江苏省南京市南京民办育英第二外国语学校2024年八年级下册数学期末预测试题含解析_第1页
江苏省南京市南京民办育英第二外国语学校2024年八年级下册数学期末预测试题含解析_第2页
江苏省南京市南京民办育英第二外国语学校2024年八年级下册数学期末预测试题含解析_第3页
江苏省南京市南京民办育英第二外国语学校2024年八年级下册数学期末预测试题含解析_第4页
江苏省南京市南京民办育英第二外国语学校2024年八年级下册数学期末预测试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省南京市南京民办育英第二外国语学校2024年八年级下册数学期末预测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.某市为解决部分市民冬季集中取暖问题,需铺设一条长4000米的管道,为尽量减少施工对交通造成的影响,施工时“…”,设实际每天铺设管道x米,则可得方程=20,根据此情景,题中用“…”表示的缺失的条件应补为()A.每天比原计划多铺设10米,结果延期20天完成B.每天比原计划少铺设10米,结果延期20天完成C.每天比原计划多铺设10米,结果提前20天完成D.每天比原计划少铺设10米,结果提前20天完成2.如图,▱ABCD的对角线AC,BD交于点O,E为AB的中点,连结OE,若AC=12,△OAE的周长为15,则▱ABCD的周长为()A.18 B.27 C.36 D.423.如果a>b,下列各式中不正确的是(

)A.a-3>b-3

B. C.2a>2b D.-2a+5<-2b+54.一元一次不等式组的解集在数轴上表示为().A. B.C. D.5.下列事件为必然事件的是()A.抛掷一枚硬币,落地后正面朝上B.篮球运动员投篮,投进篮筐;C.自然状态下水从高处流向低处;D.打开电视机,正在播放新闻.6.如图,中,,平分,点为的中点,连接,若的周长为24,则的长为()A.18 B.14 C.12 D.67.二次根式中的x的取值范围是()A.x<﹣2 B.x≤﹣2 C.x>﹣2 D.x≥﹣28.下列运算正确的是()A.=2 B.=±2 C. D.9.下列四个图形分别是四届国际数学家大会的会标,其中属于中心对称图形的有()A.1个 B.2个 C.3个 D.4个10.小明做了四道题:;;;;做对的有()A. B. C. D.11.甲、乙、丙、丁四位同学五次数学测验成绩统计如表.如果从这四位同学中,选出一位成绩较好且状态稳定的同学参加全国数学联赛,那么应选()甲乙丙丁平均数80858580方差42425459A.甲 B.乙 C.丙 D.丁12.若是关于的一元二次方程,则的取值范围是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,将Rt△ABC绕直角顶点A按顺时针方向旋转180°得△AB1C1,写出旋转后BC的对应线段_____.14.如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为5,则正方形A,B,C,D的面积的和为________15.如图,在△ABC中,∠BAC=60°,AD平分∠BAC,若AD=6,DE⊥AB,则DE的长为_____________.16.如图,在菱形ABCD中,过点C作CEBC交对角线BD于点E,若ECD20,则ADB____________.17.已知、、是反比例函数的图象上的三点,且,则、、的大小关系是________________.18.若代数式的值等于0,则x=_____.三、解答题(共78分)19.(8分)已知:如图,在□ABCD中,点E在AB上,点F在CD上,且DE∥BF.求证:DE=BF.20.(8分)如图,在菱形ABCD中,AB=5,∠DAB=60°,点E是AD边的中点.点M是线段AB上的一个动点(不与点A重合),延长ME交射线CD于点N,连接MD、AN.(1)求证:四边形AMDN是平行四边形;(2)填空:①当AM的值为时,四边形AMDN是矩形;②当AM的值为时,四边形AMDN是菱形.21.(8分)如图,对称轴为直线x=1的抛物线经过A(﹣1,0)、C(0,3)两点,与x轴的另一个交点为B,点D在y轴上,且OB=3OD(1)求该抛物线的表达式;(2)设该抛物线上的一个动点P的横坐标为t①当0<t<3时,求四边形CDBP的面积S与t的函数关系式,并求出S的最大值;②点Q在直线BC上,若以CD为边,点C、D、Q、P为顶点的四边形是平行四边形,请求出所有符合条件的点P的坐标.22.(10分)如图,每个小正方形的边长都为1,四边形ABCD的顶点都在小正方形的顶点上.(1)求四边形ABCD的面积;(2)∠BCD是直角吗?说明理由.23.(10分)树叶有关的问题如图,一片树叶的长是指沿叶脉方向量出的最长部分的长度(不含叶柄),树叶的宽是指沿与主叶脉垂直方向量出的最宽处的长度,树叶的长宽比是指树叶的长与树叶的宽的比值。某同学在校园内随机收集了A树、B树、C树三棵的树叶各10片,通过测量得到这些树叶的长y(单位:cm),宽x(单位:cm)的数据,计算长宽比,理如下:表1A树、B树、C树树叶的长宽比统计表12345678910A树树叶的长宽比4.04.95.24.15.78.57.96.37.77.9B树树叶的长宽比2.52.42.22.32.01.92.32.01.92.0C树树叶的长宽比1.11.21.20.91.01.01.10.91.01.3表1A树、B树、C树树叶的长宽比的平均数、中位数、众数、方差统计表平均数中位数众数方差A树树叶的长宽比6.26.07.92.5B树树叶的长宽比2.20.38C树树叶的长宽比1.11.11.00.02A树、B树、C树树叶的长随变化的情况解决下列问题:(1)将表2补充完整;(2)①小张同学说:“根据以上信息,我能判断C树树叶的长、宽近似相等。”②小李同学说:“从树叶的长宽比的平均数来看,我认为,下图的树叶是B树的树叶。”请你判断上面两位同学的说法中,谁的说法是合理的,谁的说法是不合理的,并给出你的理由;(3)现有一片长103cm,宽52cm的树叶,请将该树叶的数用“★”表示在图1中,判断这片树叶更可能来自于A、B、C中的哪棵树?并给出你的理由。24.(10分)如图,已知正方形,点、分别在边、上,若,判断、的关系并证明.25.(12分)先化简,再求值:÷(a+),其中a=﹣1.26.如图,四边形ABCD中,点E、F、G、H分别是边AB、BC、CD、DA的中点,顺次连接E、F、G、H,得到的四边形EFGH叫中点四边形.(1)求证:四边形EFGH是平行四边形;(2)如图,当四边形ABCD变成等腰梯形时,它的中点四边形是菱形,请你探究并填空:当四边形ABCD变成平行四边形时,它的中点四边形是;当四边形ABCD变成矩形时,它的中点四边形是;当四边形ABCD变成菱形时,它的中点四边形是;当四边形ABCD变成正方形时,它的中点四边形是;(3)根据以上观察探究,请你总结中点四边形的形状由原四边形的什么决定的?

参考答案一、选择题(每题4分,共48分)1、C【解析】

由给定的分式方程,可找出缺失的条件为:每天比原计划多铺设10米,结果提前20天完成.此题得解.【详解】解:∵利用工作时间列出方程:,∴缺失的条件为:每天比原计划多铺设10米,结果提前20天完成.故选:C.【点睛】本题考查了由实际问题抽象出分式方程,由列出的分式方程找出题干缺失的条件是解题的关键.2、C【解析】

根据三角形的中位线定理可得OE=BC,由△OAE的周长为15可得AE+AO+EO=15,即可得AB+AC+BC=30,再由AC=12可得AB+BC=18,由此即可得▱ABCD的周长.【详解】∵AE=EB,AO=OC,∴OE=BC,∵AE+AO+EO=15,∴2AE+2AO+2OE=30,∴AB+AC+BC=30,∵AC=12,∴AB+BC=18,∴▱ABCD的周长为18×2=1.故选C.【点睛】本题考查平行四边形的性质、三角形的中位线定理等知识,解题的关键是会灵活运用所学知识解决问题.3、B【解析】

根据不等式两边加上(或减去)同一个数,不等号方向不变对A进行判断;根据不等式两边乘以(或除以)同一个负数,不等号方向改变可对B、D进行判断.根据不等式两边乘以(或除以)同一个正数,不等号方向不变可对C进行判断.【详解】A选项:a>b,则a-3>b-3,所以A选项的结论正确;

B选项:a>b,则-a<-b,所以B选项的结论错误;

C选项:a>b,则2a>2b,所以C选项的结论正确;

D选项:a>b,则-2a<-2b,所以D选项的结论正确.

故选:B.【点睛】考查了不等式的性质:不等式两边加上(或减去)同一个数,不等号方向不变;不等式两边乘以(或除以)同一个正数,不等号方向不变;不等式两边乘以(或除以)同一个负数,不等号方向改变.4、A【解析】

根据不等式解集的表示方法即可判断.【详解】解:解不等式①得:x>-1,

解不等式②得:x≤2,

∴不等式组的解集是-1<x≤2,

表示在数轴上,如图所示:

故选:A.【点睛】此题考查解一元一次不等式,解一元一次不等式组的应用,解此题的关键是求出不等式组的解集.5、C【解析】

根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:A、抛掷一枚硬币,落地后正面朝上是随机事件;

B、篮球运动员投篮,投进篮筺是随机事件;

C、自然状态下水从高处流向低处是必然事件;

D、打开电视机,正在播放新闻是随机事件;

故选:C.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6、A【解析】

根据题意可知,本题考查了等腰三角形三线合一,直角三角形斜边上的中线的性质,根据等腰三角形三线合一找准底边中线与直角三角形斜边上的中线等于斜边的一半,进行分析推断.【详解】解:,平分垂直平分(等腰三角形三线合一),又在直角三角形中,点是边中点,即的周长24即的周长918故应选A【点睛】本题解题关键:理解题干的条件,运用有关性质定理,特别注意的是利用等量代换的思维表示的周长.7、D【解析】

根据“二次根式有意义满足的条件是被开方数是非负数”,可得答案.【详解】由题意,得2x+4≥0,解得x≥-2,故选D.【点睛】本题考查了二次根式有意义的条件,利用被开方数是非负数得出不等式是解题关键.8、A【解析】

根据,二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变进行计算即可.【详解】解:A、,故原题计算正确B、,故原题计算错误C、和不是同类二次根式,不能合并,故原题计算错误D、,故原题计算错误故选:A【点睛】本题考查了二次根式的化简,以及简单的加减运算,认真计算是解题的关键.9、B【解析】

根据中心对称的概念对各图形分析判断即可得解.【详解】解:第一个图形是中心对称图形,第二个图形不是中心对称图形,第三个图形是中心对称图形,第四个图形不是中心对称图形,所以,中心对称图有2个.故选:B.【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.10、D【解析】

根据无理数的运算法则,逐一计算即可.【详解】,正确;,错误;,错误;,正确;故答案为D.【点睛】此题主要考查无理数的运算,熟练掌握,即可解题.11、B【解析】

试题分析:乙和丙的平均数较高,甲和乙的方差较小,则选择乙比较合适.故选B.考点:平均数和方差.【详解】请在此输入详解!12、B【解析】

根据一元二次方程的定义即可求出答案.【详解】解:由题意可知:a﹣1≠0,∴a≠1,故选:B.【点睛】本题考查一元二次方程的定义,解题的关键是正确理解一元二次方程的定义,本题属于基础题型.二、填空题(每题4分,共24分)13、B1C1.【解析】

根据旋转的性质解答即可.【详解】∵将Rt△ABC绕直角顶点A按顺时针方向旋转180°得△AB1C1,∴△ABC≌△AB1C1,∴BC=B1C1,∴旋转后BC的对应线段是B1C1,故答案为:B1C1.【点睛】本题考查了旋转的性质,熟记旋转的各种性质以及旋转的三要素是解题的关键.14、1【解析】试题解析:由图可看出,A,B的面积和等于其相邻的直角三角形的斜边的平方,即等于最大正方形上方的三角形的一个直角边的平方;C,D的面积和等于与其相邻的三角形的斜边的平方,即等于最大正方形的另一直角边的平方,则A,B,C,D四个正方形的面积和等于最大的正方形上方的直角三角形的斜边的平方即等于最大的正方形的面积,因为最大的正方形的边长为5,则其面积是1,即正方形A,B,C,D的面积的和为1.故答案为1.15、1【解析】分析:根据角平分线的性质求出∠DAC=10°,根据直角三角形的性质得出CD的长度,最后根据角平分线的性质得出DE的长度.详解:∵∠BAC=60°,AD平分∠BAC,∴∠DAC=10°,∵AD=6,∴CD=1,又∵DE⊥AB,∴DE=DC=1.点睛:本题主要考查的是直角三角形的性质以及角平分线的性质,属于基础题型.合理利用角平分线的性质是解题的关键.16、35°【解析】

由已知条件可知:∠BCD=110°,根据菱形的性质即可求出ADB的度数.【详解】∵CEBC,ECD20,∴∠BCD=110°,∵四边形ABCD是菱形,∴∠BCD+∠ADC=180°,∠ADB=,∴∠ADC=70°,∴∠ADB==35°,【点睛】本题考查了菱形的性质,牢记菱形的性质是解题的关键.17、y2<y1<y3【解析】

解:反比例函数当x<0时为减函数且y<0,由x1<x2<0,所以y2<y1<0当x>0时,y>0,由x3>0,所以y3>0综上所述可得y2<y1<y3故答案为:y2<y1<y318、2【解析】

由分式的值为零的条件得x2-5x+6=0,2x-6≠0,由x2-5x+6=0,得x=2或x=3,由2x-6≠0,得x≠3,∴x=2.三、解答题(共78分)19、证明见解析.【解析】

只要证明四边形DEBF是平行四边形即可解决问题.【详解】证明:∵四边形ABCD是平行四边形,∴DC∥AB,即DF∥BE,又∵DE∥BF,∴四边形DEBF是平行四边形,∴DE=BF.【点睛】本题考查平行四边形的性质和判定,解题的关键是熟练掌握平行四边形的判定和性质.20、(1)见解析(2)①②5【解析】

(1)四边形ABCD是菱形,则ND∥AM,故∠NDE=∠MAE,∠DNE=∠AME.由于E是AD边的中点,则DE=AE.由全等三角形的判定定理,得出△NDE≌△MAE,故ND=MA.根据平行四边形的判定方法,即可得出四边形AMDN是平行四边形.【详解】(1)证明:∵四边形ABCD是菱形,∴ND∥AM,∴∠NDE=∠MAE,∠DNE=∠AME,又∵点E是AD边的中点,∴DE=AE,∴△NDE≌△MAE,∴ND=MA,∴四边形AMDN是平行四边形;(2)解:①若四边形AMDN是矩形,则∠DMA=90°,在△AMD中,∠DMA=90°,∠DAB=60°,则∠ADM=30°.在Rt△AMD中,∠AMD=30°,故AM=AD=.②若四边形AMDN是菱形,则ADMN,在Rt△MEA中,∠DAB=60°,则∠EMA=30°,故AE=AM,即AM=2AE,由于E是AD的中点,则AE=,所以AM=2×=5.【点睛】本题是考查平行四边形的判定方法、菱形的性质、直角三角形的性质的综合性题目.熟练掌握平行四边形、菱形、直角三角形的性质及判定方法是解决本题的关键,本题也是中考题目常考题型.21、(1)y=﹣x1+1x+3(1)①t=时,S的最大值为②P(1,4)或(1,3)或(,)或(,)【解析】

(1)设所求抛物线的表达式为y=a(x+1)(x﹣3),把点C(2,3)代入表达式,即可求解;(1)①设P(t,﹣t1+1t+3),则E(t,﹣t+3),S四边形CDBP=S△BCD+S△BPC=CD•OB+PE•OB,即可求解;②分点P在点Q上方、下方两种情况讨论即可求解.【详解】(1)∵抛物线的对称轴为x=1,A(﹣1,2),∴B(3,2).∴设所求抛物线的表达式为y=a(x+1)(x﹣3),把点C(2,3)代入,得3=a(2+1)(2﹣3),解得a=﹣1,∴所求抛物线的表达式为y=﹣(x+1)(x﹣3),即y=﹣x1+1x+3;(1)①连结BC.∵B(3,2),C(2,3),∴直线BC的表达式为y=﹣x+3,∵OB=3OD,OB=OC=3,∴OD=1,CD=1,过点P作PE∥y轴,交BC于点E(如图1).设P(t,﹣t1+1t+3),则E(t,﹣t+3).∴PE=﹣t1+1t+3﹣(﹣t+3)=﹣t1+3t.S四边形CDBP=S△BCD+S△BPC=CD•OB+PE•OB,即S=×1×3+(﹣t1+3t)×3=﹣(t﹣)1+,∵a=﹣<2,且2<t<3,∴当t=时,S的最大值为;②以CD为边,点C、D、Q、P为顶点的四边形是平行四边形,则PQ∥CD,且PQ=CD=1.∵点P在抛物线上,点Q在直线BC上,∴点P(t,﹣t1+1t+3),点Q(t,﹣t+3).分两种情况讨论:(Ⅰ)如图1,当点P在点Q上方时,∴(﹣t1+1t+3)﹣(﹣t+3)=1.即t1﹣3t+1=2.解得t1=1,t1=1.∴P1(1,4),P1(1,3),(Ⅱ)如图3,当点P在点Q下方时,∴(﹣t+3)﹣(﹣t1+1t+3)=1.即t1﹣3t﹣1=2.解得t3=,t4=,∴P3(,),P4(,),综上所述,所有符合条件的点P的坐标分别为:P(1,4)或(1,3)或(,)或(,).【点睛】本题主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.22、(1)四边形ABCD的面积=14;(2)是.理由见解析.【解析】

(1)根据四边形ABCD的面积=S矩形AEFH﹣S△AEB﹣S△BFC﹣S△CGD﹣S梯形AHGD即可得出结论;(2)先根据锐角三角函数的定义判断出∠FBC=∠DCG,再根据直角三角形的性质可得出∠BCF+∠DCG=90°,故可得出结论.【详解】(1)∵四边形ABCD的面积=S矩形AEFH﹣S△AEB﹣S△BFC﹣S△CGD﹣S梯形AHGD=5×51×52×41×2(1+5)×1=25=14;(2)是.理由如下:∵tan∠FBC,tan∠DCG,∴∠FBC=∠DCG.∵∠FBC+∠BCF=∠DCG+∠CDG=90°,∴∠BCF+∠DCG=90°,∴∠BCD是直角.【点睛】本题考查了分割法求面积和锐角三角函数的定义,熟知直角三角形的性质是解答此题的关键.23、(1)2.1,2.0;(2)小张同学的说法是合理的,小李学同的说法是不合理;(3)B树;【解析】

(1)根据中位数和众数的定义,由表中的数据求出B树树叶的长宽比的中位数和众数即可;(2)根据表中数据,求出C树树叶的长宽比的近似值,从而判断小张的说法,根据所给树叶的长宽比,判断小李的说法即可;(3)根据树叶的长和宽在图中用★标出该树叶,根据树叶的长宽比判断该树叶来自哪棵树即可.【详解】解(1)将这10片B树树叶的长宽比从小到大排列为:1.9,1.9,2.0,2.0,2.0,2.2,2.3,2.3,2.4,2.5,处在中间位置的两个数为2.0,2.2,∴中位数为(2.0+2.2)÷2=2.1;∵2.0出现了3次,出现的次数最多,∴众数为2.0.平均数中位数众数方差A树树叶的长宽比B树树叶的长宽比2.12.0C树树叶的长宽比(2)小张同学的说法是合理的,小李同学的说法是不合理的.理由如下:由表中的数据可知C树叶的长宽比近似于1,故小张的说法正确;由树叶的长度和宽度可知该树叶的长宽比近似于6,所以该树叶是A树的树叶,故小李的说法错误;(3)图1中,★表示这片树叶的数据,这片树叶来自B树;这块树叶的长宽比为103:52≈2,所以这片树叶来自B树.【点睛】本题主要考查了统计表的应用,平均数,中

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论