确的算式,并计算出结果20.(6分)某校八年级全体同学参加了某项捐款活动,随机抽查了部分同学捐款的情况统计如图所示(1)本次共抽查学生____人,并将条形图补充完整;(2)捐款金额的众数是_____,平均数是_____;(3)在八年级700名学生中,捐款20元及以上(含20元)的学生估计有多少人?21.(6分)解不等式组:请结合题意填空,完成本题解答:(1)解不等式①,得______;(2)解不等式②,得______;(3)把不等式①和②的解集在数轴上表示出来;(4)原不等式组的解集为______.22.(8分)已知:一次函数y=kx+b的图象经过M(0,2),(1,3)两点.⑴求k,b的值;⑵若一次函数y=kx+b的图象与x轴交点为A(a,0),求a的值.23.(8分)某校为了解本校九年级学生足球训练情况,随机抽查该年级若干名学生进行测试,然后把测试结果分为4个等级:A、B、C、D,并将统计结果绘制成两幅不完整的统计图.请根据图中的信息解答下列问题(1)补全条形统计图(2)该年级共有700人,估计该年级足球测试成绩为D等的人数为__________人;(3)在此次测试中,有甲、乙、丙、丁四个班的学生表现突出,现决定从这四个班中随机选取两个班在全校举行一场足球友谊赛.请用画树状图或列表的方法,求恰好选到甲、乙两个班的概率.24.(8分)如图,直线y1=x+1交x、y轴于点A、B,直线y2=﹣2x+4交x、y轴与C、D,两直线交于点E.(1)求点E的坐标;(2)求△ACE的面积.25.(10分)甲车从A地驶往B地,同时乙车从B地驶往A地,两车相向而行,匀速行驶,甲车距B地的距离y(km)与行驶时间x(h)之间的函数关系如图所示,乙车的速度是60km/h.(1)求甲车的速度;(2)当甲乙两车相遇后,乙车速度变为a(km/h),并保持匀速行驶,甲车速度保持不变,结果乙车比甲车晚38分钟到达终点,求a的值.26.(10分)如图,折叠长方形的一边AD,使点D落在BC边上的点F处,BC=15,AB=9.求:(1)FC的长;(2)EF的长.

参考答案一、选择题(每小题3分,共30分)1、A【解析】

由勾股定理可得AB的长,继而得到菱形ABCD的周长.【详解】因为菱形ABCD中,AC=10,BD=24,所以OB=12,OA=5.在直角三角形ABO中,AB=,所以菱形ABCD的周长=4AB=52,故答案为A.【点睛】本题考查勾股定理和菱形的性质,解题的关键是掌握勾股定理和菱形的性质.2、A【解析】

首先比较平均数,平均数相同时选择方差较小的运动员参加.【详解】∵=>=,∴从甲和丙中选择一人参加比赛,∵=<<,∴选择甲参赛,故选A.【点睛】此题主要考查了平均数和方差的应用,解题关键是明确平均数越高,成绩越高,方差越小,成绩越稳定.3、D【解析】

根据最简分式的定义:分子和分母没有公因式的分式,据此解答即可.【详解】A.=,故该选项不是最简分式,不符合题意,B.==-1,故该选项不是最简分式,不符合题意,C.==x+2,故该选项不是最简分式,不符合题意,D.不能化简,是最简分式,符合题意.故选D.【点睛】本题考查最简分式的定义,分子和分母没有公因式的分式叫做最简分式;最简分式首先系数要最简;一个分式是否为最简分式,关键看分子与分母是不是有公因式,但表面不易判断,应将分子、分母分解因式.4、B【解析】

绝对值小于1的数可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.00000156=1.56×10﹣6.故选B.【点睛】本题考查了负整数指数科学记数法,对于一个绝对值小于1的非0小数,用科学记数法写成a×10-n的形式,其中1≤a<10,n是正整数,n等于原数中第一个非0数字前面所有05、D【解析】

若函数y=kx+b的图象不过第三象限,则此函数的k<1,b≥1,据此求解.【详解】解:∵一次函数y=(k﹣2)x+k+1的图象不过第三象限,∴k﹣2<1,k+1≥1解得:﹣1≤k<2,故选:D.【点睛】本题考查一次函数的图象与系数的关系,一次函数的图象经过第几象限,取决于x的系数是大于1或是小于1.6、C【解析】

直接把点(1,-2)代入反比例函数y=即可得出结论.【详解】∵反比例函数y=的图象过点A(1,−2),∴−2=,解得k=−2.故选C.【点睛】此题考查反比例函数图象上点的坐标特征,解题关键在于把已知点代入解析式7、C【解析】解:设邀请x个球队参加比赛,依题意得1+2+3+…+x-1=10,即,∴x2-x-20=0,∴x=5或x=-4(不合题意,舍去).故选C8、A【解析】

根据二次根式被开方数为非负数可得关于x的不等式,解不等式即可得.【详解】使代数式有意义,则x-10≥0,解得:x≥10,故选A.【点睛】本题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.9、B【解析】

根据二次根式的定义:一般地,我们把形如的式子叫做二次根式可得答案.【详解】解:根据二次根式的定义:(1);(3);(5)是二次根式,而(2)中被开方数-3<0,不是二次根式,(4)是立方根,不是二次根式,(6)中因,故被开方数,不是二次根式;综上只有3个是二次根式;故选B.【点睛】此题主要考查了二次根式定义,关键是掌握被开方数是非负数.10、B【解析】分析:根据题意出教室,离门口近,返回教室离门口远,在教室内距离不变,速快跑距离变化快,可得答案.详解:根据题意得,函数图象是距离先变短,再变长,在教室内没变化,最后迅速变短,B符合题意;

故选B.点睛:本题考查了函数图象,根据距离的变化描述函数是解题关键.二、填空题(每小题3分,共24分)11、70°【解析】

由折叠的性质可得∠DEH=∠FEH=70°,再根据两直线平行,内错角相等即可求得答案.【详解】由题意得∠DEH=∠FEH=70°,∵AD//BC,∴∠BHE=∠DEH=70°,故答案为:70°.【点睛】本题考查了折叠的性质,平行线的性质,熟练掌握折叠的性质以及平行线的性质是解题的关键.12、【解析】

本题是一道分段函数,当和是由收费与路程之间的关系就可以求出结论.【详解】由题意,得

当时,

当时,

,∴,故答案为:.【点睛】本题考查了分段函数的运用,解答时求出函数的解析式是关键.13、【解析】

根据平行四边形面积的表示形式及三角形的面积表达式可得出△ABE的面积为平行四边形的面积的一半.【详解】根据图形可得:△ABE的面积为平行四边形的面积的一半,又∵▱ABCD的面积为52cm2,∴△ABE的面积为26cm2.故答案为:26.【点睛】本题考查平行四边形的性质,解题关键在于熟练掌握三角形的面积公式.14、【解析】

根据一元二次方程根与系数的关系即可求出答案.【详解】∵两根互为相反数,∴根据韦达定理得:m²-1=0,解得:m=1或m=-1当m=1时,方程是x²+1=0没有实数根当m=-1时,方程是x²-1=0有两个实数根所以m=-1故答案为:-1【点睛】本题考查一元二次方程根与系数的关系,x1+x2=,x1x2=,熟练掌握韦达定理并进行检验是否有实数根是解题关键.15、1【解析】

两直线平行,则两比例系数相等,据此可以求解.【详解】解:直线与直线平行,,故答案为:1.【点睛】本题考查了两条直线相交或平行问题,解题的关键是熟知两直线平行时两比例系数相等.16、(3,0).【解析】试题分析:把y=0代入y=2x-6得x=3,所以一次函数y=2x-6的图像与x轴的交点坐标为(3,0).考点:一次函数的图像与x轴的交点坐标.17、2【解析】

分式的值为1的条件是:(1)分子=1;(2)分母≠1.两个条件需同时具备,缺一不可.据此可以解答本题.【详解】依题意得x2-x-2=1,解得x=2或-1,∵x+1≠1,即x≠-1,∴x=2.【点睛】此题考查的是对分式的值为1的条件的理解和因式分解的方法的运用,该类型的题易忽略分母不为1这个条件.18、1【解析】

先根据角平分线及平行四边形的性质得出∠BAE=∠AEB,再由等角对等边得出BE=AB,从而求出EC的长.【详解】解:∵AE平分∠BAD交BC边于点E,

∴∠BAE=∠EAD,

∵四边形ABCD是平行四边形,

∴AD∥BC,AD=BC=5,

∴∠DAE=∠AEB,

∴∠BAE=∠AEB,

∴AB=BE=3,

∴EC=BC-BE=5-3=1,

故答案为:1.【点睛】本题考查了角平分线、平行四边形的性质及等边对等角,根据已知得出∠BAE=∠AEB是解决问题的关键.三、解答题(共66分)19、(1)12;(2)72°;(3)2;(1)小明的计算不正确,2.1.【解析】

(1)根据植树2株的人数及其所占的百分比计算出总人数,然后分别减去植树1株,2株,1株,5株的人数即可得到植树3株的人数;(2)用360°乘以植树1株的人数所占的百分比即可得;(3)根据中位数的定义可先计算植树的总人数,然后写出即可;(1)根据平均数的定义判断计算即可.【详解】解:(1)植树3株的人数为:20÷10%﹣10﹣20﹣6﹣2=12;(2)扇形统计图中植树为1株的扇形圆心角的度数为:360°×=72°;(3)植树的总人数为:20÷10%=50,∴该班同学植树株数的中位数是2;(1)小明的计算不正确,正确的计算为:=2.1.【点睛】本题主要考查了扇形统计图和条形统计图、平均数、中位数的知识,根据题意读懂图形并正确计算是解题的关键.20、(1)50;补图见解析;(2)10,13.1;(3)154人.【解析】

(1)有题意可知,捐款15元的有14人,占捐款总人数的28%,由此可得总人数,将捐款总人数减去捐款5、15、20、25元的人数可得捐10元的人数;(2)从条形统计图中可知,捐款10元的人数最多,可知众数,将50人的捐款总额除以总人数可得平均数;(3)由抽取的样本可知,用捐款20及以上的人数所占比例估计总体中的人数.【详解】(1)本次抽查的学生有:14÷28%=50(人),则捐款10元的有50﹣9﹣14﹣7﹣4=16(人),补全条形统计图图形如下:故答案为50;(2)由条形图可知,捐款10元人数最多,故众数是10;这组数据的平均数为:=13.1;故答案为10,13.1.(3)捐款20元及以上(含20元)的学生有:×700=154(人);【点睛】此题考查条形统计图;用样本估计总体;扇形统计图;加权平均数;众数,解题关键在于看懂图中数据21、(1)x≤2;(2)x>-3;(3)把不等式①和②的解集在数轴上表示见解析;(4)-3<x≤2,【解析】

(1)根据不等式的基本性质解不等式即可;(2)根据不等式的基本性质解不等式即可;(3)根据数轴表示解集的方法表示即可;(4)根据不等式组公共解集的取法即可得出结论.【详解】(1)解不等式①,得x≤2故答案为:x≤2;(2)解不等式②,得x>-3故答案为:x>-3;(3)把不等式①和②的解集在数轴上表示出来如下:(4)原不等式组的解集为-3<x≤2,【点睛】此题考查的是解不等式组,掌握不等式的基本性质和利用数轴表示解集是解决此题的关键.22、⑴k,b的值分别是1和2;⑵a=-2【解析】

(1)由题意得,解得;⑵由⑴得当y=0时,x=-2,【详解】解:⑴由题意得解得∴k,b的值分别是1和2⑵由⑴得∴当y=0时,x=-2,即a=-2【点睛】用待定系数法求一次函数解析式.23、(1)图形见解析(2)56(3)【解析】试题分析:(1)根据A等学生人数除以它所占的百分比求得总人数,然后乘以B等所占的百分比求得B等人数,从而补全条形图;(2)用该年级学生总数乘以足球测试成绩为D等的人数所占百分比即可求解;(3)利用树状图法,将所有等可能的结果列举出来,利用概率公式求解即可.试题解析:(1)总人数为14÷28%=50人,B等人数为50×40%=20人.条形图补充如下:(2)该年级足球测试成绩为D等的人数为700×=56(人).故答案为56;(3)画树状图:共有12种等可能的结果数,其中选取的两个班恰好是甲、乙两个班的情况占2种,所以恰好选到甲、乙两个班的概率是=.考点:1、列表法与树状图法;2、用样本估计总体;3、扇形统计图;4、条形统计图24、(1)(1,2)(2)1【解析】分析:(1)联立两函数的解析式,解方程组即可;(2)先根据函数解析式求得点A、C的坐标,即可得线段AC的长,再根据三角形的面积公式计算即可.详解:(1)∵,∴,∴E(1,2);(2)当y1=x+1=0时,解得:x=﹣1,∴A(﹣1,0),当y2=﹣2x+4=0时,解得:x=2,∴C(2,0),∴AC=2﹣(﹣1)=1,==1.点睛:本题考查了两直线相交或平行的问题,解题的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论