浙江省杭州市富阳区城区2024年数学八年级下册期末统考试题含解析_第1页
浙江省杭州市富阳区城区2024年数学八年级下册期末统考试题含解析_第2页
浙江省杭州市富阳区城区2024年数学八年级下册期末统考试题含解析_第3页
浙江省杭州市富阳区城区2024年数学八年级下册期末统考试题含解析_第4页
浙江省杭州市富阳区城区2024年数学八年级下册期末统考试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省杭州市富阳区城区2024年数学八年级下册期末统考试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.解分式方程,去分母后正确的是()A. B.C. D.2.为了解学生的体能情况,抽取某学校同年级学生进行跳绳测试,将所得数据整理后,画出如图所示的频数分布直方图.已知图中从左到右前三个小组的频率分别为0.1,0.3,0.4,第一小组的频数为5,则第四小组的频数为(

)A.5B.10C.15D.203.若一组数据1.2.3.x的极差是6,则x的值为().A.7 B.8 C.9 D.7或4.使式子有意义的条件是()A.x≥4 B.x=4 C.x≤4 D.x≠45.下列各数中,是不等式的解的是A. B.0 C.1 D.36.若一个多边形的每一个外角都是45°,则这个多边形的内角和等于()A.1440° B.1260° C.1080° D.1800°7.如图,四边形ABCD是平行四边形,要使它成为矩形,那么需要添加的条件是()A.AB=CD B.AD=BC C.AB=BC D.AC=BD8.若x>y,则下列不等式中不一定成立的是()A.x﹣1>y﹣1 B.2x>2y C.x+1>y+1 D.x2>y29.《九章算术》是我国古代的数学名著,书中的“折竹抵地”问题:今有竹高一丈,末折抵地,去本三尺.问折者高几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部3尺远,问折断处离地面的高度是多少?设折断后离地面的高度为x尺,则可列方程为()A.x2–3=(10–x)2 B.x2–32=(10–x)2 C.x2+3=(10–x)2 D.x2+32=(10–x)210.菱形OACB在平面直角坐标系中的位置如图所示,点C的坐标是(6,0),点A的纵坐标是1,则点B的坐标是()A.(3,1) B.(3,-1) C.(1,-3) D.(1,3)二、填空题(每小题3分,共24分)11.我市某中学举办了一次以“我的中国梦”为主题的演讲比赛,最后确定7名同学参加决赛,他们的决赛成绩各不相同,其中李华已经知道自己的成绩,但能否进前四名,他还必须清楚这7名同学成绩的______________(填”平均数”“众数”或“中位数”)12.解方程:(1)2x2﹣5x+1=0(用配方法);(2)5(x﹣2)2=2(2﹣x).13.评定学生的学科期末成绩由考试分数,作业分数,课堂参与分数三部分组成,并按3:2:5的比例确定,已知小明的数学考试80分,作业95分,课堂参与82分,则他的数学期末成绩为_____.14.某校对初一全体学生进行一次视力普查,得到如下统计表,视力在这个范围的频率为__________.15.如图,在Rt△ABC中,∠ACB=90°,∠ABC=60°,AB=4,点D是BC上一动点,以BD为边在BC的右侧作等边△BDE,F是DE的中点,连结AF,CF,则AF+CF的最小值是_____.16.每本书的厚度为,把这些书摞在一起总厚度(单位:随书的本数的变化而变化,请写出关于的函数解析式__,(不用写自变量的取值范围)17.分解因式:1﹣x2=.18.某商场为了抓住夏季来临,衬衫热销的契机,决定用46000元购进A、B、C三种品牌的衬衫共300件,并且购进的每一种衬衫的数量都不少于90件.三种品牌的衬衫的进价和售价如下表所示:型号ABC进价(元/件)100200150售价(元/件)200350300如果该商场能够将购进的衬衫全部售出,但在销售这些衬衫的过程中还需要另外支出各种费用共计1000元,那么商场能够获得的最大利润是_____元.三、解答题(共66分)19.(10分)如图,平面直角坐标系内有一△ABC,且点A(2,4),B(1,1),C(4,2).(1)画出△ABC向下平移5个单位后的△A1B1C1;(2)画出△A1B1C1先向左平移5个单位再作关于x轴对称的△A2B2C2,并直接写出点A2,B2的坐标.20.(6分)小明从家出发,沿一条直道跑步,经过一段时间原路返回,刚好在第16分钟回到家中.设小明出发第t分钟的速度为v米/分,离家的距离为s米.v与t之间的部分图象、s与t之间的部分图象分别如图1与图2(图象没画完整,其中图中的空心圈表示不包含这一点),则当小明离家600米时,所用的时间是()分钟.A.4.5 B.8.25 C.4.5或8.25 D.4.5或8.521.(6分)已知x=-1,y=+1,求代数式x2+xy+y2的值.22.(8分)已知:如图,在矩形ABCD中,M,N分别是边AD、BC的中点,E,F分别是线段BM,CM的中点.(1)求证:BM=CM;(2)判断四边形MENF是什么特殊四边形,并证明你的结论;(3)当矩形ABCD的长和宽满足什么条件时,四边形MENF是正方形?为什么?23.(8分)小颖用四块完全一样的长方形方砖,恰好拼成如图1所示图案,如图1,连接对角线后,她发现该图案中可以用“面积法”采用不同方案去证明勾股定理.设AE=a,DE=b,AD=c,请你找到其中一种方案证明:a1+b1=c1.24.(8分)如图①,中,,点为边上一点,于点,点为中点,点为中点,的延长线交于点,≌.(1)求证:;(2)求的大小;(3)如图②,过点作交的延长线于点,求证:四边形为矩形.25.(10分)四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB于H,求DH的长.26.(10分)在平面直角坐标系中,点A的坐标为,以线段OA为边作等边三角形,使点B落在第四象限内,点C为x正半轴上一动点,连接BC,以线段BC为边作等边三角形,使点D落在第四象限内.(1)如图1,在点C运动的过程巾,连接AD.①和全等吗?请说明理由:②延长DA交y轴于点E,若,求点C的坐标:(2)如图2,已知,当点C从点O运动到点M时,点D所走过的路径的长度为_________

参考答案一、选择题(每小题3分,共30分)1、D【解析】

两个分母分别为x+1和x2-1,所以最简公分母是(x+1)(x-1),方程两边都乘最简公分母,可把分式方程转换为整式方程.【详解】方程两边都乘(x+1)(x−1),得x(x−1)−x−2=x2−1.故选D.【点睛】本题考查了解分式方程的步骤,正确找到最简公分母是解题的关键.2、B【解析】

根据频率=,即可求得总数,进而即可求得第四小组的频数.【详解】解:总数是5÷0.1=50人;

则第四小组的频数是50×(1-0.1-0.3-0.4)=50×0.2=10,故选B.【点睛】本题考查频率的计算公式,解题关键是熟记公式.3、D【解析】试题分析:根据极差的定义,分两种情况:x为最大值或最小值:当x为最大值时,;当x是最小值时,.∴x的值可能7或.故选D.考点:1.极差;2.分类思想的应用.4、A【解析】

根据二次根式有意义的条件(大于或等于0)即可求出x的范围.【详解】∵有意义,∴x-4≥0,∴x≥4.故选A.【点睛】考查二次根式有意义的条件,解题的关键是正确理解二次根式有意义的条件(被开方数大于或等于0).5、D【解析】

判断各个选项是否满足不等式的解即可.【详解】满足不等式x>2的值只有3,故选:D.【点睛】本题考查不等式解的求解,关键是明白解的取值范围.6、C【解析】

先利用360°÷45°求出多边形的边数,再根据多边形的内角和公式(n-2)•180°计算即可求解.【详解】解:多边形的边数为:360°÷45°=8,

多边形的内角和是:(8-2)•180°=1080°.

故选:C.【点睛】本题主要考查了正多边形的外角与边数的关系,以及多边形内角和公式,利用外角和为360°求出多边形的边数是解题的关键.7、D【解析】

可根据对角线相等的平行四边形是矩形证明四边形ABCD是矩形.【详解】解:A、AB=CD,当ABCD是平行四边形时也成立,故不合符题意;B、AD=BC,当ABCD是平行四边形时也成立,故不合符题意;C、AB=BC,当ABCD是菱形时也成立,故不合符题意;D、AC=BD,对角线相等的平行四边形是矩形,符合题意;故选:D.【点睛】此题主要考查了矩形的判定,关键是矩形的判定:①矩形的定义:有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线相等的平行四边形是矩形.8、D【解析】

根据不等式的性质逐一进行判断,选项A,在不等式x>y两边都减1,不等号的方向不变,即可判断A的正确性,选项B,在不等式x>y两边都乘上2,不等号的方向不变,即可判断B的正确性;选项C,在不等式x>y两边都加上1,不等号的方向不变,即可判断C的正确性,选项D,可举例说明,例如当x=1,y=-2时,x>y,但x2<y2,故可判断D的正确性,据此即可得到答案.【详解】A、不等式的两边减1,不等号的方向不变,故A不符合题意;B、不等式的两边乘2,不等号的方向不变,故B不符合题意;C、不等式的两边都加1,不等号的方向不变,故C不符合题意;D、当0<x<1,y<﹣1时,x2<y2,故D符合题意;故选D.【点睛】本题主要考查了不等式的相关知识质,熟练掌握不等式的性质是解题的关键;9、D【解析】

竹子折断后刚好构成一直角三角形,设竹子折断处离地面x尺,则斜边为(10-x)尺,利用勾股定理解题即可.【详解】设竹子折断处离地面x尺,则斜边为(10-x)尺,根据勾股定理得:x1+31=(10-x)1.故选D.【点睛】此题考查了勾股定理的应用,解题的关键是利用题目信息构造直角三角形,从而运用勾股定理解题.10、B【解析】

首先连接AB交OC于点D,由四边形OACB是菱形,可得,,,易得点B的坐标是.【详解】连接AB交OC于点D,四边形OACB是菱形,,,,点B的坐标是.故选B.【点睛】此题考查了菱形的性质:菱形的对角线互相平分且垂直解此题注意数形结合思想的应用.二、填空题(每小题3分,共24分)11、中位数【解析】

七名选手的成绩,如果知道中位数是多少,与自己的成绩相比较,就能知道自己是否能进入前四名,因为中位数是七个数据中的第四个数,【详解】解:因为七个数据从小到大排列后的第四个数是这七个数的中位数,知道中位数,然后与自己的成绩比较,就知道能否进入前四,即能否参加决赛.故答案为:中位数.【点睛】考查中位数、众数、平均数反映一组数据的特征,中位数反映之间位置的数,说明比它大的占一半,比它小的占一半;众数是出现次数最多的数,平均数反映一组数据的平均水平和集中趋势,理解意义是正确判断的前提.12、(1)x1=,x2=;(2)x1=2,x2=【解析】

(1)移项,系数化成1,配方,开方,即可得出两个一元一次方程,求出方程的解;(2)移项后分解因式,即可可得出两个一元一次方程,求出方程的解即可.【详解】解:(1),(2),,【点睛】本题考查了利用配方法、因式分解法解一元二次方程,正确计算是解题的关键.13、:84分【解析】

因为数学期末成绩由考试分数,作业分数,课堂参与分数三部分组成,并按3:2:5的比例确定,所以利用加权平均数的公式即可求出答案.【详解】解:小明的数学期末成绩为=84(分),故答案为84分.【点睛】本题主要考查了加权平均数的概念.平均数等于所有数据的和除以数据的个数.14、0.1【解析】【分析】先求出视力在4.9≤x<5.5这个范围内的频数,然后根据“频率=频数÷总数”进行计算即可得答案.【详解】视力在4.9≤x<5.5这个范围的频数为:60+10=70,则视力在4.9≤x<5.5这个范围的频率为:=0.1,故答案为:0.1.【点睛】本题考查了频率,熟练掌握频率的定义是解题的关键.15、2.【解析】

以BC为边作等边三角形BCG,连接FG,AG,作GH⊥AC交AC的延长线于H,根据等边三角形的性质得到DC=EG,根据全等三角形的性质得到FC=FG,于是得到在点D的运动过程中,AF+FC=AF+FG,而AF+FG≥AG,当F点移动到AG上时,即A,F,G三点共线时,AF+FC的最小值=AG,根据勾股定理即可得到结论.【详解】以BC为边作等边三角形BCG,连接FG,AG,

作GH⊥AC交AC的延长线于H,

∵△BDE和△BCG是等边三角形,

∴DC=EG,

∴∠FDC=∠FEG=120°,

∵DF=EF,

∴△DFC≌△EFG(SAS),

∴FC=FG,

∴在点D的运动过程中,AF+FC=AF+FG,而AF+FG≥AG,

∴当F点移动到AG上时,即A,F,G三点共线时,AF+FC的最小值=AG,

∵BC=CG=AB=2,AC=2,

在Rt△CGH中,∠GCH=30°,CG=2,

∴GH=1,CH=,

∴AG===2,

∴AF+CF的最小值是2.【点睛】此题考查轴对称-最短路线问题,等边三角形的性质,直角三角形的性质,正确的作出辅助线是解题的关键.16、【解析】

依据这些书摞在一起总厚度y(cm)与书的本数x成正比,即可得到函数解析式.【详解】解:每本书的厚度为,这些书摞在一起总厚度与书的本数的函数解析式为,故答案为:.【点睛】本题主要考查了根据实际问题确定一次函数的解析式,找到所求量的等量关系是解决问题的关键.17、(1+x)(1﹣x).【解析】试题分析:直接应用平方差公式即可:1﹣x2=(1+x)(1﹣x).18、1.【解析】

设购进A种品牌衬衫a件,B种品牌衬衫b件,则C种品牌衬衫为(300﹣a﹣b)件,根据商场所获利润=A种衬衫的利润+B种衬衫的利润+C种衬衫的利润-1000,列出方程,然后根据一次函数的性质可求解.【详解】解:设购进A种品牌衬衫a件,B种品牌衬衫b件,则C种品牌衬衫为(300﹣a﹣b)件,获得的总利润为y元,y=(200﹣100)a+(350﹣200)b+(300﹣150)(300﹣a﹣b)﹣1000=﹣50a+44000,∵购进的每一种衬衫的数量都不少于90件,∴a≥90,∴当a=90时,y取得最大值,此时y=﹣50×90+44000=1,故答案为:1.【点睛】一次函数在实际生活中的应用是本题的考点,根据题意列出解析式是解题的关键.三、解答题(共66分)19、(1)见解析;(2)见解析,点A2(-3,1),B2(-4,4).【解析】

(1)直接利用平移的性质得出对应点位置进而得出答案;

(2)直接利用平移的性质再结合轴对称图形的性质得出对应点位置进而得出答案.【详解】(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求,点A2(-3,1),B2(-4,4).【点睛】此题主要考查了作图--轴对称变换,关键是正确确定组成图形的关键点关于x轴的对称点位置.20、D【解析】

根据函数图象中的数据可以求得小明从家去和返回时两种情况下离家600米对应的时间,本题得以解决.【详解】解:由图2可得,当2<t<5时,小明的速度为:(680-200)÷(5-2)=160m/min,设当小明离家600米时,所用的时间是t分钟,则200+160(t-2)=600时,t=4.5,80(16-t)=600时,t=8.5,故选:D.【点睛】本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.21、1.【解析】

根据二次根式的加减法、乘除法法则求出x+y、xy,根据完全平方公式把原式变形,代入计算即可.【详解】解:∵x=-1,y=+1,∴x+y=2,xy=4,∴x2+xy+y2=(x+y)2-xy=20-4=1.【点睛】此题考查了代数式求值的问题,解题的关键是把所求的代数式用完全平方公式进行变形.22、(1)见解析;(2)平行四边形MENF是菱形,见解析;(3)即当AD:AB=2:1时,四边形MENF是正方形,理由见解析.【解析】

(1)证明△ABM≌△DCM即可求解(2)先证明四边形MENF是平行四边形,再根据(1)中的△ABM≌△DCM可得BM=CM,即ME=MF,即可求证平行四边形MENF是菱形(3)当AD:AB=2:1时,易得∠ABM=∠AMB=45°,∠EMF=180°﹣45°﹣45°=90°,又四边形MENF是菱形,故可证菱形MENF是正方形,【详解】(1)证明:∵四边形ABCD是矩形,∴AB=DC,∠A=∠D=90°,∵M为AD中点,∴AM=DM,在△ABM和△DCM中,∴△ABM≌△DCM(SAS),∴BM=CM;(2)四边形MENF是菱形.证明:∵N、E、F分别是BC、BM、CM的中点,∴NE∥CM,NE=CM,∵MF=CM,∴NE=FM,∵NE∥FM,∴四边形MENF是平行四边形,由(1)知△ABM≌△DCM,∴BM=CM,∵E、F分别是BM、CM的中点,∴ME=MF,∴平行四边形MENF是菱形;(3)当AD:AB=2:1时,四边形MENF是正方形.理由:∵M为AD中点,∴AD=2AM,∵AD:AB=2:1,∴AM=AB,∵∠A=90°∴∠ABM=∠AMB=45°,同理∠DMC=45°,∴∠EMF=180°﹣45°﹣45°=90°,∵四边形MENF是菱形,∴菱形MENF是正方形,即当AD:AB=2:1时,四边形MENF是正方形.【点睛】此题主要考查平行四边形、菱形以及正方形的判定条件,其中涉及全等三角形23、见解析【解析】

根据S正方形EFGH=4S△AED+S正方形ABCD,列式可得结论.【详解】解:∵AE=a,DE=b,AD=c,∴S正方形EFGH=EH1=(a+b)1,S正方形EFGH=4S△AED+S正方形ABCD=4×ab+c1,∴(a+b)1=1ab+c1,∴a1+b1=c1.【点睛】本题考查了用数形结合来证明勾股定理,证明勾股定理常用的方法是利用面积证明,本题锻炼了同学们数形结合的思想方法.24、(1)证明见解析;(2)∠MEF=30°;(3)证明见解析.【解析】

(1)利用直角三角形斜边中线的性质定理可得CM=DB,EM=DB,问题得证;(2)利用全等三角形的性质,证明△DEM是等边三角形,即可解决问题;(3)设FM=a,则AE=CM=EM=a,EF=2a,推出,,得到AN∥PM,易证四边形ANMP是平行四边形,结合∠P=90°即可解决问题.【详解】解:(1)证明:如图①中,∵DE⊥AB,∴∠DEB=∠DCB=90°,∵DM=MB,∴CM=DB,EM=DB,∴CM=EM;(2)解:∵△DAE≌△CEM,CM=EM,∴AE=ED=EM=CM=DM,∠AED=∠CME=90°∴△ADE是等腰直角三角形,△DEM是等边三角形,∵∠AED=∠DEF=90°,∠DEM=60°,∴∠MEF=30°;(3)证明:如图②中,设FM=a.由(2)可知△ADE是等腰直角三角形,△DEM是等边三角形,∠MEF=30°,∴AE=CM=EM=a,EF=2a,∵CN=NM,∴MN=a,∴,,∴EM∥AN,∵AP⊥PM,MN⊥PM,∴AP∥MN,∴四边形ANMP是平行四边形,∵∠P=90°,∴四边形ANMP是矩形.【点睛】本题考查了全等三角形的性质、等腰直角三角形的判定和性质、等边三角形的判定和性质、直角三角形斜边中线定理、平行线分线段成比例定理以及矩形的判定等知识,解题的关键是灵活运用所学知识进行推理论证,学会利用参数解决问题,属于中考压轴题.25、245【解析】试题分析:先根据菱形对角线互相垂直平分求得OA、OB的值,根据勾股定理求得AB的值,由菱形面积公式的两种求法列式可以求得高DH的长.试题解析:解:∵四边形ABCD是菱形,AC=8cm,BD=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论