甘肃省陇南市名校2024年八年级数学第二学期期末质量检测模拟试题含解析_第1页
甘肃省陇南市名校2024年八年级数学第二学期期末质量检测模拟试题含解析_第2页
甘肃省陇南市名校2024年八年级数学第二学期期末质量检测模拟试题含解析_第3页
甘肃省陇南市名校2024年八年级数学第二学期期末质量检测模拟试题含解析_第4页
甘肃省陇南市名校2024年八年级数学第二学期期末质量检测模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

甘肃省陇南市名校2024年八年级数学第二学期期末质量检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.如图所示,四边形的对角线和相交于点,下列判断正确的是()A.若,则是平行四边形B.若,则是平行四边形C.若,,则是平行四边形D.若,,则是平行四边形2.如图所示,在中,的垂直平分线交于点,交于点,如果,则的周长是()A. B. C. D.3.将不等式组的解集在数轴上表示出来,正确的是()A. B.C. D.4.如图,在矩形ABCD中,AB=2,BC=1.若点E是边CD的中点,连接AE,过点B作BF⊥AE交AE于点F,则BF的长为()A. B. C. D.5.如图,将平行四边形ABCD折叠,使顶点D恰落在AB边上的点M处,折痕为AN,那么对于结论①MN∥BC,②MN=AM,下列说法正确的是()A.①②都对 B.①②都错C.①对②错 D.①错②对6.在函数中的取值范围是()A. B. C. D.7.下列各点中,不在函数的图象上的点是()A.(3,4) B.(﹣2,﹣6) C.(﹣2,6) D.(﹣3,﹣4)8.菱形ABCD中,如果E、F、G、H分别是各边中点,那么四边形EFGH的形状是()A.梯形 B.菱形 C.矩形 D.正方形9.将抛物线y=2(x-7)2+3平移,使平移后的函数图象顶点落在y轴上,则下列平移中正确的是()A.向上平移3个单位B.向下平移3个单位C.向左平移7个单位D.向右平移7个单位10.如图,在平行四边形ABCD中,,的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,,垂足为G,若,则AE的边长为A. B. C.4 D.8二、填空题(每小题3分,共24分)11.如图,函数和的图象交于点,则不等式的解集是_____.12.如图,在四边形ABCD中,对角线AC、BD互相垂直平分,若使四边形ABCD是正方形,则需要再添加的一个条件为___________.(图形中不再添加辅助线,写出一个条件即可)13.中国“一带一路”战略给沿线国家和地区带来很大的经济效益,沿线某地区居民2017年人均收入美元,预计2019年人均收入将达到美元,设2017年到2019年该地区人均收入平均增长率为,可列方程为__________.14.如图,已知□ABCD和正方形CEFG有一个公共的顶点C,其中E点在AD上,若∠ECD=35°,∠AEF=15°,则∠B的度数是_________.15.在一个不透明的盒子里装有黑、白两种颜色的球共50只,这些球除颜色外其余完全相同.小颖做摸球实验,搅匀后,她从盒子里随机摸出一只球记下颜色后,再把球放回盒子中.不断重复上述过程,下表是实验中的一组统计数据:摸球的次数n10020030050080010003000摸到白球的次数m651241783024816201845摸到白球的频率0.650.620.5930.6040.6010.6200.615请估计:当n很大时,摸到白球的频率将会接近_____;(精确到0.1)16.不等式的正整数解的和______;17.如图,在边长为2的正方形ABCD的外部作,且,连接DE、BF、BD,则________.18.对于反比例函数,当时,其对应的值、、的大小关系是______.(用“”连接)三、解答题(共66分)19.(10分)如图,一次函数的图象与轴交于点A,正方形ABCD的顶点B在轴上,点D在直线上,且AO=OB,反比例函数()经过点C.(1)求一次函数和反比例函数的解析式;(2)点P是轴上一动点,当的周长最小时,求出P点的坐标;(3)在(2)的条件下,以点C、D、P为顶点作平行四边形,直接写出第四个顶点M的坐标.20.(6分)在平行四边形中,连接、交于点,点为的中点,连接并延长交于的延长线于点.(1)求证:为的中点;(2)若,,连接,试判断四边形的形状,并说明理由.21.(6分)运动服装店销售某品牌S号,M号,L号,XL号,XXL号五种不同型号服装,随机统计该品牌运动服装一周的销售情况并绘制如图所示不完整统计图.(1)L号运动服一周的销售所占百分比为.(2)请补全条形统计图;(3)服装店老板打算再次购进该品牌服饰共600件,根据各种型号的销售情况,你认为购进XL号约多少件比较合适,请计算说明.22.(8分)如图,在中,,请用尺规过点作直线,使其将分割成两个等腰三角形.(保留作图痕迹,不写作法.并把作图痕迹用黑色签字笔加黑).23.(8分)中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本数最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表:本数(本)人数(人数)百分比5a0.26180.36714b880.16合计c1根据以上提供的信息,解答下列问题:(1)a=_____,b=_____,c=______;(2)补全上面的条形统计图;(3)若该校八年级共有1200名学生,请你分析该校八年级学生课外阅读7本及以上的有多少名?24.(8分)下图是交警在一个路口统计的某个时段来往车辆的车速情况.应用你所学的统计知识,写一份简短的报告,让交警知道这个时段路口来往车辆的车速情况.25.(10分)在矩形ABCD中,AB=4,AD=3,矩形内部有一动点P满足S矩形ABCD=3S△PAB,则PA+PB的最小值为_____.26.(10分)四边形ABCD是正方形,AC是对角线,E是平面内一点,且,过点C作,且.连接AE、AF,M是AF的中点,作射线DM交AE于点N.(1)如图1,若点E,F分别在BC,CD边上.求证:①;②;(2)如图2,若点E在四边形ABCD内,点F在直线BC的上方,求与的和的度数.

参考答案一、选择题(每小题3分,共30分)1、D【解析】

若AO=OC,BO=OD,则四边形的对角线互相平分,根据平行四边形的判定定理可知,该四边形是平行四边形.【详解】∵AO=OC,BO=OD,∴四边形的对角线互相平分所以D能判定ABCD是平行四边形.故选D.【点睛】此题考查平行四边形的判定,解题关键在于掌握判定定理.2、D【解析】

根据线段垂直平分线的性质得出AD=BD,推出CD+BD=5,即可求出答案.【详解】解:∵DE是AB的垂直平分线,

∴AD=DB,

∵AC=5,

∴AD+CD=5,

∴CD+BD=5,

∵BC=4,

∴△BCD的周长为:CD+BD+BC=5+4=9,

故选D.【点睛】本题考查了线段垂直平分线的性质,注意:线段垂直平分线上的点到线段两个端点的距离相等.3、C【解析】

根据解不等式组的方法可以求得原不等式组的解集,并把它的解集在数轴上表示出来.【详解】解:,

由不等式①,得x>3,

由不等式②,得x≤4,

∴原不等式组的解集是3<x≤4,在数轴上表示如下图所示,

故选:C.【点睛】本题考查解一元一次不等式组、在数轴上表示不等式的解集,解答本题的关键是明确解不等式的方法,会在数轴上表示不等式组的解集.4、B【解析】

根据S△ABE=S矩形ABCD=1=•AE•BF,先求出AE,再求出BF即可.【详解】如图,连接BE.∵四边形ABCD是矩形,∴AB=CD=2,BC=AD=1,∠D=90°,在Rt△ADE中,AE===,∵S△ABE=S矩形ABCD=1=•AE•BF,∴BF=.故选:B.【点睛】本题考查矩形的性质、勾股定理、三角形的面积公式等知识,解题的关键是灵活运用所学知识解决问题,学会用面积法解决有关线段问题,属于中考常考题型.5、A【解析】

根据题意得到四边形AMND为菱形,故可判断.【详解】解:∵四边形ABCD平行四边形,∴∠B=∠D=∠AMN,∴MN∥BC,∵AM=DA,∴四边形AMND为菱形,∴MN=AM.故①②正确.故选A.6、C【解析】

根据分母不等于0列式计算即可得解.【详解】根据题意得,,

解得.

故选C.【点睛】本题考查了函数自变量的范围,一般从三个方面考虑:

(1)当函数表达式是整式时,自变量可取全体实数;

(2)当函数表达式是分式时,考虑分式的分母不能为0;

(3)当函数表达式是二次根式时,被开方数非负.7、C【解析】

将各选项的点逐一代入进行计算判断即可.【详解】A、当x=3时,y==4,

故(3,4)在函数图象上,正确,不符合题意;B、当x=-2时,y==-6,

故(-2,-6)在函数图象上,正确,不符合题意;C、当x=-2时,y==-6≠6,

故(-2,6)不在函数图象上,错误,符合题意;D、当x=-3时,y==-4,

故(-3,-4)在函数图象上,正确,不符合题意;故答案为:C.【点睛】本题考查反比例函数的图象,属于简单题,要注意计算细心.8、C【解析】分析:利用中位线的性质证明四边形EFGH为平行四边形;再根据菱形的对角线互相垂直,可证∠EHG=90°,从而根据矩形的判定:有一角为90°的平行四边形是矩形,得出菱形中点四边形的形状.详解:∵菱形ABCD中,如果E、F、G、H分别是各边的中点,∴HE∥GF∥AC,HE=GF=AC,∴四边形EFGH为平行四边形;又∵菱形的对角线互相垂直,∴∠EHG=90°,∴四边形EFGH的形状是矩形.故选:C.点睛:此题主要考查了菱形的性质,三角形中位线定理,矩形的判定.矩形的判定定理有:(1)有一个角是直角的平行四边形是矩形;(2)有三个角是直角的四边形是矩形;(3)对角线互相平分且相等的四边形是矩形.9、C【解析】

按“左加右减括号内,上加下减括号外”的规律平移即可得出所求函数的解析式.【详解】依题意可知,原抛物线顶点坐标为(7,3),平移后抛物线顶点坐标为(0,t)(t为常数),则原抛物线向左平移7个单位即可.故选C.【点睛】本题考查了二次函数图象的平移,其规律是是:将二次函数解析式转化成顶点式y=a(x-h)2+k

(a,b,c为常数,a≠0),确定其顶点坐标(h,k),在原有函数的基础上“h值正右移,负左移;k值正上移,负下移”.10、B【解析】

由AE为角平分线,得到一对角相等,再由ABCD为平行四边形,得到AD与BE平行,利用两直线平行内错角相等得到一对角相等,等量代换及等角对等边得到AD=DF,由F为DC中点,AB=CD,求出AD与DF的长,得出三角形ADF为等腰三角形,根据三线合一得到G为AF中点,在直角三角形ADG中,由AD与DG的长,利用勾股定理求出AG的长,进而求出AF的长,再由三角形ADF与三角形ECF全等,得出AF=EF,即可求出AE的长.【详解】∵AE为∠DAB的平分线,∴∠DAE=∠BAE,∵DC∥AB,∴∠BAE=∠DFA,∴∠DAE=∠DFA,∴AD=FD,又F为DC的中点,∴DF=CF,∴AD=DF=DC=AB=2,在Rt△ADG中,根据勾股定理得:AG=,则AF=2AG=2,∵平行四边形ABCD,∴AD∥BC,∴∠DAF=∠E,∠ADF=∠ECF,在△ADF和△ECF中,,∴△ADF≌△ECF(AAS),∴AF=EF,则AE=2AF=4.故选B.考点:1.平行四边形的性质;2.等腰三角形的判定与性质;3.勾股定理.二、填空题(每小题3分,共24分)11、【解析】

观察图象,写出直线在直线的下方所对应的自变量的范围即可.【详解】解:观察图象得:当时,,即不等式的解集为.故答案为:.【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数的值大于(或小于)0的自变量的取值范围;从函数图象的角度看,就是确定直线在轴上(或下)方部分所有的点的横坐标所构成的解集.12、AC=BD答案不唯一【解析】

由四边形ABCD的对角线互相垂直平分,可得四边形ABCD是菱形,再添加∠DAB=90°,即可得出四边形ABCD是正方形.【详解】解:可添加AC=BD,

理由如下:

∵四边形ABCD的对角线互相平分,

∴四边形ABCD是平行四边形,

∵AC⊥BD,∴平行四边形ABCD是菱形,

∵∠DAB=90°,

∴四边形ABCD是正方形.

故答案为:AC=BD(答案不唯一).【点睛】本题是考查正方形的判定,判别一个四边形为正方形主要根据正方形的概念,途经有两种:①先说明它是矩形,再说明有一组邻边相等;②先说明它是菱形,再说明它有一个角为直角.13、【解析】

根据题意列出2018年人均收入将达到的美元的式子,即可得出2019年人均收入将达到的美元的方程,进而得解.【详解】根据题意,可得2018年人均收入将达到,2019年人均收入将达到即为【点睛】此题主要考查一元二次方程的实际应用,熟练掌握,即可解题.14、700【解析】分析:由平角的定义求出∠CED的度数,由三角形内角和定理求出∠D的度数,再由平行四边形的对角相等即可得出结果.详解:∵四边形CEFG是正方形,

∴∠CEF=90°,

∵∠CED=180°-∠AEF-∠CEF=180°-15°-90°=75°,

∴∠D=180°-∠CED-∠ECD=180°-75°-35°=70°,

∵四边形ABCD为平行四边形,

∴∠B=∠D=70°(平行四边形对角相等).

故答案为:70°.点睛:本题考查了正方形的性质、平行四边形的性质、三角形内角和定理等知识;熟练掌握平行四边形和正方形的性质,由三角形内角和定理求出∠D的度数是解决问题的关键.15、0.60【解析】

计算出平均值即可解答【详解】解:由表可知,当n很大时,摸到白球的频率将会接近0.60;故答案为:0.60;【点睛】此题考查利用频率估计概率,解题关键在于求出平均值16、3.【解析】

先解出一元一次不等式,然后选取正整数解,再求和即可.【详解】解:解得;x<3,;则正整数解有2和1;所以正整数解的和为3;故答案为3.【点睛】本题考查了解一元一次不等式组和正整数的概念,其关键在于选取正整数解.17、1【解析】

连接BE,DF交于点O,由题意可证△AEB≌△AFD,可得∠AFD=∠AEB,可证∠EOF=90°,由勾股定理可求解.【详解】如图,连接BE、DF交于点O.∵四边形ABCD是正方形,∴,.∵是等腰直角三角形,∴,,∴.在和△中,∵,,,∴,∴.∵,∴,∴,,,,∴.故答案为1.【点睛】本题考查了正方形的性质,勾股定理,全等三角形判定和性质,添加恰当的辅助线构造直角三角形是本题的关键.18、【解析】

根据反比例函数的性质,图形位于第一、三象限,并且随着的增大而减小,再根据,即可比较、、的大小关系.【详解】解:根据反比例函数的性质,图形位于第一、三象限,并且随着的增大而减小,而,则,而,则,故答案为.【点睛】本题考查反比例函数,难度不大,是中考的常考知识点,熟记反比例函数的性质是顺利解题的关键.三、解答题(共66分)19、(1)y=x+1,;(1)P(,0);(3)M的坐标为(,1),(,6)或(,﹣1).【解析】

(1)设一次函数y=kx+1的图象与x轴交于点E,连接BD,利用一次函数图象上点的坐标特征、正方形的性质以及等腰三角形的性质可得出点E的坐标,由点E的坐标利用待定系数法可求出一次函数解析式,由BD∥OA,OE=OB可求出BD的长,进而可得出点D的坐标,由正方形的性质可求出点C的坐标,再利用反比例函数图象上点的坐标特征可求出反比例函数解析式;(1)作点D关于x轴的对称点D',连接CD'交x轴于点P,此时△PCD的周长取最小值,由点D的坐标可得出点D'的坐标,由点C,D'的坐标,利用待定系数法可求出直线CD'的解析式,再利用一次函数图象上点的坐标特征可求出点P的坐标;(3)设点M的坐标为(x,y),分DP为对角线、CD为对角线及CP为对角线三种情况,利用平行四边形的性质(对角线互相平分)可求出点M的坐标,此题得解.【详解】(1)设一次函数y=kx+1的图象与x轴交于点E,连接BD,如图1所示.当x=0时,y=kx+1=1,∴OA=1.∵四边形ABCD为正方形,OA=OB,∴∠BAE=90°,∠OAB=∠OBA=45°,∴∠OAE=∠OEA=45°,∴OE=OA=1,点E的坐标为(﹣1,0).将E(﹣1,0)代入y=kx+1,得:﹣1k+1=0,解得:k=1,∴一次函数的解析式为y=x+1.∵∠OBD=∠ABD+∠OBA=90°,∴BD∥OA.∵OE=OB=1,∴BD=1OA=4,∴点D的坐标为(1,4).∵四边形ABCD为正方形,∴点C的坐标为(1+1﹣0,0+4﹣1),即(4,1).∵反比例函数y(x>0)经过点C,∴n=4×1=8,∴反比例函数解析式为y.(1)作点D关于x轴的对称点D',连接CD'交x轴于点P,此时△PCD的周长取最小值,如图1所示.∵点D的坐标为(1,4),∴点D'的坐标为(1,﹣4).设直线CD'的解析式为y=ax+b(a≠0),将C(4,1),D'(1,﹣4)代入y=ax+b,得:,解得:,∴直线CD'的解析式为y=3x﹣2.当y=0时,3x﹣2=0,解得:x,∴当△PCD的周长最小时,P点的坐标为(,0).(3)设点M的坐标为(x,y),分三种情况考虑,如图3所示.①当DP为对角线时,,解得:,∴点M1的坐标为(,1);②当CD为对角线时,,解得:,∴点M1的坐标为(,6);③当CP为对角线时,,解得:,∴点M3的坐标为(,﹣1).综上所述:以点C、D、P为顶点作平行四边形,第四个顶点M的坐标为(,1),(,6)或(,﹣1).【点睛】本题考查了待定系数法求一次函数解析式、反比例函数图象上点的坐标特征、正方形的性质、等腰三角形的性质、三角形中位线、反比例函数图象上点的坐标特征、一次函数图象上点的坐标特征以及平行四边形的性质,解题的关键是:(1)利用等腰三角形的性质及正方形的性质,求出点E,C的坐标;(1)利用两点之间线段最短,确定点P的位置;(3)分DP为对角线、CD为对角线及CP为对角线三种情况,利用平行四边形的对角线互相平分求出点M的坐标.20、证明步骤见解析【解析】

(1)根据平行四边形的性质再结合已知得到△AEF≌△DEC,即可解题,(2)先证明四边形ACDF是平行四边形,再证明△BCF是等边三角形,即可解题.【详解】解(1)在平行四边形中,AB∥CD,∴∠FAD=∠CDA,AB=CD∵点为的中点∴AE=DE,∠AEF=∠DEC,∴△AEF≌△DEC∴AF=CD,∴AB=AF,即为的中点(2)由(1)知AF=2AB,AF平行且等于CD∴四边形是平行四边形,又∵,∴AF=AD,∴△BCF是等边三角形,∴FC=AD,∴平行四边形是矩形【点睛】本题考查了平行四边形的性质,矩形的判定,等边三角形的判定,属于简单题,熟悉各种图形的判定定理是解题关键.21、(1)20%;(2)详见解析;(3)96.【解析】

(1)利用百分比之和为1,计算即可;(2)求出M、L的件数,画出条形图即可;(3)利用样本估计总体的思想解决问题即可;【详解】解:(1)L号运动服一周的销售所占百分比为1﹣16%﹣8%﹣30%﹣26%=20%.故答案为20%.(2)总数=13÷26%=50,M有50×30%=15,L有50×20%=10,条形统计图如图所示:(3)购进XL号约600×16%=96(件)比较合适.【点睛】本题考查了频数分布直方图、扇形统计图和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.22、见解析【解析】

作斜边AB的中垂线可以求得中点D,连接CD,根据直角三角形斜边上的中线等于斜边的一半,可得CD=AD=DB.【详解】解如图所示:,△ACD和△CDB即为所求.【点睛】此题主要考查了应用设计与作图,关键在于用中垂线求得中点和运用直角三角形中,斜边上的中线等于斜边的一半,把Rt△ABC分割成两个等腰三角形.23、(1)10,0.28,50;(2)补图见解析;(3)该校八年级学生课外阅读7本及以上的有528名.【解析】

(1)根据统计图和表格中的数据可以得到a、b、c的值;(2)根据(1)中a的值,可以将条形统计图补充完整;(3)根据统计图中的数据可以求得该校八年级学生课外阅读7本及以上的有多少名.【详解】解:(1)本次调查的学生有:18÷0.36=50(人),a=50×0.2=10,b=14÷50=0.28,c=50,故答案为:10、0.28、50;(2)由(1)知,a=10,补全的条形统计图如图所示;(3)∵1200×(0.28+0.16)=528(名),∴该校八年级学生课

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论