版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省遂宁第二中学2024年数学八年级下册期末检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.若关于x的方程x2+5x+a=0有一个根为﹣2,则a的值是()A.6 B.﹣6 C.14 D.﹣142.2022年将在北京﹣张家口举办冬季奥运会,北京将成为世界上第一个既举办夏季奥运会,又举办冬季奥运会的城市.某队要从两名选手中选取一名参加比赛,为此对这两名队员进行了五次测试,测试成绩如图所示:则下列说法中正确的是()A.SA2>SB2,应该选取B选手参加比赛B.SA2<SB2,应该选取A选手参加比赛C.SA2≥SB2,应该选取B选手参加比赛D.SA2≤SB2,应该选取A选手参加比赛3.某园林队原计划由6名工人对180平方米的区域进行绿化,由于施工时增加了2名工人,结果比原计划提前3小时完成任务,若每人每小时绿化的面积相同,求每人每小时绿化的面积。若设每人每小时绿化的面积为平方米,根据题意下面所列方程正确的是()A. B.C. D.4.分式方程的解为().A. B. C. D.5.下列有理式中,是分式的为()A. B. C. D.6.下列式子:,,,,其中分式的数量有()A.1个 B.2个 C.3个 D.4个7.对于反比例函数,当时,y的取值范围是()A. B.C. D.8.已知一个多边形的每一个外角都是,则该多边形是()A.十二边形 B.十边形 C.八边形 D.六边形.9.如图,平行四边形ABCD中,∠B=60°,AB⊥AC,AC的垂直平分线交AD于点E,△CDE的周长是15,则平行四边形ABCD的面积为()A. B.40 C.50 D.10.下列命题:①一组对边平行且另一组对边相等的四边形是平行四边形;②一组邻角相等的平行四边形是矩形;③顺次连结矩形四边中点得到的四边形是菱形;④如果一个菱形的对角线相等,那么它一定是正方形.其中真命题个数是()A.个 B.个 C.个 D.个11.一次函数的图像经过点,且的值随值的增大而增大,则点的坐标可以为()A. B. C. D.12.下列图形中,既是轴对称图形又是中心对称图形的有()A.4个 B.3个 C.2个 D.1个二、填空题(每题4分,共24分)13.如果多项式是一个完全平方式,那么k的值为______.14.如果正比例函数y=kx的图象经过点(1,-2),那么k的值等于▲.15.已知反比例函数y=(k≠0)的图象在第二、四象限,则k的值可以是:____(写出一个满足条件的k的值).16.分解因式:_____.17.将函数的图象向下平移2个单位,所得函数图象的解析式为__________.18.计算:=_____________.三、解答题(共78分)19.(8分)已知,矩形中,,的垂直平分线分别交于点,垂足为.(1)如图1,连接,求证:四边形为菱形;(2)如图2,动点分别从两点同时出发,沿和各边匀速运动一周,即点自停止,点自停止.在运动过程中,①已知点的速度为每秒,点的速度为每秒,运动时间为秒,当四点为顶点的四边形是平行四边形时,则____________.②若点的运动路程分别为(单位:),已知四点为顶点的四边形是平行四边形,则与满足的数量关系式为____________.20.(8分)求证:取任何实数时,关于的方程总有实数根.21.(8分)求证:有一组对边平行,和一组对角相等的四边形是平行四边形.(请画出图形,写出已知、求证并证明)22.(10分)正方形ABCD中,E是BC上一点,F是CD延长线上一点,BE=DF,连接AE,AF,EF,G为EF中点,连接AG,DG.(1)如图1:若AB=3,BE=1,求DG;(2)如图2:延长GD至M,使GM=GA,过M作MN∥FD交AF的延长线于N,连接NG,若∠BAE=30°.求证:23.(10分)某养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质量(单位:),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)图①中的值为;(Ⅱ)求统计的这组数据的平均数、众数和中位数;(Ⅲ)根据样本数据,估计这2500只鸡中,质量为的约有多少只?24.(10分)如图,直线y=3x与反比例函数y=kx(k≠0)的图象交于A(1,m)和点B(1)求m,k的值,并直接写出点B的坐标;(2)过点P(t,0)(-1≤t≤1)作x轴的垂线分别交直线y=3x与反比函数y=kx(k≠0)的图象于点E,F①当t=13时,求线段EF②若0<EF≤8,请根据图象直接写出t的取值范围.25.(12分)点P(-2,4)关于y轴的对称点P'在反比例函数y=(k≠0)的图象上.(1)求此反比例函数关系式;(2)当x在什么范围取值时,y是小于1的正数?26.如图,在四边形中,,,,,,点从点出发,以的速度沿运动,点从点出发的同时,点从点出发,以的速度向点运动,当点到达点时,点也停止运动,设点、运动的时间为秒,从运动开始,当取何值时,?
参考答案一、选择题(每题4分,共48分)1、A【解析】
根据一元二次方程的解的定义,把x=-2代入方程得到关于a的一次方程,然后解此一次方程即可.【详解】解:把x=﹣2代入方程x2+5x+a=0得4﹣5×2+a=0,解得a=1.故选A.【点睛】本题考查了一元二次方程的解,熟练掌握“有根必代原则”是解题的关键.2、B【解析】
根据方差的定义,方差越小数据越稳定.【详解】根据统计图可得出:SA2<SB2,则应该选取A选手参加比赛;故选:B.【点睛】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.3、A【解析】
设每人每小时的绿化面积为x平方米,等量关系为:6名工人比8名工人完成任务多用3小时,据此列方程即可.【详解】解:设每人每小时的绿化面积为x平方米,
由题意得,故选:A.【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.4、C【解析】试题分析:去分母得:x+1=2x,解得:x=1,经检验x=1是分式方程的解.故选C.考点:解分式方程.5、D【解析】
判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【详解】解:、、的分母中均不含有字母,因此它们是整式,而不是分式.分母中含有字母,因此是分式.故选:D【点睛】本题主要考查分式的定义,注意π不是字母,是常数,所以不是分式,是整式.6、B【解析】
根据分式定义:如果A,B表示两个整式,并且B中含有字母,那么式子叫做分式进行分析即可.【详解】解:,是分式,共2个,
故选:B.【点睛】此题主要考查了分式定义,关键是掌握分式的分母必须含有字母,而分子可以含字母,也可以不含字母,亦即从形式上看是的形式,从本质上看分母必须含有字母.7、A【解析】
根据反比例函数的k=-6<0,则其图象在第二象限上,y随x的增大而增大,则x=-1时y取得最小值,从而可以得到结果.【详解】∵k=-6<0,∴的图象在第二象限上,y随x的增大而增大,∴时,∴.故选A.【点睛】此题重点考查学生对于反比例函数图像和性质的掌握,把握其中的规律是解题的关键.8、B【解析】
多边形的外角和是360°,依此可以求出多边形的边数.【详解】解:∵一个多边形的每个外角都等于36°,
∴多边形的边数为360°÷36°=1.
故选:B.【点睛】本题考查多边形的外角和定理.熟练掌握多边形的外角和定理:多边形的外角和是360°是解题的关键.9、D【解析】
首先证明AD+CD=15,再证明AD=2CD,推出CD=5,AD=10,利用勾股定理求出AC即可解決问题;【详解】∵点E在AC的垂直平分线上∴EA=EC∴△CDB的周长=CD+DE+EC=CD+DE+EA=CD+DA=15∵四边形ABCD是平行四边形∴∠B=∠D=60°,AB∥CD∵AB⊥AC,∴AC⊥CD∴∠ACD=90°∴∠CAD=30°∴AD=2CD∴CD=5,AD=10∴AC=S=2S△ADC=2×5×5=25故选D【点睛】此题考查平行四边形的性质和勾股定理,解题关键在于先证明AD+CD=15,再证明AD=2CD10、B【解析】
根据平行四边形的判定方法对①进行判断;根据矩形的判定方法对②进行判断即可;根据三角形中位线性质和菱形的判定方法对③进行判断;根据正方形的判定方法对④进行判断.【详解】解:①错误,反例为等腰梯形;②正确,理由一组邻角相等,且根据平行四边形的性质,可得它们都为直角,从而推得矩形;③正确,理由:得到的四边形的边长都等于矩形对角线的一半;④正确.故答案为B.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.判定一个命题的真假关键在于对基本知识的掌握.11、A【解析】
y的值随x值的增大而増大,可知函数y=kx-1图象经过第一、三、四象限,结合选项判断点(1,-3)符合题意.【详解】解:y的值随x值的增大而増大,∴k>0,∴函数图象经过第一、三、四象限,点(1,-3)、点(5,3)和点(5,-1)符合条件,当经过(5,-1)时,k=0,当经过(1,-3)时,k=-2,当经过(5,3)时,k=,故选:A.【点睛】本题考查一次函数图象及性质;熟练掌握一次函数图象性质,点与函数图象的关系是解题的关键.12、C【解析】
根据轴对称图形与中心对称图形的概念进行求解,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合.【详解】第1个和第4个图既是轴对称图形又是中心对称图形,中间两个只是轴对称图形,不是中心对称图形.故选C.二、填空题(每题4分,共24分)13、8或-4【解析】
根据完全平方公式的定义即可求解.【详解】=为完全平方公式,故=±6,即得k=8或-4.【点睛】此题主要考查完全平方公式的形式,解题的关键是熟知完全平方公式.14、-2【解析】将(1,-2)代入y=kx得,—2=1×k,解得k=-215、-1(答案不唯一)【解析】
由反比例函数的性质:当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限可写出一个满足条件的k的值.【详解】解:∵函数图象在二四象限,∴k<0,∴k可以是-1.故答案为-1(答案不唯一).【点睛】本题考查了反比例函数图象的性质(1)反比例函数y=(k≠0)的图象是双曲线;(1)当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;(3)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.16、【解析】分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,先提取公因式2后继续应用完全平方公式分解即可:.17、y=3x-1.【解析】
根据“上加下减”的原则求解即可.【详解】将正比例函数y=3x的图象向下平移1个单位长度,所得的函数解析式为y=3x-1.故答案为:y=3x-1.【点睛】本题考查的是一次函数的图象与几何变换,熟知函数图象变换的法则是解答此题的关键.18、【解析】
根据积的乘方和整式的运算法则,先算乘方再算乘法即可得出答案【详解】【点睛】本题考查的是积的乘方和整式的运算法则,能够准确计算是解题的关键。三、解答题(共78分)19、(1)见解析;(2)①;②【解析】
(1)先证明四边形AFCE为平行四边形,再根据对角线互相垂直平分的平行四边形是菱形作出判定;
(2)①分情况讨论可知,当P点在BF上、Q点在ED上时,才能构成平行四边形,根据平行四边形的性质列出方程求解即可;
②分三种情况讨论可知a与b满足的数量关系式.【详解】(1)证明:∵四边形是矩形,∴∴,∵垂直平分,垂足为,∴,∴,∴,∴四边形为平行四边形,又∵∴四边形为菱形,(2)①秒.显然当点在上时,点在上,此时四点不可能构成平行四边形;同理点在上时,点在或上,也不能构成平行四边形.因此只有当点在上、点在上时,才能构成平行四边形.∴以四点为顶点的四边形是平行四边形时,∴点的速度为每秒,点的速度为每秒,运动时间为秒,∴,∴,解得∴以四点为顶点的四边形是平行四边形时,秒.②与满足的数量关系式是,由题意得,以四点为顶点的四边形是平行四边形时,点在互相平行的对应边上,分三种情况:i)如图1,当点在上、点在上时,,即,得.ii)如图2,当点在上、点在上时,,即,得.iii)如图3,当点在上、点在上时,,即,得.综上所述,与满足的数量关系式是.【点睛】此题考查线段垂直平分线的性质,菱形的判定及性质,勾股定理,全等三角形的判定及性质,平行四边形的判定及性质,解题中注意分类讨论的思想.20、见解析【解析】
由a是二次项的系数,分a=0及两种情况分别确定方程的根的情况即可得到结论.【详解】当时,方程为,;当,方程为一元二次方程,,原方程有实数根.综上所述,取任何值时,原方程都有实数根.【点睛】此题考查方程的根的情况,正确理解题意分情况解答是解题的关键.21、证明见解析.【解析】
已知条件的基础上,根据平行四边形的判定方法,只需证明另一组对边平行或另一组对角相等.【详解】已知:如图,四边形ABCD中,AB∥CD,∠A=∠C.求证:四边形ABCD是平行四边形.证明:∵AB∥CD,∴∠A+∠D=180°,∠B+∠C=180°,∵∠A=∠C,∴∠B=∠D,∴四边形ABCD是平行四边形.22、(1)DG=2;(2)MN+NA=3NG【解析】
(1)取CF的中点H,连接GH;先证明△ABE≌△ADF(SAS),在证明△AEF是等腰直角三角形,由GH是Rt△EFC的中位线,在Rt△DGH中即可求解;(2)过点G作GK⊥MN,交NM的延长线与点K,交CF于点Q,过点G作GT⊥AF,交AF于点T;设BE=a,分别求出AB=3a,AE=2a,CE=(3-1)a,CF=(3+1)a,再由△AFE是等腰直角三角形,G是EF的中点,求出AG=2a, GQ=12CE=3-12a, 【详解】解:(1)取CF的中点H,连接GH,∵BE=DF,AB=AD,∠ADF=∠B=90°,∴△ABE≌△ADF(SAS),∴AF=AE,∵AB=3,BE=1,∴AF=AE=10,CF=4,CE=2,∴EF=25,∴△AEF是等腰直角三角形,∵G为EF中点,CF的中点H,∴GH是Rt△EFC的中位线,∴GH=12CE=1∴FH=2,∴DH=1,∴DG=2;(2)过点G作GK⊥MN,交NM的延长线与点K,交CF于点Q,过点G作GT⊥AF,交AF于点T;设BE=a,在Rt△ABE中,∠BAE=30°,∴AB=3a,AE=2a,∴CE=(3-1)a,∵DF=BE,∴CF=(3+1)a,∵△AFE是等腰直角三角形,G是EF的中点,∴AG=2a,∵G是EF中点,GQ⊥CF,∴GQ=12CE=3-∴DQ=CD-12CF=3-∴GQ=DQ,∴∠DGQ=45°,∴GK=MK,∴GM=GA,∴GK=MK=a,∵∠FAG=45°,∴GT=a,∴Rt△NGK≌Rt△NGT(HL),∴TN=NK=MN+MK,∠ANG=12∠ANK∵∠BAE=30°,∴∠NAD=30°,∴∠ANK=60°,∴∠ANG=30°,∴TN=3∴TG=1∴TG=1∴3即MN+NA=3【点睛】本题考查正方形的性质,三角形的性质;熟练掌握正方形的性质,三角形全等的判定定理和性质定理,特殊三角形的性质是解题的关键.23、(Ⅰ)28.(Ⅱ)平均数是1.52.众数为1.8.中位数为1.5.(Ⅲ)200只.【解析】分析:(Ⅰ)用整体1减去所有已知的百分比即可求出m的值;(Ⅱ)根据众数、中位数、加权平均数的定义计算即可;(Ⅲ)用总数乘以样本中2.0kg的鸡所占的比例即可得解.解:(Ⅰ)m%=1-22%-10%-8%-32%=28%.故m=28;(Ⅱ)观察条形统计图,∵,∴这组数据的平均数是1.52.∵在这组数据中,1.8出现了16次,出现的次数最多,∴这组数据的众数为1.8.∵将这组数据按从小到大的顺序排列,其中处于中间的两个数都是1.5,有,∴这组数据的中位数为1.5.(Ⅲ)∵在所抽取的样本中,质量为的数量占.∴由样本数据,估计这2500只鸡中,质量为的数量约占.有.∴这2500只鸡中,质量为的约有200只.点睛:此题主要考查了平均数、众数、中位数的统计意义以及利用样本估计总体等知识.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025下半年贵州遵义市市直事业单位选调56人考试笔试备考题库及答案解析
- 2025恒丰银行武汉分行社会招聘14人备考考试试题及答案解析
- 2025年陕西华森盛邦科技有限公司招聘参考考试试题及答案解析
- 环卫作业实施方案
- 深度解析(2026)《GBT 26093-2010齿轮双面啮合综合测量仪》(2026年)深度解析
- 深度解析(2026)《GBT 25785-2010 2-氨基-4,6-二硝基酚钠(苦氨酸钠)》(2026年)深度解析
- 深度解析(2026)《GBT 25643-2010道路施工与养护机械设备 路面铣刨机》(2026年)深度解析
- 2025广西桂林电子科技大学第二批教职人员控制数工作人员公开招聘32人参考考试试题及答案解析
- 2025怀化市教育局直属学校公开招聘教职工65人参考笔试题库附答案解析
- 2025海南儋州市教育局赴高校(考核)招聘中学教师40人(一)考试笔试备考题库及答案解析
- 2025浙江宁波市梅山铁路有限公司招聘3人备考考点试题及答案解析
- 2025安徽淮北市消防救援支队招聘政府专职消防文员17人考试历年真题汇编带答案解析
- 2025湖南日报融媒传播有限公司招聘7人笔试考试参考试题及答案解析
- 2025年法医学案例分析与判断及答案解析
- 股东借款协议书范本
- CCAA合格评定基础重点资料
- 护理人文关怀与医患沟通技巧
- 北京市顺义区2024-2025学年八年级上学期期末考试英语试卷
- 《化工企业可燃液体常压储罐区安全管理规范》解读课件
- 2025至2030等静压行业发展研究与产业战略规划分析评估报告
- 听障儿童家庭康复训练
评论
0/150
提交评论