四川省达州铁中2024年数学八年级下册期末质量检测试题含解析_第1页
四川省达州铁中2024年数学八年级下册期末质量检测试题含解析_第2页
四川省达州铁中2024年数学八年级下册期末质量检测试题含解析_第3页
四川省达州铁中2024年数学八年级下册期末质量检测试题含解析_第4页
四川省达州铁中2024年数学八年级下册期末质量检测试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省达州铁中2024年数学八年级下册期末质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.设a,b是实数,定义@的一种运算如下:a@b=(a+b)2﹣(a﹣b)2,则下列结论:①若a@b=0,则a=0或b=0②a@(b+c)=a@b+a@c③不存在实数a,b,满足a@b=a2+5b2④设a,b是矩形的长和宽,若矩形的周长固定,则当a=b时,a@b最大.其中正确的是()A.②③④ B.①③④ C.①②④ D.①②③2.如果下列各组数是三角形的三边,则能组成直角三角形的是()A. B. C. D.3.某组数据的方差中,则该组数据的总和是()A.20 B.5 C.4 D.24.某地需要开辟一条隧道,隧道AB的长度无法直接测量.如图所示,在地面上取一点C,使点C均可直接到达A,B两点,测量找到AC和BC的中点D,E,测得DE的长为1100m,则隧道AB的长度为()A.3300m B.2200m C.1100m D.550m5.如图,在4×4的正方形网格中,△ABC的顶点都在格点上,下列结论错误的是()A.AB=5 B.∠C=90° C.AC=2 D.∠A=30°6.教育局组织学生篮球赛,有x支球队参加,每两队赛一场时,共需安排45场比赛,则符合题意的方程为()A. B. C. D.7.如图,在矩形ABCD中,对角线AC、BD交与点O,以下说法错误的是()A.∠ABC=90° B.AC=BD C.OA=OB D.OA=AD8.如图所示,在四边形中,,要使四边形成为平行四边形还需要条件()A. B. C. D.9.下列命题是真命题的是()A.平行四边形的对角线相等B.经过旋转,对应线段平行且相等C.两组对角分别相等的四边形是平行四边形D.两边相等的两个直角三角形全等10.用反证法证明:“直角三角形至少有一个锐角不小于45°”时,应先假设()A.直角三角形的每个锐角都小于45°B.直角三角形有一个锐角大于45°C.直角三角形的每个锐角都大于45°D.直角三角形有一个锐角小于45°二、填空题(每小题3分,共24分)11.我区有15所中学,其中九年级学生共有3000名.为了了解我区九年级学生的体重情况,请你运用所学的统计知识,将解决上述问题要经历的几个重要步骤进行排序.①收集数据;②设计调查问卷;③用样本估计总体;④整理数据;⑤分析数据.则正确的排序为________(填序号)12.已知1<x<5,化简+|x-5|=____.13.一次函数y=﹣2x+6的图象与x轴的交点坐标是_____.14.如图,在△ABC中,∠ACB=90°,AC=4,BC=3,将△ABC绕点A顺时针旋转得到△ADE(其中点B恰好落在AC延长线上点D处,点C落在点E处),连接BD,则四边形AEDB的面积为______.15.如图所示,在中,,在同一平面内,将绕点逆时针旋转到△的位置,使,则___.16.如图,函数和的图象交于点,根据图象可知,关于的不等式的解集为________.17.小丽计算数据方差时,使用公式S2=,则公式中=__.18.在平面直角坐标系中,点(﹣7,m+1)在第三象限,则m的取值范围是_____.三、解答题(共66分)19.(10分)已知一次函数.(1)在平面直角坐标系中画出该函数的图象;(2)点(,5)在该函数图象的上方还是下方?请做出判断并说明理由.20.(6分)已知:如图,△OAB,点O为原点,点A、B的坐标分别是(2,1)、(﹣2,4).(1)若点A、B都在一次函数y=kx+b图象上,求k,b的值;(2)求△OAB的边AB上的中线的长.21.(6分)已知关于x、y的方程组的解都小于1,若关于a的不等式组恰好有三个整数解;⑴分别求出m与n的取值范围;⑵请化简:。22.(8分)如图所示,沿AE折叠矩形,点D恰好落在BC边上的点F处,已知AB=8cm,BC=10cm,求EC的长.​23.(8分)学完第五章《平面直角坐标系》和第六章《一次函数》后,老师布置了这样一道思考题:已知:如图,在长方形ABCD中,BC=4,AB=2,点E为AD的中点,BD和CE相交于点P.求△BPC的面积.小明同学应用所学知识,顺利地解决了此题,他的思路是这样的:建立适合的“平面直角坐标系”,写出图中一些点的坐标.根据“一次函数”的知识求出点的坐标,从而可求得△BPC的面积.请你按照小明的思路解决这道思考题.24.(8分)如图,在四边形中,,,,是的中点.点以每秒个单位长度的速度从点出发,沿向点运动;点同时以每秒个单位长度的速度从点出发,沿向点运动.点停止运动时,点也随之停止运动.当运动时间为多少秒时,以点,,,为顶点的四边形是平行四边形.25.(10分)如图1,正方形中,点、的坐标分别为,,点在第一象限.动点在正方形的边上,从点出发沿匀速运动,同时动点以相同速度在轴上运动,当点运动到点时,两点同时停止运动,设运动时间为秒.当点在边上运动时,点的横坐标(单位长度)关于运动时间(秒)的函数图象如图2所示.(1)正方形边长_____________,正方形顶点的坐标为__________________;(2)点开始运动时的坐标为__________,点的运动速度为_________单位长度/秒;(3)当点运动时,点到轴的距离为,求与的函数关系式;(4)当点运动时,过点分别作轴,轴,垂足分别为点、,且点位于点下方,与能否相似,若能,请直接写出所有符合条件的的值;若不能,请说明理由.26.(10分)已知一次函数的图象经过,两点.(1)求这个一次函数的解析式;(2)试判断点是否在这个一次函数的图象上;(3)求此函数图象与轴,轴围成的三角形的面积.

参考答案一、选择题(每小题3分,共30分)1、C【解析】

根据新定义可以计算出啊各个小题中的结论是否成立,从而可以判断各个小题中的说法是否正确,从而可以得到哪个选项是正确的.【详解】①根据题意得:a@b=(a+b)2﹣(a﹣b)2∴(a+b)2﹣(a﹣b)2=0,整理得:(a+b+a﹣b)(a+b﹣a+b)=0,即4ab=0,解得:a=0或b=0,正确;②∵a@(b+c)=(a+b+c)2﹣(a﹣b﹣c)2=4ab+4aca@b+a@c=(a+b)2﹣(a﹣b)2+(a+c)2﹣(a﹣c)2=4ab+4ac,∴a@(b+c)=a@b+a@c正确;③a@b=a2+5b2,a@b=(a+b)2﹣(a﹣b)2,令a2+5b2=(a+b)2﹣(a﹣b)2,解得,a=0,b=0,故错误;④∵a@b=(a+b)2﹣(a﹣b)2=4ab,(a﹣b)2≥0,则a2﹣2ab+b2≥0,即a2+b2≥2ab,∴a2+b2+2ab≥4ab,∴4ab的最大值是a2+b2+2ab,此时a2+b2+2ab=4ab,解得,a=b,∴a@b最大时,a=b,故④正确,考点:(1)、因式分解的应用;(2)、整式的混合运算;(3)、二次函数的最值2、A【解析】

根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,就是直角三角形,没有这种关系,就不是直角三角形,分析得出即可.【详解】A.∵1+=2,∴此三角形是直角三角形,正确;B.∵1+3≠4,∴此三角形不是直角三角形,不符合题意;C.∵2+3≠6,∴此三角形不是直角三角形,不合题意;D.∵4+5≠6,∴此三角形不是直角三角形,不合题意.故选:A.【点睛】此题考查勾股定理的逆定理,解题关键在于掌握计算公式.3、A【解析】

样本方差,其中是这个样本的容量,是样本的平均数.利用此公式直接求解.【详解】由知共有5个数据,这5个数据的平均数为4,

则该组数据的总和为:4×5=20,

故选:A.【点睛】本题主要考查方差,解题的关键是掌握方差的计算公式及公式中的字母所表示的意义.4、B【解析】∵D,E为AC和BC的中点,∴AB=2DE=2200m,故选:B.5、D【解析】

首先根据每个小正方形的边长为1,结合勾股定理求出AB、AC、BC的长,进而判断A、C的正误;再判断较短的两边的平方和与较长边的平方是否相等,进而可判断B的正误;在上步提示的基础上,判断BC与AB是否存在二倍关系,进而即可判断D的正误.【详解】∵每个小正方形的边长为1,根据勾股定理可得:AB=5,AC=2,BC=.故A、C正确;∵2+(2)2=52,∴△ABC是直角三角形,∴∠C=90°.故B正确;∵∠C=90°,AC=2BC,而非AB=2BC,∴∠A≠30°.故D错误.故选D.【点睛】本题考查的是三角形,熟练掌握三角形是解题的关键.6、A【解析】

先列出x支篮球队,每两队之间都比赛一场,共可以比赛x(x-1)场,再根据题意列出方程为.【详解】解:∵有x支球队参加篮球比赛,每两队之间都比赛一场,

∴共比赛场数为,

故选:A.【点睛】本题是由实际问题抽象出一元二次方程,主要考查了从实际问题中抽象出相等关系.7、D【解析】试题分析:本题考查了矩形的性质;熟练掌握矩形的性质是解决问题的关键.矩形的性质:四个角都是直角,对角线互相平分且相等;由矩形的性质容易得出结论.∵四边形ABCD是矩形,∴∠ABC=∠BCD=∠CDA=∠BAD=90°,AC=BD,OA=AC,OB=BD,∴OA=OB,∴A、B、C正确,D错误考点:矩形的性质8、B【解析】

根据等腰梯形的定义可判断A;根据平行线的性质和三角形的内角和定理求出∠BAC=∠DCA,推出AB∥CD可以判断B;根据平行四边形的判定可判断C;根据平行线的性质可以判断D.【详解】解:A、符合条件AD∥BC,AB=DC,可能是等腰梯形,故A选项错误;B、∵AD∥BC,

∴∠1=∠2,

∵∠B=∠D,

∴∠BAC=∠DCA,

∴AB∥CD,

∴四边形ABCD是平行四边形,故B选项正确.C、根据AB=AD和AD∥BC不能推出平行四边形,故C选项错误;D、根据∠1=∠2,推出AD∥BC,不能推出平行四边形,故D选项错误;故选:B【点睛】本题主要考查对平行四边形的判定,等腰梯形的性质,三角形的内角和定理,平行线的性质和判定等知识点的理解和掌握,能综合运用性质进行推理是解此题的关键.9、C【解析】

命题的真假,用证明的方法去判断,或者找到反例即可,【详解】A项平行四边形的对角线相等,这个不一定成立,反例只要不是正方形的菱形的对角线均不相等.B项经过旋转,对应线段平行且相等,这个不一定成立,反例旋转九十度,肯定不会平行,C项两组对角分别相等的四边形是平行四边形,这个是成立的,因为对角相等,那么可以得到同位角互补,同位角互补可以得到两组对边平行.D项两边相等的两个直角三角形全等,这个没有加对应的这几个字眼,那么就可以找到反例,一个直角三角形的两个直角边与另一个直角三角形的一直角边和斜边相等,那么这两个直角肯定不全等,所以选择C【点睛】本题主要考查基本定义和定理,比如四边形的基本性质,线段平行的关系,直角三角形全等的条件,把握这些定义和定理就没有问题了10、A【解析】分析:找出原命题的方面即可得出假设的条件.详解:有一个锐角不小于45°的反面就是:每个锐角都小于45°,故选A.点睛:本题主要考查的是反证法,属于基础题型.找到原命题的反面是解决这个问题的关键.二、填空题(每小题3分,共24分)11、②①④⑤③【解析】根据统计调查的一般过程:①问卷调查法……收集数据,②列统计表……整理数据,③画统计图……描述数据,所以解决上述问题要经历的及格重要步骤进行排序为:②设计调查问卷,①收集数据,④整理数据,⑤分析数据,③用样本估计总体,故答案为:②①④⑤③.12、4【解析】【分析】由已知判断x-1>0,x-5<0,再求绝对值.【详解】因为1<x<5,+|x-5|=|x-1|+|x-5|=x-1+5-x=4故答案为:4【点睛】本题考核知识点:二次根式化简.解题关键点:求绝对值.13、(3,0)【解析】

y=0,即可求出x的值,即可求解.【详解】解:当y=0时,有﹣2x+6=0,解得:x=3,∴一次函数y=﹣2x+6的图象与x轴的交点坐标是(3,0).故答案为:(3,0).【点睛】此题主要考查一次函数的图像,解题的关键是熟知一次函数的性质.14、【解析】

通过勾股定理计算出AB长度,利用旋转性质求出各对应线段长度,利用面积公式解答即可.【详解】∵在△ABC中,∠C=90°,AC=4,BC=3,∴AB=5,∵将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,∴AD=AB=5,∴CD=AD−AC=1,∴四边形AEDB的面积为,故答案为.【点睛】本题考查的知识点是旋转的性质,解题关键是熟记旋转前后的对应边相等.15、40°【解析】

由旋转性质可知,,从而可得出为等腰三角形,且和已知,得出的度数.则可得出答案.【详解】解:绕点逆时针旋转到△的位置【点睛】本题考查了旋转的性质:对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.解题的关键是抓住旋转变换过程中不变量,判断出是等腰三角形.16、x>−1【解析】

利用函数图象,写出直线y=ax+b在直线y=ax+b上方所对应的自变量的范围即可.【详解】解:由图可知,不等式kx>ax+b的解集为:x>−1.

故答案为:x>−1.【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.17、1【解析】分析:根据题目中的式子,可以得到的值,从而可以解答本题.详解:∵S2=[(5﹣)2+(8﹣)2+(13﹣)2)2+(15﹣)2],∴=1.故答案为1.点睛:本题考查了方差、平均数,解答本题的关键是明确题意,求出相应的平均数.18、m<-1【解析】

根据第三象限内点的横坐标是负数,纵坐标是正数列出不等式,然后求解即可.【详解】:∵点(,)在第三象限,

∴m+1<0,

解不等式得,m<-1,

所以,m的取值范围是m<-1.

故答案为m<-1.【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).三、解答题(共66分)19、(1)见解析;(2)点在该函数图象的上方,理由见解析.【解析】

(1)根据题意代入x=0和,进行描点,并连接两点即可画出该函数的图象;;(2)根据题意先求出x=时的y的值,判断其与5的大小即可解决问题.【详解】解:(1)如图,列表描点如下函数图象如图2所示.(2)对于当时,因为所以点在该函数图象的上方.【点睛】本题考查一次函数图象上的点的坐标特征,解题的关键是熟练掌握列表描点法和待定系数法解决问题.20、(1)k=﹣,b=;(2)AB边上的中线长为.【解析】

(1)由A、B两点的坐标利用待定系数法可求得k、b的值;(2)由A、B两点到y轴的距离相等可知直线AB与y轴的交点即为线段AB的中点,利用(1)求得的解析式可求得中线的长.【详解】(1)∵点A、B都在一次函数y=kx+b图象上,∴把(2,1)、(﹣2,4)代入可得,解得,∴k=﹣,b=;(2)如图,设直线AB交y轴于点C,∵A(2,1)、B(﹣2,4),∴C点为线段AB的中点,由(1)可知直线AB的解析式为y=﹣x+,令x=0可得y=,∴OC=,即AB边上的中线长为.【点睛】此题考查一次函数图象上点的坐标特征,解题关键在于利用待定系数法求解21、(1)(2)2m-2n-1【解析】

(1)解关于x、y的不等式组,得﹣3<m<1.同理可以得出﹣5≤a≤.由于原不等式组恰好有三个整数解,则-3≤<-2,解得-4≤n<﹣.(2)由m、n的取值范围得出m+3>0,1﹣m>0,2n+8>0,从而化简得出最后结果.【详解】(1),①+②得:2x=m+1,即x=<1;①﹣②得:4y=1﹣m,即y=<1,解得:﹣3<m<1;由a+2≥1得a≥﹣5,2n-3a≥1得a≤.所以﹣5≤a≤.原不等式组恰好有三个整数解,则-3≤<-2,解得-4≤n<﹣.(2)∵﹣3<m<1,∴m+3>0,1﹣m>0,2n+8>0原式=m+3﹣(1-m)-(2n+8)=2m-2n-1.【点睛】本题是考查解不等式组、绝对值的化简、算术平方根的化简、相反数的综合性题目,是中考常出现的题型.理解关于a的方程组恰好有三个整数解是解决本题的关键.22、1【解析】

先根据矩形的性质得AD=BC=10,AB=CD=8,再根据折叠的性质得AF=AD=10,EF=DE,在Rt△ABF中,利用勾股定理计算出BF=6,则CF=BC−BF=4,设CE=x,则DE=EF=8−x,然后在Rt△ECF中根据勾股定理得到x2+42=(8−x)2,再解方程即可得到CE的长.【详解】∵四边形ABCD为矩形,∴AD=BC=10,AB=CD=8,∵矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上的F处,∴AF=AD=10,EF=DE,在Rt△ABF中,∵BF==6,∴CF=BC−BF=10−6=4,设CE=x,则DE=EF=8−x在Rt△ECF中,∵CE2+FC2=EF2,∴x2+42=(8−x)2,解得x=1,即CE=1.【点睛】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了矩形的性质和勾股定理.23、见解析【解析】

解:如图,以为原点,为轴,为轴建立坐标系,∵,,为长方形,∴,,,∵为中点,∴,直线过,,∴的表达式为.设表达式为,将,和,代入得:,解得:,∴表达式为,联立,解得:,∴,.24、当运动时间为秒或秒时,以点,,,为顶点的四边形是平行四边形.【解析】

分别从当Q运动到E和B之间、当Q运动到E和C之间去分析求解即可求得答案.【详解】解:是的中点,,①当运动到和之间,设运动时间为,则得:,解得:;②当运动到和之间,设运动时间为,则得:,解得:,当运动时间为秒或秒时,以点,,,为顶点的四边形是平行四边形.【点睛】此题考查了梯形的性质以及平行四边形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想、分类讨论思想与方程思想的应用.25、(3)30,(35.2);(2)(3,0),3;(3)d=t﹣5;(5)t的值为3s或s或s.【解析】

(3)过点B作BH⊥y轴于点H,CF⊥HB交HB的延长线于点F交x轴于G.利用全等三角形的性质解决问题即可.(2)根据题意,易得Q(3,0),结合P、Q得运动方向、轨迹,分析可得答案;(3)分两种情形:①如图3﹣3中,当0<t≤30时,作PN⊥x轴于N,交HF于K.②如图3﹣2中,当30<t≤20时,作PN⊥x轴于N,交HF于K.分别求解即可解决问题.(5)①如图5﹣3中,当点P在线段AB上时,有两种情形.②如图5﹣2中,当点P在线段BC上时,只有满足时,△APM∽△PON,利用(3)中结论构建方程即可解决问题.【详解】解:(3)过点B作BH⊥y轴于点H,CF⊥HB交HB的延长线于点F交x轴于G.∵∠ABC=90°=∠AHB=∠BFC∴∠ABH+∠CBF=90°,∠ABH+∠BAH=90°,∴∠BAH=∠CBF,∵AB=BC,∴△ABH≌△BCF.∴BH=CF=8,AH=BF=3.∴AB==30,HF=35,∴OG=FH=35,CG=8+5=2.∴所

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论