版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
贵州省安顺地区2024年八年级下册数学期末质量跟踪监视模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,点P是双曲线y=(x>0)上的一个动点,过点P作PA⊥x轴于点A,当点P从左向右移动时,△OPA的面积()A.逐渐变大 B.逐渐变小 C.先增大后减小 D.保持不变2.下列命题的逆命题,是假命题的是()A.两直线平行,内错角相等 B.全等三角形的对应边相等C.对顶角相等 D.有一个角为度的三角形是直角三角形3.不等式-2x>1的解集是()A.x<- B.x<-2 C.x>- D.x>-24.下列各式从左到右的变形为分解因式的是()A.x(x﹣y)=x2﹣xy B.x2+2xy+1=x(x+2y)+1C.(y﹣1)(y+1)=y2﹣1 D.x(x﹣3)+3(x﹣3)=(x+3)(x﹣3)5.下列说法中,错误的是()A.对角线互相垂直的四边形是菱形B.对角线互相平分的四边形是平行四边形C.菱形的对角线互相垂直D.平行四边形的对角线互相平分6.下列方程中是关于x的一元二次方程的是()A.x=x2﹣3 B.ax2+bx+c=0C.1x+1=1 D.3x2﹣2xy﹣5y27.将一副直角三角板如图放置,点C在FD的延长上,AB∥CF,∠F=∠ACB=90°,∠E=30°,∠A=45°,AC=12,则CD的长为()A.4 B.12﹣4 C.12﹣6 D.68.下列图形中,既是中心对称图形又是轴对称图形的是()A. B. C. D.9.如图,将△ABC沿直线DE折叠后,使得点B与点A重合.已知AC=5cm,△ADC的周长为17cm,则BC的长为()A.7cm B.10cm C.12cm D.22cm10.如图,正方形在平面直角坐标系中的点和点的坐标为、,点在双曲线上.若正方形沿轴负方向平移个单位长度后,点恰好落在该双曲线上,则的值是()A.1 B.2 C.3 D.4二、填空题(每小题3分,共24分)11.如图,在□ABCD中,对角线AC、BD相交于O,AC+BD=10,BC=3,则△AOD的周长为.12.在关系式V=31-2t中,V随着t的变化而变化,其中自变量是_____,因变量是_____,当t=_____时,V=1.13.如图,△ABC中,∠C=90°,AC=BC,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E,且AB=10cm,则△DEB的周长是_____cm.14.如图,在梯形ABCD中,AD∥BC,AD=6,BC=16,E是BC的中点.点P以每秒1个单位长度的速度从点A出发,沿AD向点D运动;点Q同时以每秒2个单位长度的速度从点C出发,沿CB向点B运动.点P停止运动时,点Q也随之停止运动.当运动时间________秒时,以点P,Q,E,D为顶点的四边形是平行四边形.15.因式分解:___________.16.在弹性限度内,弹簧的长度是所挂物体质量的一次函数,当所挂物体的质量分别为和时,弹簧长度分别为和,当所挂物体的质量为时弹簧长________厘米?17.如图,有两颗树,一颗高10米,另一颗高4米,两树相距8米.一只鸟从一颗树的树梢飞到另一颗树的树梢,问小鸟至少飞行_____米.18.如图,在菱形ABCD中,E,F分别是AD,BD的中点,若EF=2,则菱形ABCD的周长是__.三、解答题(共66分)19.(10分)已知等腰三角形的两边长分别为a,b,且a,b满足|2a-3b+5|+(2a+3b-13)2=0,求此等腰三角形的周长.20.(6分)如图,在四边形ABDC中,∠A=90°,AB=9,AC=12,BD=8,CD=1.(1)连接BC,求BC的长;(2)求△BCD的面积.21.(6分)如图,在平面直角坐标系中,直线y=x+与反比例函数y=(x<0)的图象交于A(-4,a)、B(-1,b)两点,AC⊥x轴于C,BD⊥y轴于D.(1)求a、b及k的值;(2)连接OA,OB,求△AOB的面积.22.(8分)在△ABC中,AB=30,BC=28,AC=1.求△ABC的面积.某学习小组经过合作交流给出了下面的解题思路,请你按照他们的解题思路完成解答过程.23.(8分)如图,平面直角坐标系中,四边形OABC是长方形,O为原点,点A在x轴上,点C在y轴上且A(10,0),C(0,6),点D在AB边上,将△CBD沿CD翻折,点B恰好落在OA边上点E处.(1)求点E的坐标;(2)求折痕CD所在直线的函数表达式;(3)请你延长直线CD交x轴于点F.①求△COF的面积;②在x轴上是否存在点P,使S△OCP=S△COF?若存在,求出点P的坐标;若不存在,请说明理由.24.(8分)已知,在菱形ABCD中,G是射线BC上的一动点(不与点B,C重合),连接AG,点E、F是AG上两点,连接DE,BF,且知∠ABF=∠AGB,∠AED=∠ABC.(1)若点G在边BC上,如图1,则:①△ADE与△BAF______;(填“全等”或“不全等”或“不一定全等”)②线段DE、BF、EF之间的数量关系是______;(2)若点G在边BC的延长线上,如图2,那么上面(1)②探究的结论还成立吗?如果成立,请给出证明;如果不成立,请说明这三条线段之间又怎样的数量关系,并给出你的证明.25.(10分)如图,在△ABC中,∠ACB=90°,AC=8,BC=1.CD⊥AB于点D.点P从点A出发,以每秒1个单位长度的速度沿线段AB向终点B运动.在运动过程中,以点P为顶点作长为2,宽为1的矩形PQMN,其中PQ=2,PN=1,点Q在点P的左侧,MN在PQ的下分,且PQ总保持与AC垂直.设P的运动时间为t(秒)(t>0),矩形PQMN与△ACD的重叠部分图形面积为S(平方单位).(1)求线段CD的长;(2)当矩形PQMN与线段CD有公共点时,求t的取值范围;(3)当点P在线段AD上运动时,求S与t的函数关系式.26.(10分)河南某校招聘干部一名,对、、三人进行素质测试,他们各项成绩如下表:将语言、综合知识、创新和处理问题能力按测试成绩、、、比例计算,谁将被录用?测试项目测试成绩语言综合知识创新处理问题能力
参考答案一、选择题(每小题3分,共30分)1、D【解析】
根据反比例函数y=(k≠0)系数k的几何意义得到S△OPA=|k|,由于m为定值6,则S△OPA为定值3【详解】∵PA⊥x轴,∴S△OPA=|k|=×6=3,即Rt△OPA的面积不变。故选D.【点睛】此题考查反比例函数图象上点的坐标特征,反比例函数系数k的几何意义,解题关键在于得到S△OPA=|k|2、C【解析】
根据平行线的判定与性质,可判断A;根据全等三角形的判断与性质,可判断B;根据对顶角性质,可判断C;根据直角三角形的判断与性质,可判断D.【详解】A“两直线平行,内错角相等”的逆命题是“内错角相等,两直线平行”是真命题,故A不符合题意;B“全等三角形的对应边相等”的逆命题是“三边对应相等的两个三角形全等”是真命题,故B不符合题意;C“对顶角相等”的逆命题是“相等的角是对顶角”是假命题,故C符合题意;D“有一个角为90度的三角形是直角三角形”的逆命题是“直角三角形中有一个角是90度”是真命题,故D不符合题意;故选C【点睛】本题考查了命题与定理,熟练掌握相关性质定理是解答本题的关键.3、A【解析】
根据解一元一次不等式基本步骤系数化为1可得.【详解】解:两边都除以-2,得:x<-,故选:A.【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.4、D【解析】
根据因式分解的定义:将多项式和的形式化为整式积的形式,判断即可.【详解】解:A、没把一个多项式转化成几个整式积,故A错误;B、没把一个多项式转化成几个整式积,故B错误;C、是整式的乘法,故C错误;D、把一个多项式转化成几个整式积,故D正确;故选:D.【点睛】此题考查了因式分解的意义,熟练掌握因式分解的定义是解本题的关键.5、A【解析】
根据平行四边形、菱形的判定和性质一一判断即可【详解】解:A、对角线互相垂直的四边形不一定是菱形,本选项符合题意;B、对角线互相平分的四边形是平行四边形,正确,本选项不符合题意;C、菱形的对角线互相垂直,正确,本选项不符合题意;D、平行四边形的对角线互相平分,正确,本选项不符合题意;故选:A.【点睛】本题考查平行四边形的判定和性质、菱形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.6、A【解析】
根据一元二次方程的定义即可解答.【详解】选项A,由x=x2﹣3得到:x2﹣x﹣3=0,符合一元二次方程的定义,故本选项正确;选项B,当a=0时,该方程不是一元二次方程,故本选项错误;选项C,该方程不是整式方程,故本选项错误;选项D,该方程属于二元二次方程,故本选项错误;故选A.【点睛】本题考查了一元二次方程的定义,一元二次方程必须满足三个条件:(1)只含有一个未知数,未知数的最高次数是2;(2)二次项系数不为0;(3)方程为整式方程.7、B【解析】
过点B作BM⊥FD于点M,根据题意可求出BC的长度,然后在△EFD中可求出∠EDF=60°,进而可得出答案.【详解】解:过点B作BM⊥FD于点M,在△ACB中,∠ACB=90°,∠A=45°,AC=12,∴BC=AC=12.∵AB∥CF,∴BM=BC×sin45°=CM=BM=12,在△EFD中,∠F=90°,∠E=30°,∴∠EDF=60°,∴MD=BM÷tan60°=,∴CD=CM﹣MD=12﹣.故选B.【点睛】本题考查了解直角三角形,难度较大,解答此类题目的关键根据题意建立直角三角形利用所学的三角函数的关系进行解答.8、B【解析】
首先根据把一个图形沿着一条直线对折后两部分完全重合,这样的图形叫轴对称图形,分别找出各选项所给图形中是轴对称图形的选项,进而排除不是轴对称图形的选项;然后再分析得到的是轴对称图形的选项,根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,找出它们当中是中心对称图形的选项即可【详解】A是中心对称图形,不是轴对称图形,不符合题意B.既是中心对称图形又是轴对称图形,符合题意;C.既不是中心对称图形,也不是轴对称图形,不符合题意D是轴对称图形,不是中心对称图形,不符合题意故选B【点睛】此题主要考查中心对称图形和轴对称图形,根据定义对各选项进行分析判断是解决问题的关键;9、C【解析】
根据折叠可得:AD=BD,∵△ADC的周长为17cm,AC=5cm,∴AD+DC=17﹣5=12(cm).∵AD=BD,∴BD+CD=12cm.故选C.10、B【解析】
过点作轴的垂线交轴于点,过点作的垂线交轴于点,过点作的垂线交于,根据全等三角形的判定和性质,可得到点坐标和点坐标,从而求得双曲线函数未知数和平移距离.【详解】过点作轴的垂线交轴于点,过点作的垂线交轴于点,过点作的垂线交于.,,,.又,,,点坐标为将点坐标为代入,可得=4.与同理,可得到,,点坐标为,正方形沿轴负方向平移个单位长度后,点坐标为将点坐标为代入,可得=2.故选B.【点睛】本题综合考查反比例函数中未知数的求解、全等三角形的性质与判定、图形平移等知识.涉及图形与坐标系结合的问题,要学会通过辅助线进行求解.二、填空题(每小题3分,共24分)11、8【解析】试题分析:根据平行四边形的性质可得:OA+OD=(AC+BD)=5,AD=BC=3,则△AOD的周长为5+3=8.考点:平行四边形的性质.12、tV15【解析】∵在关系式V=31-2t中,V随着t的变化而变化,∴在关系式V=31-2t中,自变量是;因变量是;在V=31-2t中,由可得:,解得:,∴当时,.故答案为(1);(2);(3)15.13、10【解析】试题分析:根据角平分线的性质可得:CD=DE,△ACD和△AED全等,则AE=AC,根据AC=BC可知AE=BC,则△DEB的周长=DE+BD+BE=CD+BD+BE=BC+BE=AE+BE=AB=10cm.14、2或【解析】
由已知以点P,Q,E,D为顶点的四边形是平行四边形有两种情况,(1)当Q运动到E和B之间,(2)当Q运动到E和C之间,根据平行四边形的判定,由AD∥BC,所以当PD=QE时为平行四边形.据此设运动时间为t,列出关于t的方程求解.【详解】由已知梯形,
当Q运动到E和B之间,设运动时间为t,则得:=6-t,
解得:t=,
当Q运动到E和C之间,设运动时间为t,则得:-2t=6-t,
解得:t=2,
故当运动时间t为2或秒时,以点P,Q,E,D为顶点的四边形是平行四边形.故答案为2或【点睛】此题主要考查了梯形及平行四边形的性质,关键是由已知明确有两种情况,不能漏解.15、【解析】
直接提取公因式2,进行分解因式即可.【详解】2(a-b).故答案为:2(a-b).【点睛】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.16、【解析】
设y与x的函数关系式为y=kx+b,由待定系数法求出其解即可;把x=4时代入解析式求出y的值即可.【详解】设y与x的函数关系式为y=kx+b,由题意,得:,解得:.故y与x之间的关系式为:y=x+14.1;当x=4时,y=0.1×4+14.1=16.1.故答案为:16.1【点睛】此题考查根据实际问题列一次函数关系式,解题关键在于列出方程17、1米【解析】
根据实际问题抽象出数学图形,作垂线构造直角三角形,利用勾股定理求出结果.【详解】解:如图,设大树高为AB=1米,
小树高为CD=4米,
过C点作CE⊥AB于E,则EBDC是矩形,
连接AC,
∴EB=4m,EC=8m,AE=AB-EB=1-4=6米,
在Rt△AEC中,AC==1米故答案为:1.【点睛】本题考查勾股定理的应用,即.18、1【解析】试题分析:先利用三角形中位线性质得到AB=4,然后根据菱形的性质计算菱形ABCD的周长.∵E,F分别是AD,BD的中点,∴EF为△ABD的中位线,∴AB=2EF=4,∵四边形ABCD为菱形,∴AB=BC=CD=DA=4,∴菱形ABCD的周长=4×4=1.考点:(1)菱形的性质;(2)三角形中位线定理.三、解答题(共66分)19、2或1.【解析】分析:由已知条件|2a-3b+5|+(2a+3b-13)2=0,可得2a-3b+5=0且2a+3b-13=0,由此即可解得a和b的值,再分a为等腰三角形底和b为等腰三角形的底两种情况分别计算出等腰三角形的周长即可.详解:∵|2a-3b+5|+(2a+3b-13)2=0,∴2a-3b+5=0①,且2a+3b-13=0②,由①+②可得:4a-1=0,解得:a=2,将a=2代入②得:4+3b-13=0,解得:b=3,(1)当a为等腰三角形的底边时,等腰三角形的三边长为2,3,3,此时能围成三角形,其周长为1;
(2)当b为等腰三角形的底边时,等腰三角形的三边长为2,2,3,此时能围成三角形,其周长为2.
故此等腰三角形的周长为2或1.点睛:(1)两个非负数的和为0,则这两个非负数都为0;(2)求得a、b的值后要分a为等腰三角形的底边和b为等腰三角形的底边两种情况讨论.20、(1)BC=15;(2)S△BCD=2.【解析】
(1)根据勾股定理可求得BC的长.
(2)根据勾股定理的逆定理可得到△BCD也是直角三角形,根据三角形的面积即可得到结论.【详解】(1)∵∠A=90°,AB=9,AC=12∴BC==15,(2)∵BC=15,BD=8,CD=1∴BC2+BD2=CD2∴△BCD是直角三角形∴S△BCD=×15×8=2.【点睛】本题考查了勾股定理、勾股定理的逆定理;熟练掌握勾股定理和勾股定理的逆定理,通过作辅助线证明三角形是直角三角形是解决问题的关键.21、(1)a=,b=2,k=-2;(2)S△AOB=【解析】
(1)把A、B两点坐标代入直线解析式求出a,b的值,从而确定A、B两点坐标,再把A(或B)点坐标代入双曲线解析式求出k的值即可;(2)设直线AB分别交x轴、y轴于点E,F,根据S△AOB=S△EOF-S△AEO-S△BFO求解即可.【详解】(1)将点A(-4,a)、B(-1,b)分别代入表达式中,得:;,∴A(-4,)、B(-1,2)将B(-1,2)代入y=中,得k=-2所以a=,b=2,k=-2(2)设直线AB分别交x轴、y轴于点E,F,如图,对于直线,分别令y=0,x=0,解得:X=-5,y=,∴E(-5,0),F(0,)由图可知:S△AEO=×OE×AC=,S△BFO=×OF×BD=,S△EOF=×OE×OF=∴S△AOB=S△EOF-S△AEO-S△BFO=【点睛】本题主要考查了反比例函数与一次函数的交点问题,需要掌握根据待定系数法求函数解析式的方法.解答此类试题的依据是:①求一次函数解析式需要知道直线上两点的坐标;②根据三角形的面积及一边的长,可以求得该边上的高.22、△ABC的面积为2【解析】
根据题意利用勾股定理表示出AD2的值,进而得出等式求出答案.【详解】解:过点D作AD⊥BC,垂足为点D.设BD=x,则CD=28﹣x.在Rt△ABD中,AB=30,BD=x,由勾股定理可得AD2=AB2﹣BD2=302﹣x2,在Rt△ACD中,AC=1,CD=28﹣x,由勾股定理可得AD2=AC2﹣CD2=12﹣(28﹣x)2,∴302﹣x2=12﹣(28﹣x)2,解得:x=18,∴AD2=AB2﹣BD2=302﹣x2=302﹣182=576,∴AD=24,S△ABC=BC•AD=×28×24=2则△ABC的面积为2.【点睛】此题考查勾股定理,解题关键是根据题意正确表示出AD2的值.23、(1)E(8,0);(2)y=﹣x+6(3)①54;②点P的坐标为(6,0)或(﹣6,0).【解析】
(1)根据折叠的性质知CE=CB=1.在在直角△COE中,由勾股定理求得OE=8;(2)根据OC=6知C(0,6),由折叠的性质与勾股定理,求得D(1,),利用待定系数法求CD所在直线的解析式;(3)①根据F(18,0),即可求得△COF的面积;②设P(x,0),依S△OCP=S△CDE得×OP×OC=×54,即×|x|×6=18,求得x的值,即可得出点P的坐标.【详解】(1)如图,∵四边形ABCD是长方形,∴BC=OA=1,∠COA=90°,由折叠的性质知,CE=CB=1,∵OC=6,∴在直角△COE中,由勾股定理得OE==8,∴E(8,0);(2)设CD所在直线的解析式为y=kx+b(k≠0),∵C(0,6),∴b=6,设BD=DE=x,∴AD=6-x,AE=OA-OE=2,由勾股定理得AD2+AE2=DE2即(6-x)2+22=x2,解得x=,∴AD=6-=,∴D(1,),代入y=kx+6得,k=-,故CD所在直线的解析式为:y=-x+6;(3)①在y=-x+6中,令y=0,则x=18,∴F(18,0),∴△COF的面积=×OF×OC=×18×6=54;②在x轴上存在点P,使得S△OCP=S△COF,设P(x,0),依题意得×OP×OC=×54,即×|x|×6=18,解得x=±6,∴在x轴上存在点P,使得S△OCP=S△COF,点P的坐标为(6,0)或(-6,0).【点睛】本题属于四边形综合题,主要考查了矩形的性质,折叠的性质,勾股定理以及待定系数法求一次函数的解析式的综合应用.解答此题时注意坐标与图形的性质的运用以及方程思想的运用.24、(1)①全等;②DE=BF+EF;(2)DE=BF-EF,见解析【解析】
(1)①根据菱形的性质得到AB=AD,AD∥BC,由平行线的性质得到∠BGA=∠DAE,等量代换得到∠BAF=∠ADE,求得∠ABF=∠DAE,根据全等三角形的判定定理即可得到结论;②根据全等三角形的性质得到AE=BF,DE=AF,根据线段的和差即可得到结论.(2)与(1)同理证△ABF≌△DAE得AE=BF,DE=AF,由AF=AE-EF=BF-EF可得答案.【详解】(1)①∵四边形ABCD是菱形,∴AB=AD,AD∥BC,∴∠BGA=∠DAE,∵∠ABC=∠AED,∴∠BAF=180-∠ABC-∠BGA=180-∠AED-∠DAE=∠ADE,∵∠ABF=∠BGF,∠BGA=∠DAE,∴∠ABF=∠DAE,∵AB=DA,∴△ABF≌△DAE(ASA);②∵△ABF≌△DAE,∴AE=BF,DE=AF,∵AF=AE+EF=BF+EF,∴DE=BF+EF.故答案为:全等,DE=BF+EF;(2)DE=BF-EF,如图,∵四边形ABCD是菱形,∴AB=AD,AD∥BC,∴∠BGA=∠DAE,∵∠ABC=∠AED,∴∠BAF=180-∠ABC-∠BGA=180-∠AED-∠DAE=∠ADE,∵∠ABF=∠BGF,∠BGA=∠DAE,∴∠ABF=∠DAE,∵AB=DA,∴△ABF≌△DAE(ASA);∴AE=BF,DE=AF,∵AF=AE-EF=BF-EF,则DE=BF-EF【点睛】本题是四边形的综合问题,考查了菱形的性质,全等三角形的判定和性质,熟练掌握菱形的性质是解题的关键.25、(1)CD=;(2)≤t≤;(3
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2023肺亚实性结节外科管理进展共识解读课件
- 边检安全培训课件
- 手术医生技能培训方案
- 辨色力培训课件
- 车队安全培训模板下载课件
- 车队安全人员培训内容课件
- 车间质量安全培训会课件
- 车间级安全教育课件
- 2025年国有资产清查盘点总结(3篇)
- 2026年内科医生年度工作总结
- 结核病的预防性治疗
- 吉林省房屋建筑和市政基础设施工程评标专家管理办法
- NB/T 11438-2023循环流化床气化炉运行导则
- 光伏板智能清扫机器人结构设计
- (正式版)SHT 3115-2024 石油化工管式炉轻质浇注料衬里工程技术规范
- 高温高压CFB锅炉安装技术交底
- 山东省潍坊市2023-2024学年高一上学期期末考试英语试题(解析版)
- 沈阳职业技术学院单招《职业技能测试》参考试题库(含答案)
- 防职场性骚扰培训课件
- 设备维护与管理培训课件
- 印刷排版人员配置方案
评论
0/150
提交评论