版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省临沂市临沂经济开发区九级2024年数学八年级下册期末质量跟踪监视试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.一组数据1,2,3,5,4,3中的中位数和众数分别是()A.3,3 B.5,3 C.4,3 D.5,102.《中国诗词大会》是央视科教频道自主研发的一档大型文化益智节目,节目带动全民感受诗词之趣,分享诗词之美,从古人的智慧和情怀中汲取营养,涵养心灵.比赛中除了来自复旦附中的才女武亦姝表现出色外,其他选手的实力也不容小觑.下表是随机抽取的10名挑战者答对的题目数量的统计表,则这10名挑战者答对的题目数量的中位数为答对题数()答对题数4578人数3421A.4 B.5 C.6 D.73.某市的夏天经常台风,给人们的出行带来很多不便,小明了解到去年8月16日的连续12个小时的风力变化情况,并画出了风力随时间变化的图象(如图),则下列说法正确的是()A.20时风力最小 B.8时风力最小C.在8时至12时,风力最大为7级 D.8时至14时,风力不断增大4.判断下列三条线段a,b,c组成的三角形不是直角三角形的是()A.a=4,b=5,c=3 B.a=7,b=25,c=24C.a=40,b=50,c=60 D.a=5,b=12,c=135.不等式组的解集在数轴上表示正确的是()A. B.C. D.6.如图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3cm至D点,则橡皮筋被拉长了()A.2cm B.3cm C.4cm D.5cm7.如图,在中,平分交于点,平分,,交于点,若,则()A.75 B.100 C.120 D.1258.在数学活动课上,老师要求同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的四位同学拟定的方案,其中正确的是()A.测量对角线是否相互平分 B.测量两组对边是否分别相等C.测量一组对角是否都为直角 D.测量四边形其中的三个角是否都为直角9.已知32m=8n,则m、n满足的关系正确的是()A.4m=n B.5m=3n C.3m=5n D.m=4n10.一艘轮船和一艘快艇沿相同路线从甲港岀发匀速行驶至乙港,行驶路程随时间变化的图象如图,则下列结论错误的是()A.轮船的速度为20千米时 B.轮船比快艇先出发2小时C.快艇到达乙港用了6小时 D.快艇的速度为40千米时二、填空题(每小题3分,共24分)11.命题“直角三角形斜边上的中线等于斜边的一半”的逆命题是___________________.它是________命题(填“真”或“假”).12.数据﹣2,﹣1,0,3,5的方差是.13.“对顶角相等”的逆命题是________命题(填真或假)14.直线的截距是__________.15.若是一个完全平方式,则的值等于_________.16.对于任意不相等的两个正实数a,b,定义运算如下:如,如,那么________.17.如图,在▱ABCD中,AB=2,BC=3,∠BAD=120°,AE平分∠BAD,交BC于点E,过点C作CF∥AE,交AD于点F,则四边形AECF的面积为________.18.某公司10月份生产了万件产品,要使12月份的产品产量达到万件,设平均每月增长的百分率是,则可列方程____.三、解答题(共66分)19.(10分)近几年,随着电子产品的广泛应用,学生的近视发生率出现低龄化趋势,引起了相关部门的重视.某区为了了解在校学生的近视低龄化情况,对本区7-18岁在校近视学生进行了简单的随机抽样调查,并绘制了以下两幅不完整的统计图.请根据图中信息,回答下列问题:(1)这次抽样调查中共调查了近视学生人;(2)请补全条形统计图;(3)扇形统计图中10-12岁部分的圆心角的度数是;(4)据统计,该区7-18岁在校学生近视人数约为10万,请估计其中7-12岁的近视学生人数.20.(6分)分解因式:(1)x(x+y)(x-y)-x(x+y)2(2)(x-1)2+2(1-x)•y+y221.(6分)(1)解不等式组;(2)已知,求的值.22.(8分)如图,四边形ABCD是菱形,对角线AC与BD相交于O,AB=5,AO=4,求BD的长.23.(8分)如图①,在正方形ABCD中,P是对角线AC上的一点,点E在BC的延长线上,且PE=PB(1)求证:△BCP≌△DCP;(2)求证:∠DPE=∠ABC;(3)把正方形ABCD改为菱形,其它条件不变(如图②),若∠ABC=58°,则∠DPE=度.24.(8分)如图1,平行四边形ABCD在平面直角坐标系中,A、B(点A在点B的左侧)两点的横坐标是方程32x2-23x-63(1)求平行四边形ABCD的面积;(2)若P是第一象限位于直线BD上方的一点,过P作PE⊥BD于E,过E作EH⊥x轴于H点,作PF∥y轴交直线BD于F,F为BD中点,其中△PEF的周长是4+42;若M为线段AD上一动点,N为直线BD上一动点,连接HN,NM,求HN+NM-1010DM的最小值,此时y轴上有一个动点G,当(3)在(2)的情况下,将△AOD绕O点逆时针旋转60°后得到ΔA'OD'如图2,将线段OD'沿着x轴平移,记平移过程中的线段OD'为O'D″,在平面直角坐标系中是否存在点25.(10分)如图,▱ABCD中,AC为对角线,G为CD的中点,连接AG并廷长交BC的延长线于点F,连接DF,求证:四边形ACFD为平行四边形.26.(10分)如图,在平行四边形中,,是中点,在延长线上,连接相交于点.(1)若,求平行四边形的面积;(2)若,求证:.
参考答案一、选择题(每小题3分,共30分)1、A【解析】
中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);众数是一组数据中出现次数最多的数据.【详解】解:将这组数据按从小到大的顺序排列为:1、2、3、3、4、5,这组数据的中位数是,在这一组数据中3是出现次数最多的,故众数是3;故选:A.【点睛】本题考查了众数与中位数的定义.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.2、B【解析】
将这组数据从小到大的顺序排列后,根据中位数的定义就可以求解.【详解】解:将这组数据从小到大的顺序排列后,处于中间位置第1和第6个数是1、1,那么由中位数的定义可知,这组数据的中位数是1.
故选:B.【点睛】本题为统计题,考查中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.3、A【解析】
根据函数图象可以判断各个选项中的结论是否正确,本题得以解决.【详解】解:由图象可得,20时风力最小,故选项A正确,选项B错误,在8时至12时,风力最大为4级,故选项C错误,8时至11时,风力不断增大,11至12时,风力在不断减小,在12至14时,风力不断增大,故选项D错误,故选:A.【点睛】本题考查函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.4、C【解析】
根据勾股定理的逆定理对各选项进行逐一分析即可.【详解】解:A、∵32+42=52,∴由线段a,b,c组成的三角形是直角三角形,故本选项错误;B、∵72+242=252,∴由线段a,b,c组成的三角形是直角三角形,故本选项错误;C、∵402+502≠602,∴由线段a,b,c组成的三角形不是直角三角形,故本选项正确;D、∵52+122=132,∴由线段a,b,c组成的三角形不是直角三角形,故本选项错误.故选:C.【点睛】本题考查的是勾股定理及勾股定理的逆定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.5、B【解析】
根据大于小的小于大的取中间确定不等式组的解集,最后用数轴表示解集.【详解】所以这个不等式的解集是-3≤x<1,用数轴表示为故选B【点睛】此题考查在数轴上表示不等式的解集,解一元一次不等式组,解题关键在于掌握运算法则.6、A【解析】
根据勾股定理可以得到AD和BD的长度,然后用AD+BD-AB的长度即为所求.【详解】根据题意可得BC=4cm,CD=3cm,根据Rt△BCD的勾股定理可得BD=5cm,则AD=BD=5cm,所以橡皮筋被拉长了(5+5)-8=2cm.【点睛】主要考查了勾股定理解直角三角形.7、B【解析】
根据角平分线的定义推出△ECF为直角三角形,然后根据勾股定理求得CE1+CF1=EF1.【详解】∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°,又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,∴CM=EM=MF=5,EF=10,由勾股定理可知CE1+CF1=EF1=2.故选:B【点睛】本题考查角平分线的定义,直角三角形的判定以及勾股定理的运用.8、D【解析】
根据矩形的判定定理即可选出答案.【详解】解:A.对角线是否相互平分,能判定平行四边形,而不能判定矩形;B.两组对边是否分别相等,能判定平行四边形,而不能判定矩形;C.一组对角是否都为直角,不能判定形状;D.四边形其中的三个角是否都为直角,能判定矩形.故选D.【点睛】本题考查了矩形的判定定理.解题的关键是牢记这些定理.矩形的判定定理:(1)有一个角是直角的平行四边形是矩形;(2)有三个角是直角的四边形是矩形;(3)对角线互相平分且相等的四边形是矩形.9、B【解析】∵32m=8n,
∴(25)m=(23)n,
∴25m=23n,
∴5m=3n.
故选B.10、C【解析】
观察图象可知,该函数图象表示的是路程与时间的函数关系,依据图象中的数据进行计算即可。【详解】A.轮船的速度为1608=20B.轮船比快艇先出发2小时,故本选项正确;C.快艇到达乙港用了6-2=4小时,故本选项错误;D.快艇的速度为1604=40故选:C.【点睛】本题考查了一次函数图象的运用、行程问题的数量关系的运用,解题时分析函数图象提供的信息是关键。二、填空题(每小题3分,共24分)11、如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形真【解析】分析:把一个命题的条件和结论互换就得到它的逆命题.命题“直角三角形斜边上的中线等于斜边的一半”的条件是直角三角形,结论是斜边上的中线等于斜边的一半,故其逆命题:如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.详解:定理“直角三角形斜边上的中线等于斜边的一半”的逆命题:如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.它是真命题.故答案为如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形;真.点睛:本题考查了互逆命题的知识及命题的真假判断,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.12、.【解析】
试题分析:先根据平均数的计算公式要计算出这组数据的平均数,再根据方差公式进行计算即可.解:这组数据﹣2,﹣1,0,3,5的平均数是(﹣2﹣1+0+3+5)÷5=1,则这组数据的方差是:[(﹣2﹣1)2+(﹣1﹣1)2+(0﹣1)2+(3﹣1)2+(5﹣1)2]=;故答案为.13、假【解析】
先交换原命题的题设与结论得到逆命题,然后根据对顶角的定义进行判断.【详解】命题“对顶角相等”的逆命题是相等的角为对顶角,此逆命题为假命题.故答案为:假.【点睛】考查命题与定理,写出原命题的逆命题是解题的关键.14、-5【解析】
根据截距的定义:直线方程y=kx+b中,b就是截距解答即可.【详解】直线的截距是−5.故答案为:−5.【点睛】此题考查一次函数图象,解题关键在于掌握一次函数图象上点的坐标特征.15、【解析】
根据完全平方公式的特点即可求解.【详解】∵是完全平方式,即为,∴.故答案为.【点睛】此题主要考查完全平方公式,解题的关键是熟知完全平方公式的特点.16、【解析】
根据题目所给定义求解即可.【详解】解:因为,所以.【点睛】本题考查了二次根式的运算,属于新定义题型,正确理解题中所给定义并进行应用是解题的关键.17、【解析】【分析】如图所示,过点A作AM⊥BC,垂足为M,先证明△ABE是等边三角形,从而求得BE=AB=2,继而求得AM长,再证明四边形AECF是平行四边形,继而根据平行四边形的面积公式进行计算即可求得.【详解】如图所示,过点A作AM⊥BC,垂足为M,∵四边形ABCD是平行四边形,∴AD//BC,∴∠B=180°-∠BAD=180°-120°=60°,∠DAE=∠AEB,∵AE平分∠BAD,∠BAD=120°,∴∠DAE=60°,∴∠AEB=60°,∴△ABE是等边三角形,∴BE=AB=2,∴BM=1,AM=,又∵CF//AE,∴四边形AECF是平行四边形,∵CE=BC-BE=3-2=1,∴S四边形AECF=CE•AM=,故答案为:.【点睛】本题考查了平行四边形的判定与性质、等边三角形的判定与性质、勾股定理等,正确添加辅助线、熟练应用相关的定理与性质是解题的关键.18、100(1+x)2=121【解析】
设平均每月增长的百分率是x,那么11月份的产品产量为100(1+x)万件,2月份的产品产量为100(1+x)(1+x),然后根据2月份的产品产量达到121万件即可列出方程,解方程即可.【详解】解:设平均每月增长的百分率是x,依题意得:100(1+x)2=121故答案为100(1+x)2=121【点睛】本题考查了利用一元二次方程解增长率问题.三、解答题(共66分)19、(1)1500;(2)详见解析;(3)108°;(5)1.【解析】
(1)根据16-18岁的近视人数和所占总调查人数的百分率即可求出总调查人数;(2)计算出7-9岁的近视人数即可补全条形统计图;(3)求出10-12岁的近视人数占总调查人数的百分率,再乘360°即可;(4)求出7-12岁的近视学生人数占总调查人数的百分率,再乘该区总人数即可.【详解】解:(1)这次抽样调查中共调查了近视学生人数为:330÷22%=1500人故答案为:1500(2)7-9岁的近视人数为:人补全条形统计图如下:(3)10-12岁部分的圆心角的度数是故答案为:(4)10万人=100000人估计其中7-12岁的近视学生人数为人答:7-12岁的近视学生人数约1人.【点睛】此题考查的是条形统计图和扇形统计图,掌握结合条形统计图和扇形统计图得出有用信息是解决此题的关键.20、(1)-2xy(x+y);(2)(x-1-y)2【解析】
(1)提公因式x(x+y),合并即可;(2)利用完全平方式进行分解.【详解】(1)原式=x(x+y)[(x-y)-(x+y)]=-2xy(x+y)(2)原式=(x-1)2-2(x-1)y+y2=(x-1-y)2【点睛】本题考查的知识点是提取公因式法因式分解和完全平方式,解题关键是求出多项式里各项的公因式,提公因式.21、(1)x<-10;(2)6.【解析】
(1)先分别解两个不等式得到x<-1和x<-10,然后根据小小取较小确定不等式组的解集;(2)将两边同时平方,然后利用完全平方公式可求得答案.【详解】(1)解不等式①得,x<-1,解不等式②得,x<-10,所以,不等式组的解集为:x<-10;(2)∵∴∴∴【点睛】本题考查利用完全平方公式化简求值、解一元一次不等式组,解答本题的关键是明确利用完全平方公式化简求值的方法和解不等式组的方法.22、6【解析】
根据菱形的性质得出AC⊥BD,DO=BO,然后根据Rt△AOB的勾股定理求出BO的长度,然后根据BD=2BO求出答案.【详解】∵四边形ABCD是菱形,对角线AC与BD相交于O,∴AC⊥BD,DO=BO,∵AB=5,AO=4,∴BO==3,∴BD=2BO=2×3=6考点:菱形的性质23、(1)详见解析(2)详见解析(3)1【解析】
(1)根据正方形的四条边都相等可得BC=DC,对角线平分一组对角可得∠BCP=∠DCP,然后利用“边角边”证明即可.(2)根据全等三角形对应角相等可得∠CBP=∠CDP,根据等边对等角可得∠CBP=∠E,然后求出∠DPE=∠DCE,再根据两直线平行,同位角相等可得∠DCE=∠ABC,从而得证.(3)根据(2)的结论解答:与(2)同理可得:∠DPE=∠ABC=1°.【详解】解:(1)证明:在正方形ABCD中,BC=DC,∠BCP=∠DCP=45°,∵在△BCP和△DCP中,,∴△BCP≌△DCP(SAS).(2)证明:由(1)知,△BCP≌△DCP,∴∠CBP=∠CDP.∵PE=PB,∴∠CBP=∠E.∴∠CDP=∠E.∵∠1=∠2(对顶角相等),∴180°﹣∠1﹣∠CDP=180°﹣∠2﹣∠E,即∠DPE=∠DCE.∵AB∥CD,∴∠DCE=∠ABC.∴∠DPE=∠ABC.(3)解:在菱形ABCD中,BC=DC,∠BCP=∠DCP,
在△BCP和△DCP中,∴△BCP≌△DCP(SAS),
∴∠CBP=∠CDP,
∵PE=PB,
∴∠CBP=∠E,
∴∠DPE=∠DCE,
∵AB∥CD,
∴∠DCE=∠ABC,
∴∠DPE=∠ABC=1°,
故答案为:1.24、(1)S平行四边形ABCD=48;(2)G(0,11423),见解析;(3)满足条件的点S的坐标为1-733,-2或【解析】
(1)解方程求出A,B两点坐标,在Rt△AOD中,求出OD即可解决问题.(2)首先证明△EHB也是等腰直角三角形,以HE,HB为边构造正方形EHBJ,连接JN,延长JE交OD于Q,作MT⊥OD于T,连接JT.在Rt△DMT中,易知MT=1010DM,根据对称性可知:NH=NJ,推出HN+MM-1010DM=NJ+MN-MT≤JT,推出当JT最小时,HN+MM-1010DM的值最小.如图2中当点M在JQ的延长线上时,HN+MM-1010DM的值最小,此时M(-13,5),作点M关于y轴对称点M′,连接CM′,延长CM′交y轴于点G(3)分五种情形分别画出图形,利用菱形的性质,中点坐标公式等知识一一求解即可.【详解】解:(1)由32x2-23∴A(-2,0),B(1,0);在Rt△ADO中,∵∠AOD=90°,AD=210,OA=2;∴OD=A∵OB=1,∴OD=OB=1,∴△BOD是等腰直角三角形,∴S平行四边形ABCD=AB•OD=8×1=48;(2)如图1中,∵EH⊥OB,∴∠EHB=90°,∵△BOD是等腰直角三角形,∴∠EBH=45°,∴△EHB也是等腰直角三角形,以HE,HB为边构造正方形EHBJ,连接JN,延长JE交OD于Q,作MT⊥OD于T,连接JT,在Rt△DMT中,易知MT=1010DM∵四边形EHBJ是正方形,根据对称性可知:NH=NJ,∴HN+MM-1010DM=NJ+MN-MT≤JT∴当JT最小时,HN+MM-1010DM∵JT≤JQ,∴JT≤OB=1,∴HN+MM-1010DM的最小值为1如图2中,∵PF∥y轴,∴∠PFE=∠ODB=45°,∴△PEF是等腰直角三角形,设PE=EF=a,则PF=2a,由题意2a+2a=4+42,∴a=22,∵FB=FD,∴F(3,3),∴E(1,5),∴当点M在JQ的延长线上时,HN+MM-1010DM的值最小,此时M(-13,5),作点M关于y轴对称点M′,连接CM′,延长CM′交y轴于点G,此时∵C(8,1),M′(13,5∴直线CM′的解析式为y=3∴G(0,11423(3)存在.设菱形的对角线的交点为J.①如图3-1中,当O′D″是对角线时,设ES交x轴于T.∵四边形EO′SD″是菱形,∴ES⊥O′D″,∴直线ES的解析式为y=3∴T1-5在Rt△JTO′中,易知O′J=3,∠TO′J=30°,∴O′T=23,∴O∴J∵JE=JS,∴可得S1-7②如图3-2中,当EO′=O′D″=1时,可得四边形SEO′D″是菱形,设O′(m,0).则有:(m-1)2+52=31,∴m=1+11或1-11,∴O′(1+11,0)或(1-11,0)(如图3-3中),∴D″(1+11-33,3),∴J2+∵JS=JO′,∴S(1-33③如图3-3中,当EO′=O′D″时,由②可知O′(1-11,0).同法可得S(1-3④如图3-4中,当ED″=D″O′=1时,可得四边形ESO′D″是菱形.设D″(m,3),则(m-1)2+22=31,∴m=1+42(图5中情形),或m=1-42,∴D″(1-42∴J2-4∵JD″=JS,∴可得S(1+33,2),⑤如图3-5中,当D″E=D″O时,由④可知D″(1+42,3),∴O∴J2+4∵JD″=JS,∴可得S(1+33,2),综上所述,满足条件的点S的坐标为1-733,-2或【点睛】本题属于四边形综
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026浙江象山半边山紫冠投资有限公司酒店管理分公司(宁波象山海景皇冠假日酒店)招聘5人备考考试题库及答案解析
- 2026天津商业大学第一批招聘20人 (高层次人才岗位)备考考试题库及答案解析
- 2026山东事业单位统考烟台市莱山区招聘4人考试备考试题及答案解析
- 骨髓瘤患者营养支持护理
- 2026交通运输部所属事业单位第四批统一招聘24人备考考试试题及答案解析
- 2026年宁德人民医院编外人员招聘1人(一)备考考试题库及答案解析
- 失智照护区管理制度(3篇)
- 2026山东事业单位统考青岛西海岸新区招聘工作人员2人参考考试题库及答案解析
- 中美药品广告管理制度对比(3篇)
- 2026云南昭通市彝良县公安局警务辅助人员招聘6人备考考试试题及答案解析
- 2026年吉林大学附属中学公开招聘教师备考题库(4人)及参考答案详解
- 2025年大学旅游管理(旅游服务质量管理)试题及答案
- 打捆机培训课件
- 2026年浅二度烧伤处理
- 北京通州产业服务有限公司招聘考试备考题库及答案解析
- 河北省NT名校联合体2025-2026学年高三上学期1月月考英语(含答案)
- 2025-2026学年沪科版八年级数学上册期末测试卷(含答案)
- 途虎养车安全培训课件
- 卫生管理研究论文
- 委托市场调研合同范本
- 畜牧安全培训资料课件
评论
0/150
提交评论