2024届黑龙江省哈尔滨市实验学校八年级下册数学期末统考模拟试题含解析_第1页
2024届黑龙江省哈尔滨市实验学校八年级下册数学期末统考模拟试题含解析_第2页
2024届黑龙江省哈尔滨市实验学校八年级下册数学期末统考模拟试题含解析_第3页
2024届黑龙江省哈尔滨市实验学校八年级下册数学期末统考模拟试题含解析_第4页
2024届黑龙江省哈尔滨市实验学校八年级下册数学期末统考模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届黑龙江省哈尔滨市实验学校八年级下册数学期末统考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下列一元二次方程中,有两个不相等实数根的是()A. B.C. D.2.如果反比例函数y=的图象经过点(-1,-2),则k的值是()A.2 B.-2 C.-3 D.33.根据二次函数y=-x2+2x+3的图像,判断下列说法中,错误的是()A.二次函数图像的对称轴是直线x=1;B.当x>0时,y<4;C.当x≤1时,函数值y是随着x的增大而增大;D.当y≥0时,x的取值范围是-1≤x≤3时.4.如图,已知一次函数y=kx+b的图象经过点A(5,0)与B(0,﹣4),那么关于x的不等式kx+b<0的解集是()A.x<5 B.x>5 C.x<﹣4 D.x>﹣45.如图,在正方形ABCD中,点P是AB上一动点(不与A,B重合),对角线AC,BD相交于点O,过点P分别作AC,BD的垂线,分别交AC,BD于点E,F,交AD,BC于点M,N.下列结论:①△APE≌△AME;②PM+PN=BD;③PE2+PF2=PO2.其中正确的有()A.0个 B.1个 C.2个 D.3个6.如图,在中,平分,则的周长是()A. B. C. D.7.下列等式一定成立的是()A.-= B.∣2-=2- C. D.-=-48.正方形在平面直角坐标系中,其中三个顶点的坐标分别为,,,则第四个顶点的坐标为()A. B. C. D.9.在平面直角坐标系中,点(﹣2,﹣a2﹣3)一定在()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.若平行四边形的一边长为7,则它的两条对角线长可以是()A.12和2 B.3和4 C.14和16 D.4和8二、填空题(每小题3分,共24分)11.命题“角平分线上的点到这个角的两边的距离相等”的逆命题是______,它是___命题(填“真”或“假”).12.如图:使△AOB∽△COD,则还需添加一个条件是:.(写一个即可)13.中华文化源远流长,如图是中国古代文化符号的太极图,圆中的黑色部分和白色部分关于圆心中心对称.在圆内随机取一点,则此点取黑色部分的概率是__.14.将反比例函数的图像绕着原点O顺时针旋转45°得到新的双曲线图像(如图1所示),直线轴,F为x轴上的一个定点,已知,图像上的任意一点P到F的距离与直线l的距离之比为定值,记为e,即.(1)如图1,若直线l经过点B(1,0),双曲线的解析式为,且,则F点的坐标为__________.(2)如图2,若直线l经过点B(1,0),双曲线的解析式为,且,P为双曲线在第一象限内图像上的动点,连接PF,Q为线段PF上靠近点P的三等分点,连接HQ,在点P运动的过程中,当时,点P的坐标为__________.15.一个小区大门的栏杆如图所示,垂直地面于,平行于地面,那么_________.16.如图,在平面直角坐标系中,点,射线轴,直线交线段于点,交轴于点,是射线上一点.若存在点,使得恰为等腰直角三角形,则的值为_______.17.如图,以点O为圆心的三个同心圆把以OA1为半径的大圆的面积四等分,若OA1=R,则OA4:OA3:OA2:OA1=______________,若有()个同心圆把这个大圆等分,则最小的圆的半径是=_______.18.已知函数,则自变量x的取值范围是___________________.三、解答题(共66分)19.(10分)在2018年俄罗斯世界杯足球赛前夕,某体育用品店购进一批单价为40元的球服,如果按单价60元销售,那么一个月内可售出240套.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高5元,销售量相应减少20套.设销售单价为x(x≥60)元,销售量为y套.(1)求出y与x的函数关系式.(2)当销售单价为多少元时,月销售额为14000元?20.(6分)母亲节前夕,某商店从厂家购进A、B两种礼盒,已知A、B两种礼盒的单价比为3:4,单价和为210元.(1)求A、B两种礼盒的单价分别是多少元?(2)该商店购进这两种礼盒恰好用去9900元,且购进A种礼盒最多36个,B种礼盒的数量不超过A种礼盒数量的2倍,共有几种进货方案?(3)根据市场行情,销售一个A钟礼盒可获利12元,销售一个B种礼盒可获利18元.为奉献爱心,该店主决定每售出一个B种礼盒,为爱心公益基金捐款m元,每个A种礼盒的利润不变,在(2)的条件下,要使礼盒全部售出后所有方案获利相同,m值是多少?此时店主获利多少元?21.(6分)某校在一次献爱心捐款活动中,学校团支部为了解本校学生的各类捐款人数的情况,进行了一次统计调查,并绘制成了统计图①和②,请解答下列问题.(1)本次共调查了多少名学生.(2)补全条形统计图.(3)这些学生捐款数的众数为,中位数为.(4)求平均每个学生捐款多少元.(5)若该校有600名学生,那么共捐款多少元.22.(8分)(1)计算:;(2)先化简,再求值:(-4)÷,其中x=1.23.(8分)求证:矩形的对角线相等要求:画出图形,写出已知,求证和证明过程24.(8分)铭润超市用5000元购进一批新品种的苹果进行试销,由于销售状况良好,超市又调拨11000元资金购进该品种苹果,但这次的进货价比试销时每千克多了0.5元,购进苹果数量是试销时的2倍.(1)试销时该品种苹果的进货价是每千克多少元?(2)如果超市将该品种苹果按每千克7元的定价出售,当大部分苹果售出后,余下的400千克按定价的七折(“七折”即定价的70%)售完,那么超市在这两次苹果销售中共盈利多少元?25.(10分)如图,在正方形网络中,△ABC的三个顶点都在格点上,点A、B、C的坐标分别为A(-2,4)、B(-2,0)、C(-4,1),结合所给的平面直角坐标系解答下列问题:(1)画出△ABC关于原点O中心对称图形△A1B1C1.(2)平移△ABC,使点A移动到点A2(0,2),画出平移后的△A2B2C2并写出点B2、C2的坐标.26.(10分)小东和小明要测量校园里的一块四边形场地ABCD(如图所示)的周长,其中边CD上有水池及建筑遮挡,没有办法直接测量其长度.小东经测量得知AB=AD=5m,∠A=60°,BC=12m,∠ABC=150°.小明说根据小东所得的数据可以求出CD的长度.你同意小明的说法吗?若同意,请求出CD的长度;若不同意,请说明理由.

参考答案一、选择题(每小题3分,共30分)1、B【解析】

根据一元二次方程根的判别式判断即可.【详解】解:A、x2+6x+9=0

△=62-4×9=36-36=0,

方程有两个相等实数根;

B、x2=x

x2-x=0

△=(-1)2-4×1×0=1>0

两个不相等实数根;

C、x2+3=2x

x2-2x+3=0

△=(-2)2-4×1×3=-8<0,

方程无实根;

D、(x-1)2+1=0

(x-1)2=-1,

则方程无实根;

故选:B.【点睛】本题考查一元二次方程根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.2、D【解析】

此题考查的是用待定系数法求反比例函数的解析式,是中学阶段的重点.解答此题时,借用了“反比例函数图象上点的坐标特征”这一知识点.根据反比例函数图象上点的坐标特征,将(-1,-2)代入已知反比例函数的解析式,列出关于系数k的方程,通过解方程即可求得k的值.【详解】根据题意,得-2=,即2=k-1,解得,k=1.故选D.考点:待定系数法求反比例函数解析式.3、B【解析】试题分析:,所以x=1时,y取得最大值4,时,y<4,B错误故选B.考点:二次函数图像点评:解答二次函数图像的问题,关键是读懂题目中的信息,正确化简出相应的格式,并与图像一一对应判断.4、A【解析】由题意可得:一次函数y=kx+b中,y<0时,图象在x轴下方,x<5,则关于x的不等式kx+b<0的解集是x<5,故选A.5、D【解析】

依据正方形的性质以及勾股定理、矩形的判定方法即可判断△APM和△BPN以及△APE、△BPF都是等腰直角三角形,四边形PEOF是矩形,从而作出判断.【详解】解:∵四边形ABCD是正方形,

∴∠BAC=∠DAC=45°.

在△APE和△AME中,

∠BAC=∠DAC

AE=AE

∠AEP=∠AEM,

∴△APE≌△AME(ASA),故①正确;

∴PE=EM=PM,

同理,FP=FN=NP.

∵正方形ABCD中,AC⊥BD,

又∵PE⊥AC,PF⊥BD,

∴∠PEO=∠EOF=∠PFO=90°,且△APE中AE=PE

∴四边形PEOF是矩形.

∴PF=OE,

∴PE+PF=OA,

又∵PE=EM=PM,FP=FN=NP,OA=AC,

∴PM+PN=AC,∴PM+PN=BD;故②正确;

∵四边形ABCD是矩形,

∴AC⊥BD,

∴∠AOB=90°,

∵PE⊥AC,PF⊥BD,

∴∠OEP=∠EOF=∠OFP=90°,

∴四边形PEOF是矩形,

∴OE=PF,OF=PE,

在直角△OPF中,OE²+PE²=PO²,

∴PE²+PF²=PO²,故③正确;∴正确的有3个,故选:D【点睛】本题是正方形的性质、矩形的判定、勾股定理的综合应用,认识△APM和△BPN以及△APE、△BPF都是等腰直角三角形,四边形PEOF是矩形是关键.6、C【解析】

首先由在▱ABCD中,AD=8,BE=3,求得CE的长,然后由DE平分∠ADC,证得△CED是等腰三角形,继而求得CD的长,则可求得答案.【详解】解:∵在▱ABCD中,AD=8,

∴BC=AD=8,AD∥BC,

∴CE=BC-BE=8-3=5,∠ADE=∠CED,

∵DE平分∠ADC,

∴∠ADE=∠CDE,

∴∠CDE=∠CED,

∴CD=CE=5,

∴▱ABCD的周长是:2(AD+CD)=1.

故选:C.【点睛】此题考查了平行四边形的性质以及等腰三角形的判定与性质.注意证得△CED是等腰三角形是解此题的关键.7、D【解析】分析:根据二次根式的运算一一判断即可.详解:A.故错误.B.故错误.C.,故错误.D.正确.故选D.点睛:考查二次根式的运算,根据运算法则进行运算即可.8、B【解析】

根据已知三个点的横纵坐标特征,可设A(-2,2),B(-2,-2),C(x,y),D(2,2),判断出AB⊥x轴,AD⊥AB,由此可得C点坐标与D点、B点坐标的关系,从而得到C点坐标.【详解】解:设A(-2,2),B(-2,-2),C(x,y),D(2,2),

由于A点和B点的横坐标相同,

∴AB垂直x轴,且AB=1.

因为A点和D点纵坐标相同,

∴AD∥x轴,且AD=1.

∴AD⊥AB,CD⊥AD.

∴C点的横坐标与D点的横坐标相同为2.

C点纵坐标与B点纵坐标相同为-2,

所以C点坐标为(2,-2).

故选:B.【点睛】本题主要考查了正方形的性质、坐标与图形的性质,解决这类问题要熟知两个点的横坐标相同,则两点连线垂直于x轴,纵坐标相同,则平行于x轴(垂直于y轴).9、C【解析】

根据直角坐标系的坐标特点即可判断.【详解】解:∵a2+3≥3>0,∴﹣a2﹣3<0,∴点(﹣2,﹣a2﹣3)一定在第三象限.故选C.【点睛】此题主要考查直角坐标系点的特点,解题的关键是熟知各象限坐标特点.10、C【解析】

平行四边形的长为7的一边,与对角线的交点,构成的三角形的另两边应满足三角形的三边关系,即两边之和大于第三边,两边之差小于第三边.设两条对角线的长度分别是x、y,即三角形的另两边分别是x、y,那么得到不等式组,解得,所以符合条件的对角线只有14,1.【详解】解:如图,▱ABCD中,AB=7,设两条对角线AC、BD的长分别是x,y.∵四边形ABCD为平行四边形,∴OA=OC,OB=OD∴OA=x,OB=y,∴在△AOB中,,即:,解得:,将四个选项分别代入方程组中,只有C选项满足.故选:C.【点睛】本题考查平行四边形的性质以及三角形的三边关系定理,根据三角形的三边关系,确定出对角线的长度范围是解题的关键,有一定的难度.二、填空题(每小题3分,共24分)11、到角的两边距离相等的点在角平分线上,真.【解析】

把一个命题的条件和结论互换就得到它的逆命题.【详解】解:命题“角平分线上的点到这个角两边的距离相等”的逆命题是“到角的两边距离相等的点在角平分线上”,它是真命题.【点睛】本题考查了互逆命题的知识和命题的真假判断,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.12、∠A=∠C(答案不唯一).【解析】

添加条件是∠A=∠C,根据相似三角形的判定(有两角对应相等的两三角形相似)证明即可.【详解】添加的条件是:∠A=∠C,理由是:∵∠A=∠C,∠DOC=∠BOA,∴△AOB∽△COD,故答案为:∠A=∠C.本题答案不唯一.13、【解析】

根据中心对称图形的性质得到圆中的黑色部分和白色部分面积相等,根据概率公式计算即可.【详解】∵圆中的黑色部分和白色部分关于圆心中心对称,∴圆中的黑色部分和白色部分面积相等,∴在圆内随机取一点,则此点取黑色部分的概率是,故答案为.【点睛】考查的是概率公式、中心对称图形,掌握概率公式是解题的关键.14、F(4,0)【解析】

(1)令y=0求出x的值,结合e=2可得出点A的坐标,由点B的坐标及e=2可求出AF的长度,将其代入OF=OB+AB+AF中即可求出点F的坐标;

(2)设点P的坐标为(x,),则点H的坐标为(1,),由Q为线段PF上靠近点P的三等分点,可得出点Q的坐标为(x+,),利用两点间的距离公式列方程解答即可;【详解】解:(1)如图:当y=0时,±,

解得:x1=2,x2=-2(舍去),

∴点A的坐标为(2,0).

∵点B的坐标为(1,0),

∴AB=1.

∵e=2,

∴,

∴AF=2,

∴OF=OB+AB+AF=4,

∴F点的坐标为(4,0).

故答案为:(4,0).(2)设点P的坐标为(x,),则点H的坐标为(1,).

∵点Q为线段PF上靠近点P的三等分点,点F的坐标为(5,0),

∴点Q的坐标为(x+,).

∵点H的坐标为(1,),HQ=HP,

∴(x+-1)2+(-)2=[(x-1)]2,

化简得:15x2-48x+39=0,

解得:x1=,x2=1(舍去),

∴点P的坐标为(,).故答案为:(,).【点睛】本题考查了两点间的距离、解一元二次方程以及反比例函数的综合应用,解题的关键是:(1)利用特殊值法(点A和点P重合),求出点F的坐标;(2)设出点P的坐标,利用两点间的距离公式找出关于x的一元二次方程;15、【解析】

作CH⊥AE于H,如图,根据平行线的性质得∠ABC+∠BCH=180°,∠DCH+∠CHE=180°,则∠DCH=90°,于是可得到∠ABC+∠BCD=270°.【详解】解:作CH⊥AE于H,如图,

∵AB⊥AE,CH⊥AE,

∴AB∥CH,

∴∠ABC+∠BCH=180°,

∵CD∥AE,

∴∠DCH+∠CHE=180°,

而∠CHE=90°,

∴∠DCH=90°,

∴∠ABC+∠BCD=180°+90°=270°.

故答案为270°.【点睛】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.16、3或6【解析】

先表示出A、B坐标,分①当∠ABD=90°时,②当∠ADB=90°时,③当∠DAB=90°时,建立等式解出b即可.【详解】解:①当∠ABD=90°时,如图1,则∠DBC+∠ABO=90°,,∴∠DBC=∠BAO,由直线交线段OC于点B,交x轴于点A可知OB=b,OA=b,∵点C(0,6),∴OC=6,∴BC=6-b,在△DBC和△BAO中,∴△DBC≌△BAO(AAS),∴BC=OA,即6-b=b,∴b=3;②当∠ADB=90°时,如图2,作AF⊥CE于F,同理证得△BDC≌△DAF,∴CD=AF=6,BC=DF,∵OB=b,OA=b,∴BC=DF=b-6,∵BC=6-b,∴6-b=b-6,∴b=6;③当∠DAB=90°时,如图3,作DF⊥OA于F,同理证得△AOB≌△DFA,∴OA=DF,∴b=6;综上,b的值为3或6,故答案为3或6.【点睛】本题考查了一次函数图像上点的坐标特征,等腰直角三角形的性质,三角形全等的判定和性质,作辅助线构建求得三角形上解题的关键.17、【解析】

根据每个圆与大圆的面积关系,即可求出每个圆的半径长,即可得到结论.【详解】∵π•OA42=π•OA12,

∴OA42=OA12,

∴OA4=OA1;

∵π•OA32=π•OA12,

∴OA32=OA12,

∴OA3=OA1;

∵π•OA22=π•OA12,

∴OA22=OA12,

∴OA2=OA1;∵OA1=R

因此这三个圆的半径为:OA2=R,OA3=R,OA4=R.∴OA4:OA3:OA2:OA1=由此可得,有()个同心圆把这个大圆等分,则最小的圆的半径是=故答案为:(1);(2).【点睛】本题考查了算术平方根的定义和性质;弄清每个圆与大圆的面积关系是解题的关键.18、【解析】分析:根据函数的自变量取值范围的确定方法,从分式和二次根式有意义的条件列不等式求解即可.详解:由题意可得解得x≥-2且x≠3.故答案为:x≥-2且x≠3.点睛:此题主要考查了函数的自变量的取值范围,关键是明确函数的构成:二次根式的被开方数为非负数,分式的分母不等于0等条件.三、解答题(共66分)19、(1)y=﹣4x+480;(2)70元.【解析】

(1)根据销售量=240-(销售单价每提高5元,销售量相应减少20套)列函数关系即可;(2)根据月销售额=月销售量×销售单价=14000,列方程即可求出销售单价.【详解】解:(1)根据题意得:y=240﹣4(x﹣60)=﹣4x+480;(2)根据题意得:x(﹣4x+480)=14000,整理得:x2﹣120x+3500=0,即(x﹣50)(x﹣70)=0,解得:x=50(不合题意,舍去)或x=70,则当销售单价为70元时,月销售额为14000元.【点睛】本题主要考查一元一次方程与一元二次方程在解实际问题中的应用,弄清题意,找出题中的等量关系列出正确的方程是解题的关键.20、(1)A种礼盒单价为90元,B种礼盒单价为120元;(2)见解析;(3)1320元.【解析】

(1)利用A、B两种礼盒的单价比为3:4,单价和为210元,得出等式求出即可;(2)利用两种礼盒恰好用去9900元,结合(1)中所求,得出等式,利用两种礼盒的数量关系求出即可;(3)首先表示出店主获利,进而利用w,m关系得出符合题意的答案.【详解】(1)设A种礼盒单价为3x元,B种礼盒单价为4x元,则:3x+4x=210,解得x=30,所以A种礼盒单价为3×30=90元,B种礼盒单价为4×30=120元.(2)设A种礼盒购进a个,购进B种礼盒b个,则:90a+120b=9900,可列不等式组为:,解得:30≤a≤36,因为礼盒个数为整数,所以符合的方案有2种,分别是:第一种:A种礼盒30个,B种礼盒60个,第二种:A种礼盒34个,B种礼盒57个.(3)设该商店获利w元,由(2)可知:w=12a+(18﹣m)b,a=110-,则w=(2﹣m)b+1320,若使所有方案都获利相同,则令2﹣m=0,得m=2,此时店主获利1320元.【点睛】此题主要考查了一元一次方程的应用以及一次函数的应用和一元一次不等式的应用,根据题意结合得出正确等量关系是解题关键.21、(1)本次调查的学生总人数为50人;(2)补全条形图见解析;(3)15元、15元;(4)平均每个学生捐款13元;(5)该校有600名学生,那么共捐款7800元.【解析】

(1)由捐款5元的人数及其所占百分比可得总人数;(2)总人数乘以对应百分比求得捐10元、20元的人数,据此补全图形可得;(3)根据众数和中位数的定义计算可得;(4)根据加权平均数的定义求解可得;(5)总人数乘以样本中每个学生平均捐款数可得.【详解】(1)本次调查的学生总人数为8÷16%=50(人);(2)10元的人数为50×28%=14(人),20元的人数为50×12%=6(人),补全条形图如下:(3)捐款的众数为15元,中位数为=15(元),故答案为:15元、15元.(4)平均每个学生捐款=13(元);(5)600×13=7800,答:若该校有600名学生,那么共捐款7800元.【点睛】本题主要考查了条形统计图及扇形统计图,解题的关键是读懂统计图,从统计图中获取准确的信息.22、(1)-1;(2)x-2,-1【解析】

(1)先通分,再把分子相加减即可;(2)先算括号里面的,再算除法即可.【详解】解:(1)原式====-1;(2)原式=•=•=x-2,当x=1时,原式=1-2=-1.【点睛】本题考查的是分式的混合运算

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论