




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省金华市国际实验学校2024届八年级下册数学期末调研模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.矩形的对角线长为20,两邻边之比为3:4,则矩形的面积为()A.20B.56C.192D.以上答案都不对2.下列算式中,正确的是A. B.C. D.3.如图图中,不能用来证明勾股定理的是()A. B. C. D.4.如图,在长方形中,点为中点,将沿翻折至,若,,则与之间的数量关系为()A. B. C. D.5.计算的结果是()A.4 B.± C.2 D.6.如图,在▱ABCD中,对角线AC、BD交于点O,下列式子中不一定成立的是()A.AB∥CD B.OA=OC C.∠ABC+∠BCD=180° D.AB=BC7.如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E,若∠E=35°,则∠BAC的度数为()A.40° B.45° C.50° D.55°8.由线段a、b、c组成的三角形不是直角三角形的是A.,, B.,,C.,, D.,,9.某校生物小组11人到校外采集标本,其中2人每人采集到6件,4人每人采集到3件,5人每人采集到4件,则这个小组平均每人采集标本()A.3件 B.4件 C.5件 D.6件10.甲和乙一起练习射击,第一轮10枪打完后两人的成绩如图所示.设他们这10次射击成绩的方差为S甲2、S乙2,下列关系正确的是()A.S甲2<S乙2 B.S甲2>S乙2 C.S甲2=S乙2 D.无法确定11.下列从左到右的变形,是分解因式的是()A.2a2C.(a+3)(a-3)=a212.在平面直角坐标系中,函数的图象经过()A.第一、二、三象限 B.第一、二、四象限C.第一、三、四象限 D.第二、三、四象限二、填空题(每题4分,共24分)13.如图,在平行四边形ABCD中,已知∠ODA=90°,AC=10cm,BD=6cm,则AD的长为_____.14.方程的解是____.15.如图,已知矩形ABCD,AB=8,AD=4,E为CD边上一点,CE=5,P点从点B出发,以每秒1个单位的速度沿着边BA向终点A运动,连接PE,设点P运动的时间为t秒,则当t的值为______时,∠PAE为等腰三角形?16.2名男生和2名女生抓阄分派2张电影票,恰好2名女生得到电影票的概率是.17.抛物线,当时,的取值范围是__________.18.成立的条件是___________________.三、解答题(共78分)19.(8分)化简:()÷并解答:(1)当x=1+时,求原代数式的值;(2)原代数式的值能等于﹣1吗?为什么?20.(8分)某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球多15元,王老师从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.(1)该网店甲、乙两种羽毛球每筒的售价各是多少元?(2)根据消费者需求,该网店决定用不超过8780元购进甲、乙两种羽毛球共200筒,且甲种羽毛球的数量大于乙种羽毛球数量的,已知甲种羽毛球每筒的进价为50元,乙种羽毛球每筒的进价为40元.①若设购进甲种羽毛球m筒,则该网店有哪几种进货方案?②若所购进羽毛球均可全部售出,请求出网店所获利润W(元)与甲种羽毛球进货量m(筒)之间的函数关系式,并说明当m为何值时所获利润最大?最大利润是多少?21.(8分)某校学生在“蓝天下的至爱”帮困活动中,纷纷拿零花钱,参加募捐活动.甲班学生共募捐840元,乙班学生共募捐1000元,乙班学生的数比甲班学生的人均捐款数多5元,且人数比甲班少2名,求甲班和乙班学生的人数.22.(10分)甲、乙两位同学同时从学校出发,骑自行车前往距离学校20千米的郊野公园。已知甲同学比乙同学平均每小时多骑行2千米,甲同学在路上因事耽搁了30分钟,结果两人同时到达公园。问:甲、乙两位同学平均每小时各骑行多少千米?23.(10分)如图,在△ABC中,AD是角平分钱,点E在AC上,且∠EAD=∠ADE.(1)求证:△DCE∽△BCA;(2)若AB=3,AC=1.求DE的长.24.(10分)已知一次函数y=kx﹣4,当x=1时,y=﹣1.(1)求此一次函数的解析式;(1)将该函数的图象向上平移3个单位,求平移后的图象与x轴的交点的坐标.25.(12分)季末打折促销,甲乙两商场促销方式不同,两商场实际付费y(元)与标价x(元)之间的函数关系如图所示折线O-A-C(虚线)表示甲商场,折线O-B-C表示乙商场(1)分别求射线AC,BC的解析式.(2)张华说他必须选择乙商场,由此推理张华计划购物所需费用x(元)(标价)的范围是______.(3)李明说他必须选择甲商场,由此推理李明计划购物所需费用x(元)(标价)的范围是______.26.已知在等腰三角形中,是的中点,是内任意一点,连接,过点作,交的延长线于点,延长到点,使得,连接.(1)如图1,求证:四边形是平行四边形;(2)如图2,若,求证:且;
参考答案一、选择题(每题4分,共48分)1、C【解析】分析:首先设矩形的两邻边长分别为:3x,4x,可得(3x)2+(4x)2=202,继而求得矩形的两邻边长,则可求得答案.详解:∵矩形的两邻边之比为3:4,∴设矩形的两邻边长分别为:3x,4x,∵对角线长为20,∴(3x)2+(4x)2=202,解得:x=2,∴矩形的两邻边长分别为:12,16;∴矩形的面积为:12×16=1.故选:C.点睛:此题考查了矩形的性质以及勾股定理.此题难度不大,注意掌握方程思想的应用.2、C【解析】
根据二次根式的混合运算法则逐一计算即可判断.【详解】解:A.,此选项错误;B.,此选项错误;C.,此选项正确;D.,此选项错误;故选:C.【点睛】本题考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算法则.3、D【解析】
根据图形的面积得出a,b,c的关系,即可证明勾股定理,分别分析得出即可.【详解】A,B,C都可以利用图形面积得出a,b,c的关系,即可证明勾股定理;故A,B,C选项不符合题意;D、不能利用图形面积证明勾股定理,故此选项正确.故选D.【点睛】此题主要考查了勾股定理的证明方法,根据图形面积得出是解题关键.4、D【解析】
直接利用平行线的性质结合翻折变换的性质得出△ADM≌△BCM(SAS),进而利用直角三角形的性质得出答案.【详解】∵M为CD中点,∴DM=CM,在△ADM和△BCM中∵,∴△ADM≌△BCM(SAS),∴∠AMD=∠BMC,AM=BM∴∠MAB=∠MBA∵将点C绕着BM翻折到点E处,∴∠EBM=∠CBM,∠BME=∠BMC=∠AMD∴∠DME=∠AMB∴∠EBM=∠CBM=(90°-β)∴∠MBA=(90°-β)+β=(90°+β)∴∠MAB=∠MBA=(90°+β)∴∠DME=∠AMB=180°-∠MAB-∠MBA=90°-β∵长方形ABCD中,∴CD∥AB∴∠DMA=∠MAB=(90°+β)∴∠DME+∠AME=∠ABE+∠MBE∵∠AME=α,∠ABE=β,∴90°-β+α=β+(90°-β)∴3β-2α=90°故选D.【点睛】本题考查的知识点是平行线的性质,解题关键是利用全等三角形对应角相等即可求解.5、C【解析】
根据二次根式的运算法则即可求出答案.【详解】解:原式==2,故选:C.【点睛】本题考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.6、D【解析】
根据平行四边形的性质分析即可.【详解】解:由平行四边形的性质可知:平行四边形对边平行,故A一定成立,不符合题意;平行四边形的对角线互相平分;故B一定成立,不符合题意;平行四边形对边平行,所以邻角互补,故C一定成立,不符合题意;平行四边形的邻边不一定相等,只有为菱形或正方形时才相等,故D不一定成立,符合题意.
故选:D.【点睛】本题主要考查了平行四边形的性质,熟练掌握平行四边形的性质是解决问题的关键.7、A【解析】解:∵AE∥BD,∴∠CBD=∠E=35°.∵BD平分∠ABC,∴∠CBA=70°.∵AB=AC,∴∠C=∠CBA=70°,∴∠BAC=180°﹣70°×2=40°.故选A.点睛:考查了平行线的性质,角平分线的性质,等腰三角形的性质和三角形内角和定理.关键是得到∠C=∠CBA=70°.8、D【解析】
A、72+242=252,符合勾股定理的逆定理,是直角三角形;
B、42+52=()2,符合勾股定理的逆定理,是直角三角形;
C、12+()2=()2,符合勾股定理的逆定理,是直角三角形;
D、()2+()2≠()2,不符合勾股定理的逆定理,不是直角三角形.
故选D.9、B【解析】分析:根据平均数的定义列式计算可得.详解:这个小组平均每人采集标本(件),故选B.点睛:本题考查的是平均数,解题的关键是熟练掌握平均数的定义.10、A【解析】
结合图形,成绩波动比较大的方差就大.【详解】解:从图看出:甲选手的成绩波动较小,说明它的成绩较稳定,其方差较小,所以S甲2<S乙2.故选A.【点睛】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.11、A【解析】
根据分解因式就是把一个多项式化为几个整式的积的形式的定义判断,利用排除法求解.【详解】2a2+4a=2a(a+2)x2-xy=x(a+3)(a-3)=a2-9x2+x-5=(x-2)(x+3)+1不是把一个多项式化为几个整式的积的形式,所以D【点睛】本题考查分解因式的定义,解题的关键是掌握分解因式的定义.12、D【解析】
由k、b的正负,利用一次函数图象与系数的关系即可得出函数y=-2x-3的图象经过第二、三、四象限,此题得解.【详解】∵k=-2<0,b=-3<0,∴函数y=-2x-3的图象经过第二、三、四象限.故选D.【点睛】本题考查了一次函数图象与系数的关系,牢记“k<0,b<0⇔y=kx+b的图象在二、三、四象限”是解题的关键.二、填空题(每题4分,共24分)13、4cm【解析】
根据平行四边形的性质可知AO=OC,OD=OB,据此求出AO、DO的长,利用勾股定理求出AD的长即可.【详解】解:∵四边形ABCD是平行四边形,
∴AO=OC,OD=OB,
又∵AC=10cm,BD=6cm,
∴AO=5cm,DO=3cm,【点睛】本题考查了平行四边形的性质、勾股定理,找到四边形中的三角形是解题的关键.14、【解析】
根据解无理方程的方法可以解答此方程,注意无理方程要检验.【详解】∵,∴,∴1-2x=x2,∴x2+2x-1=0,∴(x+1)(x-1)=0,解得,x1=-1,x2=1,经检验,当x=1时,原方程无意义,当x=1时,原方程有意义,故原方程的根是x=-1,故答案为:x=-1.【点睛】本题考查无理方程,解答本题的关键是明确解无理方程的方法.15、3或2或.【解析】
根据矩形的性质求出∠D=90°,AB=CD=8,求出DE后根据勾股定理求出AE;过E作EM⊥AB于M,过P作PQ⊥CD于Q,求出AM=DE=3,当EP=EA时,AP=2DE=6,即可求出t;当AP=AE=5时,求出BP=3,即可求出t;当PE=PA时,则x2=(x-3)2+42,求出x,即可求出t.【详解】∵四边形ABCD是长方形,∴∠D=90°,AB=CD=8,∵CE=5,∴DE=3,在Rt△ADE中,∠D=90°,AD=4,DE=3,由勾股定理得:AE==5;过E作EM⊥AB于M,过P作PQ⊥CD于Q,则AM=DE=3,若△PAE是等腰三角形,则有三种可能:当EP=EA时,AP=2DE=6,所以t==2;当AP=AE=5时,BP=8−5=3,所以t=3÷1=3;当PE=PA时,设PA=PE=x,BP=8−x,则EQ=5−(8−x)=x−3,则x2=(x−3)2+42,解得:x=,则t=(8−)÷1=,综上所述t=3或2或时,△PAE为等腰三角形.故答案为:3或2或.【点睛】此题考查矩形的性质,等腰三角形的判定,解题关键在于利用勾股定理进行计算.16、.【解析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好2名女生得到电影票的情况,再利用概率公式求解即可求得答案.解:画树状图得:∵共有12种等可能的结果,恰好2名女生得到电影票的有2种情况,∴恰好2名女生得到电影票的概率是:=.故答案为:.17、【解析】
首先根据二次函数的的二次项系数大于零,可得抛物线开口向下,再计算抛物线的对称轴,判断范围内函数的增减性,进而计算y的范围.【详解】解:根据二次函数的解析式可得由a=2>0,可得抛物线的开口向上对称轴为:所以可得在范围内,二次函数在,y随x的增大而减小,在上y随x的增大而增大.所以当取得最小值,最小值为:当取得最大值,最大值为:所以故答案为【点睛】本题主要考查抛物线的性质,关键在于确定抛物线的开口方向,对称轴的位置,进而计算y的范围.18、x≥1【解析】分析:根据二次根式有意义的条件可得x+1≥0,x-1≥0,求出x的范围.详解:由题意得,x+1≥0,x-1≥0,解得:x≥-1,x≥1,综上所述:x≥1.故答案为:x≥1.点睛:本题考查了二次根式的乘除法,解答本题的关键是掌握二次根式有意义的条件.三、解答题(共78分)19、(1)+1(2)不能【解析】
将原式进行化简可得出原式=.(1)代入x=1+,即可求出原式的值;(2)令原式等于﹣1,可求出x=0,由原式中除数不能为零,可得出原代数式的值不能等于﹣1.【详解】解:原式=[﹣]•=(﹣)••.(1)当x=1+时,原式==+1.(2)不能,理由如下:解=﹣1,得:x=0,∵当x=0时,原式中除数=0,∴原代数式的值不能等于﹣1.【点睛】本题考查了分式的化简求值,将原式化简为是解题的关键.20、(1)该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元;(2)①进货方案有3种,具体见解析;②当m=78时,所获利润最大,最大利润为1390元.【解析】【分析】(1)设甲种羽毛球每筒的售价为x元,乙种羽毛球每筒的售价为y元,由条件可列方程组,则可求得答案;(2)①设购进甲种羽毛球m筒,则乙种羽毛球为(200﹣m)筒,由条件可得到关于m的不等式组,则可求得m的取值范围,且m为整数,则可求得m的值,即可求得进货方案;②用m可表示出W,可得到关于m的一次函数,利用一次函数的性质可求得答案.【详解】(1)设甲种羽毛球每筒的售价为x元,乙种羽毛球每筒的售价为y元,根据题意可得,解得,答:该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元;(2)①若购进甲种羽毛球m筒,则乙种羽毛球为(200﹣m)筒,根据题意可得,解得75<m≤78,∵m为整数,∴m的值为76、77、78,∴进货方案有3种,分别为:方案一,购进甲种羽毛球76筒,乙种羽毛球为124筒,方案二,购进甲种羽毛球77筒,乙种羽毛球为123筒,方案一,购进甲种羽毛球78筒,乙种羽毛球为122筒;②根据题意可得W=(60﹣50)m+(45﹣40)(200﹣m)=5m+1000,∵5>0,∴W随m的增大而增大,且75<m≤78,∴当m=78时,W最大,W最大值为1390,答:当m=78时,所获利润最大,最大利润为1390元.【点睛】本题考查了二元一次方程组的应用、一元一次不等式组的应用、一次函数的应用,弄清题意找准等量关系列出方程组、找准不等关系列出不等式组、找准各量之间的数量关系列出函数解析式是解题的关键.21、甲班学生的人数为42名,乙班学生的人数为40名.【解析】
设乙班学生的人数为名,则甲班学生的人数为名,由乙班学生的数比甲班学生的人均捐款数多1元可得等量关系:乙班平均每人捐款金额-甲班平均每人捐款金额=1.【详解】解:设乙班学生的人数为名,则甲班学生的人数为名.根据题意,得.整理,得.解得,.经检验:,都是原方程的根,但不符合题意,舍去.答:甲班学生的人数为42名,乙班学生的人数为40名.【点睛】本题考查了分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.22、甲平均每小时行驶10千米,乙平均每小时行驶8千米【解析】
设乙平均每小时骑行x千米,则甲平均每小时骑行(x+2)千米,根据题意可得,同样20千米的距离,乙比甲多走30分钟,据此列方程求解.【详解】设甲平均每小时行驶x千米,则,化简为:,解得:,经检验不符合题意,是原方程的解,答:甲平均每小时行驶10千米,乙平均每小时行驶8千米。【点睛】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.23、(1)、证明过程见解析;(2)、【解析】试题分析:(1)已知AD平分∠BAC,可得∠EAD=∠ADE,再由∠EAD=∠ADE,可得∠BAD=∠ADE,即可得AB∥DE,从而得△DCE∽△BCA;(2)已知∠EAD=∠ADE,由三角形的性质可得AE=DE,设DE=x,所以CE=AC﹣AE=AC﹣DE=1﹣x,由(1)可知△DCE∽△BCA,根据相似三角形的对应边成比例可得x:3=(1﹣x):1,解得x的值,即可得DE的长.试题解析:(1)证明:∵AD平分∠BAC,∴∠BAD=∠DAC,∵∠EAD=∠ADE,∴∠BAD=∠ADE,∴AB∥DE,∴△DCE∽△BCA;(2)解:∵∠EAD=∠ADE,∴AE=DE,设DE=x,∴CE=AC﹣AE=AC﹣DE=1﹣x,∵△DCE∽△BCA,∴DE:AB=CE:AC,即x:3=(1﹣x):1,解得:x=,∴DE的长是.考点:相似三角形的判定与性质.24、(1)y=x﹣4;(1)(1,0)【解析】
(1)根据待定系数法求出函数的解析式;(1)利用一次函数的平移
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- rfid解决方案咨询
- 跨境箱包服饰电商品牌在2025年的内容营销推广策略
- 洛阳新媒体营销方案设计
- 防台风和山洪灾害应急预案
- 水管互联网营销方案
- 电影院营销直播方案模板
- 离婚共同债务承担协议书模板规范版
- 网红美食街猪肉摊位租赁与特色经营合同
- 智能停车场租户与物业管理公司签订停车服务合同
- 商务办公租赁合同担保责任范围的详细约定
- 北师大版 五年级上册数学 预习单
- 九一八知识竞赛题50题
- 《人皆有不忍人之心》 统编版高中语文选择性必修上册
- 增值税及附加税费预缴表
- 农村房产继承给子女协议书
- 水库除险加固及主体工程投入使用验收鉴定书
- 六年级上册道德与法治全册教学课件
- AQ 1064-2008 煤矿用防爆柴油机无轨胶轮车安全使用规范(正式版)
- 教科版四年级科学上册全册教学设计(表格式)
- 广东省东莞市2023-2024学年高一上学期期末考试语文试题(含答案解析)
- 2024-2029全球及中国双轴取向聚酰胺(BOPA)薄膜行业市场发展分析及前景趋势与投资发展研究报告
评论
0/150
提交评论