版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省合肥市科大附中2024届八年级下册数学期末联考模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.反比例函数y=在第一象限的图象如图所示,则k的值可能是()A.1 B.2 C.3 D.42.如图,是某超市一楼与二楼之间的阶梯式电梯示意图,其中、分别表示一楼、二楼地面的水平线,,的长为,则乘电梯从点到点上升的高度是()A. B. C. D.3.矩形的对角线一定()A.互相垂直平分且相等 B.互相平分且相等C.互相垂直且相等 D.互相垂直平分4.下列根式中属最简二次根式的是()A. B. C. D.5.下列等式成立的是()A.•= B.=2 C.﹣= D.=﹣36.已知y=(k−3)x+2是一次函数,那么k的值为()A.±3 B.3 C.−3 D.±17.设0<k<2,关于x的一次函数y=kx+2(1-x),当1≤x≤2时的最大值是()A.2k-2B.k-1C.kD.k+18.测得某人一根头发的直径约为0.0000715米,该数用科学记数法可表示为()A.0.715×104 B.0.715×10﹣4 C.7.15×105 D.7.15×10﹣59.下面与是同类二次根式的是()A. B. C. D.10.直角坐标系中,点P(x,y)在第三象限,且P到x轴和y轴的距离分别为3、4,则点P的坐标为()A.(-3,-4) B.(3,4) C.(-4,-3) D.(4,3)11.下列各组数中不能作为直角三角形的三边长的是()A.7,24,25 B.,4,5 C.,1, D.40,50,6012.已知点M(1,a)和点N(2,b)是一次函数y=-2x+1图象上的两点,则a与b的大小关系是()A.a>b B.a=b C.a<b D.以上都不对二、填空题(每题4分,共24分)13.四边形ABCD为菱形,该菱形的周长为16,面积为8,则∠ABC为_____度.14.某种数据方差的计算公式是,则该组数据的总和为_________________.15.在正方形ABCD中,对角线AC、BD相交于点O.如果AC=,那么正方形ABCD的面积是__________.16.已知点,,,在平面内找一点,使得以、、、为顶点的四边形为平行四边形,则点的坐标为__________.17.直线y=3x+2沿y轴向下平移4个单位,则平移后直线与y轴的交点坐标为_______.18.如图,已知正五边形ABCDE,AF∥CD,交DB的延长线于点F,则∠DFA=____度.三、解答题(共78分)19.(8分)如图,在中,,点为边上的动点,点从点出发,沿边向点运动,当运动到点时停止,若设点运动的时间为秒,点运动的速度为每秒2个单位长度.(1)当时,=,=;(2)求当为何值时,是直角三角形,说明理由;(3)求当为何值时,,并说明理由.20.(8分)某研究性学习小组在探究矩形的折纸问题时,将一块直角三角板的直角顶点绕着矩形ABCD(AB<BC)的对角线交点O旋转(如图①→②→③),图中M、N分别为直角三角板的直角边与矩形ABCD的边CD、BC的交点.(1)该学习小组中一名成员意外地发现:在图①(三角板的一直角边与OD重合)中,BN1=CD1+CN1;在图③(三角板的一直角边与OC重合)中,CN1=BN1+CD1.请你对这名成员在图①和图③中发现的结论选择其一说明理由.(1)试探究图②中BN、CN、CM、DM这四条线段之间的关系,写出你的结论,并说明理由.21.(8分)如图1,在正方形ABCD中,对角线AC,BD交于点O,点E在AB上,点F在BC的延长线上,且AECF.连接EF交AC于点P,分别连接DE,DF.(1)求证:ADECDF;(2)求证:PEPF;(3)如图2,若PEBE,则的值是.(直接写出结果即可).22.(10分)已知:如图,在矩形ABCD中,∠ABD、∠CDB的平分线BE、DF分别交AD、BC于点E,F,求证:BE=DF.23.(10分)如图,直线的解析式为,与轴交于点,直线经过点(0,5),与直线交于点(﹣1,),且与轴交于点.(1)求点的坐标及直线的解析式;(2)求△的面积.24.(10分)如图,将一张矩形纸片沿直线折叠,使点落在点处,点落在点处,直线交于点,交于点.(1)求证:;(2)若的面积与的面积比为,.①求的长.②求的长.25.(12分)如图①,已知正方形ABCD的边长为1,点P是AD边上的一个动点,点A关于直线BP的对称点是点Q,连接PQ、DQ、CQ、BQ,设AP=x.(1)BQ+DQ的最小值是_______,此时x的值是_______;(2)如图②,若PQ的延长线交CD边于点E,并且∠CQD=90°.①求证:点E是CD的中点;②求x的值.(3)若点P是射线AD上的一个动点,请直接写出当△CDQ为等腰三角形时x的值.26.如图①,在平面直角坐标系中,直线y=−12x+2与交坐标轴于A,B两点.以AB为斜边在第一象限作等腰直角三角形ABC,C为直角顶点,连接OC.(1)求线段AB的长度(2)求直线BC的解析式;(3)如图②,将线段AB绕B点沿顺时针方向旋转至BD,且,直线DO交直线y=x+3于P点,求P点坐标.
参考答案一、选择题(每题4分,共48分)1、C【解析】如图,当x=2时,y=,∵1<y<2,∴1<<2,解得2<k<4,所以k=1.故选C.2、C【解析】
过C作CM⊥AB于M,求出∠CBM=30°,根据BC=10m,利用三角函数的知识解直角三角形即可.【详解】解:过C作CM⊥AB于M,
∵∠ABC=150°,
∴∠CBM=180°-150°=30°,
在Rt△CBM中,
∵BC=10m,∠CBM=30°,
∴=sin∠CBM=sin30°=,
∴CM=BC=5m,
即从点B到点C上升的高度h是5m.
故选C.【点睛】本题考查了解直角三角形的应用,解答本题的关键是根据坡角建立直角三角形,利用三角函数解直角三角形.3、B【解析】
根据矩形的性质对矩形的对角线进行判断即可.【详解】解:矩形的对角线一定互相平分且相等,故选:B.【点睛】此题考查矩形的性质,关键是根据矩形的对角线一定互相平分且相等解答.4、A【解析】试题分析:最简二次根式是指无法进行化简的二次根式.A、无法化简;B、原式=;C、原式=2;D、原式=.考点:最简二次根式5、B【解析】
利用二次根式的乘法法则对、进行判断;利用二次根式的加减法对进行判断;利用二次根式的性质对进行判断.【详解】解:、原式,所以选项错误;、原式,所以选项正确;、原式,所以选项错误;、原式,所以选项错误.故选:.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.6、C【解析】
根据题意直接利用一次函数的定义,进行分析得出k的值即可.【详解】解:∵y=(k−2)x+2是一次函数,∴|k|-2=2,k-2≠0,解得:k=-2.故选:C.【点睛】本题主要考查一次函数的定义,注意掌握一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为2.7、C【解析】试题解析:原式可以化为:y=(k−2)x+2,∵0<k<2,∴k−2<0,则函数值随x的增大而减小.∴当x=1时,函数值最大,最大值是:(k−2)+2=k.故选C.8、D【解析】0.0000715=,故选D.9、B【解析】
根据同类二次根式的定义,先将各选项化为最简二次根式,再看被开方数是否相同即可.【详解】解:A、与被开方数不同,不是同类二次根式;B、与被开方数相同,是同类二次根式;C、=3与被开方数不同,不是同类二次根式;D、与被开方数不同,不是同类二次根式.【点睛】此题主要考查了同类二次根式的定义即化成最简二次根式后,被开方数相同.这样的二次根式叫做同类二次根式.10、C【解析】
根据点P所在象限先确定P点横纵坐标都是负数,根据P到x轴和y轴的距离确定点的坐标.【详解】解:∵点P(x,y)在第三象限,
∴P点横纵坐标都是负数,
∵P到x轴和y轴的距离分别为3、4,
∴点P的坐标为(-4,-3).
故选:C.【点睛】此题主要考查了点的坐标,关键是掌握到x轴的距离=纵坐标的绝对值,到y轴的距离=横坐标的绝对值.11、D【解析】
根据勾股定理的逆定理依次计算各项后即可解答.【详解】选项A,∵72+242=252,∴7,24,25能构成直角三角形;选项B,∵42+52=()2,∴,4,5能构成直角三角形;选项C,∵12+()2=()2,∴,1,能构成直角三角形;选项D,∵402+502≠602,∴40,50,60不能构成直角三角形.故选D.【点睛】本题考查了勾股定理的逆定理,熟练运用勾股定理的逆定理是解决问题的关键.12、A【解析】
∵k=﹣2<0,∴y随x的增大而减小,∵1<2,∴a>b.故选A.二、填空题(每题4分,共24分)13、30或150【解析】如图1所示:当∠A为钝角,过A作AE⊥BC,∵菱形ABCD的周长为l6,∴AB=4,∵面积为8,∴AE=2,∴∠ABE=30°,∴∠ABC=60°,当∠A为锐角时,如图2,过D作DE⊥AB,∵菱形ABCD的周长为l6,∴AD=4,∵面积为8,∴DE=2,∴∠A=30°,∴∠ABC=150°,故答案为30或150.14、32【解析】
根据方差公式可知这组数据的样本容量和平均数,即可求出这组数据的总和.【详解】∵数据方差的计算公式是,∴样本容量为8,平均数为4,∴该组数据的总和为8×4=32,故答案为:32【点睛】本题考查方差及平均数的意义,一般地,设n个数据,x1、x2、…xn的平均数为x,则方差s2=[(x1-x)2+(x2-x)2+…+(xn-x)2],平均数是指在一组数据中所有数据之和再除以数据的个数.15、1【解析】
根据正方形的对角线将正方形分为两个全等的等腰直角三角形,AC是该三角形的斜边,由此根据三角形面积的计算公式得到正方形的面积.【详解】正方形ABCD的一条对角线将正方形分为两个全等的等腰直角三角形,即AC是等腰直角三角形的斜边,∵AC=∴正方形ABCD的面积两个直角三角形的面积和,∴正方形ABCD的面积=,故答案为:1.【点睛】此题考查正方形的性质,等腰直角三角形的性质,正确掌握正方形的性质是解题的关键.16、,,【解析】
根据题意画出图形,由平行四边形的性质两组对边分别平行且相等来确定点M的坐标.【详解】解:①当如图1时,
∵C(0,2),A(1,0),B(4,0),
∴AB=3,
∵四边形ABMC是平行四边形,
∴M(3,2);
②当如图2所示时,同①可知,M(-3,2);
③当如图3所示时,过点M作MD⊥x轴,
∵四边形ACBM是平行四边形,
∴BD=OA=1,MD=OC=2,
∴OD=4+1=5,
∴M(5,-2);
综上所述,点M坐标为(3,2)、(-3,2)、(5,-2).【点睛】本题考查了平行四边形的性质和判定,利用分类讨论思想是本题的关键.17、(0,-2)【解析】y=3x+2沿y轴向下平移4个单位y=3x+2-4=3x-2,令x=0,y=-2,所以(0,-2).故交点坐标(0,-2).18、1【解析】
首先求得正五边形内角∠C的度数,然后根据CD=CB求得∠CDB的度数,然后利用平行线的性质求得∠DFA的度数即可.【详解】解:∵正五边形的外角为10°÷5=72°,∴∠C=180°﹣72°=108°,∵CD=CB,∴∠CDB=1°,∵AF∥CD,∴∠DFA=∠CDB=1°,故答案为1.【点睛】本题考查了多边形的内角和外角及平行线的性质,解题的关键是求得正五边形的内角.三、解答题(共78分)19、(1)CD=4,AD=16;(2)当t=3.6或10秒时,是直角三角形,理由见解析;(3)当t=7.2秒时,,理由见解析【解析】
(1)根据CD=速度×时间列式计算即可得解,利用勾股定理列式求出AC,再根据AD=AC-CD代入数据进行计算即可得解;
(2)分①∠CDB=90°时,利用△ABC的面积列式计算即可求出BD,然后利用勾股定理列式求解得到CD,再根据时间=路程÷速度计算;②∠CBD=90°时,点D和点A重合,然后根据时间=路程÷速度计算即可得解;
(3)过点B作BF⊥AC于F,根据等腰三角形三线合一的性质可得CD=2CF,再由(2)的结论解答.【详解】解:(1)t=2时,CD=2×2=4,
∵∠ABC=90°,AB=16,BC=12,∴AD=AC-CD=20-4=16;(2)①∠CDB=90°时,∴解得BD=9.6,∴t=7.2÷2=3.6秒;
②∠CBD=90°时,点D和点A重合,
t=20÷2=10秒,
综上所述,当t=3.6或10秒时,是直角三角形;
(3)如图,过点B作BF⊥AC于F,
由(2)①得:CF=7.2,
∵BD=BC,∴CD=2CF=7.2×2=14.4,
∴t=14.4÷2=7.2,
∴当t=7.2秒时,,【点睛】本题考查了勾股定理,等腰三角形的判定与性质,三角形的面积,熟练掌握相关的知识是解题的关键20、(1)见解析;(1)见解析.【解析】
(1)连接DN,根据矩形得出OB=OD,根据线段垂直平分线得出BN=DN,根据勾股定理求出DN的平方,即可求出答案;(1)延长NO交AD于点P,连接PM,MN,证△BNO≌△DPO,推出OP=ON,DP=BN,根据线段垂直平分线求出PM=MN,根据勾股定理求出即可.【详解】(1)选①.证明如下:连接DN,∵四边形ABCD是矩形,∴OB=OD,∵∠DON=90°,∴BN=DN,∵∠BCD=90°,∴DN1=CD1+CN1,∴BN1=CD1+CN1;(1)延长NO交AD于点P,连接PM,MN,∵四边形ABCD是矩形,∴OD=OB,AD∥BC,∴∠DPO=∠BNO,∠PDO=∠NBO,在△BON和△DOP中,∵,∴△BON≌△DOP(AAS),∴ON=OP,BN=PD,∵∠MON=90°,∴PM=MN,∵∠ADC=∠BCD=90°,∴PM1=PD1+DM1,MN1=CM1+CN1,∴PD1+DM1=CM1+CN1,∴BN1+DM1=CM1+CN1.【点睛】本题考查了矩形的性质,线段垂直平分线,全等三角形的性质和判定,勾股定理等知识点的综合运用,主要考查学生的猜想能力和推理能力,题目比较好,但是有一定的难度.21、(1)证明见解析;(2)证明见解析;(3).【解析】
(1)根据证明即可;(2)作交的延长线于,根据四边形是正方形,即可得到,再根据得到,从而,则,根据可证,即可得证;(3)如图2中,作于,首先证明,设,则,,求出即可解决问题.【详解】(1)证明:四边形是正方形,,,,;(2)证明:作交的延长线于,四边形是正方形,,,,,,,,,;(3)如图2中,作于,由(2)可知:,,,,,,,,,,,设,则,,,.故答案为.【点睛】本题考查了正方形的性质,全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考压轴题.22、证明过程见解析【解析】
求证BE=DF,即求证△ABE≅△CDF.【详解】证明:∵∠ABD、∠CDB的平分线BE、DF分别交AD、BC于点E,F∴∠ABE=∠EBD,∠BDF=∠FDC又四边形ABCD为矩形∴∠ABD=∠CDB,AB=CD∴∠ABE=∠EBD=∠BDF=∠FDC在△ABE和△CDF中∠ABE=∠CDF∴△ABE≅△CDF∴BE=DF【点睛】本题主要考查了平行线以及全等三角形的性质,全等三角形的判定是解决本题的关键.23、(1);(2).【解析】
(1)首先利用待定系数法求出C点坐标,然后再根据D、C两点坐标求出直线l2的解析式;(2)首先根据两个函数解析式计算出A、B两点坐标,然后再利用三角形的面积公式计算出△ABC的面积即可.【详解】(1)∵直线:经过点(﹣1,),∴=1+2=3,∴C(﹣1,3),设直线的解析式为,∵经过点(0,5),(﹣1,3),∴,解得:∴直线的解析式为;(2)当=0时,2+5=0,解得,则(,0),当=0时,﹣+2=0解得=2,则(2,0),∴.【点睛】此题主要考查了待定系数法求一次函数解析式,关键是掌握凡是函数图象经过的点必能满足解析式.24、(1)见解析;(2)①,②【解析】
(1)由折叠的性质可得:∠ANM=∠CNM,由四边形ABCD是矩形,可得∠ANM=∠CMN,则可证得∠CMN=∠CNM,继而可得CM=CN;(2)①根据题意可知和是等高的两个三角形,根据的面积与的面积比为,,即可解答②根据题意可知,再利用勾股定理即可解答【详解】(1)折叠,,是矩形(2)①和是等高的两个三角形且②且根据勾股定理如图作,是矩形,在中,【点睛】此题考查翻折变换(折叠问题)和勾股定理,解题关键在于利用折叠的性质求解25、(1),;(3)①理由详见解析;②;(3)3﹣或或3+.【解析】试题分析:(1)根据两点之间,线段最短可知,点Q在线段BD上时BQ+DQ的值最小,是BD的长度,利用勾股定理即可求出;再根据△PDQ是等腰直角三角形求出x的值;(3)①由对称可知AB=BQ=BC,因此∠BCQ=∠BQC.根据∠BQE=∠BCE=90°,可知∠EQC=∠ECQ,从而EQ=EC.再根据∠CQD=90°可得∠DQE+∠CQE=90°,∠QCE+∠QDE=90°,而∠EQC=∠ECQ,所以∠QDE=∠DQE,从而EQ=ED.易得点E是CD的中点;②在Rt△PDE中,PE=PQ+QE=x+,PD=1﹣x,PQ=x,根据勾股定理即可求出x的值.(3)△CDQ为等腰三角形分两种情况:①CD为腰,以点C为圆心,以CD的长为半径画弧,两弧交点即为使得△CDQ为等腰三角形的Q点;②CD为底边时,作CD的垂直平分线,与的交点即为△CDQ为等腰三角形的Q点,则共有3个Q点,那么也共有3个P点,作辅助线,利用直角三角形的性质求之即得.试题解析:(1),.(3)①证明:在正方形ABCD中,AB=BC,∠A=∠BCD=90°.∵Q点为A点关于BP的对称点,∴AB=QB,∠A=∠PQB=90°,∴QB=BC,∠BQE=∠BCE,∴∠BQC=∠BCQ,∴∠EQC=∠EQB﹣∠CQB=∠ECB﹣∠QCB=∠ECQ,∴EQ=EC.在Rt△QDC中,∵∠QDE=90°﹣∠QCE,∠DQE=90°﹣∠EQC,∴∠QDE=∠DQE,∴EQ=ED,∴CE=EQ=ED,即E为CD的中点.②∵AP=x,AD=1,∴PD=1﹣x,PQ=x,CD=1.在Rt△DQC中,∵E为CD的中点,∴DE=QE=CE=,∴PE=PQ+QE=x+,∴,解得x=.(3)△CDQ为等腰三角形时x的值为3-,,3+.如图,以点B为圆心,以AB的长为半径画弧,以点C为圆心,以CD的长为半径画弧,两弧分别交于Q1,Q3.此时△CDQ1,△CDQ3都为以CD为腰的等腰三角形.作CD的垂直平分线交弧AC于点Q3,此时△CDQ3以CD为底的等腰三形.以下对此Q1,Q3,Q3.分别讨论各自的P点,并求AP的值.讨论Q₁:如图作辅助线,连接BQ1、CQ1,作PQ1⊥BQ1交AD于P,过点Q1,作EF⊥AD于E,交BC于F.∵△BCQ1为等边三角形,正方形ABCD边长为1,∴,.在四边形ABPQ1中,∵∠ABQ1=30°,∴∠APQ1=150°,∴△PEQ1为含30°的直角三角形,∴PE=.∵AE=,∴x=AP=AE-PE=3-.②讨论Q3,如图作辅助线,连接BQ3,AQ3,过点Q3作PG⊥BQ3,交AD于P,连接BP,过点Q3作EF⊥CD于E,交AB于F.∵EF垂直平分CD,∴EF垂直平分AB,∴AQ3=BQ3.∵AB=BQ3,∴△ABQ3为等边三角形.在四边形ABQP中,∵∠BAD=∠BQP=90°,∠ABQ₂=60°,∴∠APE=130°∴∠EQ3G=∠D
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小学生地质科普
- 2025辽宁能源控股集团所属抚矿集团招聘229人笔试参考题库附带答案详解(3卷)
- 2025福建福州市建筑设计院有限责任公司招聘127人笔试参考题库附带答案详解(3卷)
- 2025湖南中国电子星河电子招聘笔试参考题库附带答案详解(3卷)
- 2025浙江湖州市交通投资集团公务用车服务有限公司驾驶员招聘5人笔试参考题库附带答案详解(3卷)
- 2025江西南昌民航空管实业有限责任公司招聘1人笔试参考题库附带答案详解(3卷合一版)
- 2025年陕药集团招聘47人笔试参考题库附带答案详解(3卷)
- 2025年湖北攀枝花市渡口城市管理服务有限公司公开招聘8名社会化用工人员笔试参考题库附带答案详解(3卷)
- 2025安徽黄山市云海米业有限公司招聘1人笔试参考题库附带答案详解(3卷)
- 黑龙江省2024黑龙江省气象部门高校毕业生招聘(第二批气象类)笔试历年参考题库典型考点附带答案详解(3卷合一)
- 宾馆公司合同付款管理办法
- 寝室用电安全培训总结课件
- 市民热线培训课件下载
- 化工氢化考试题库及答案
- 冠心病的健康宣教及饮食指导
- 2025年全国矿山安全生产事故情况
- 船舶安全奖惩管理制度
- 印刷ctp制版管理制度
- 2024鄂尔多斯市东胜国有资产投资控股集团有限公司招聘26人笔试参考题库附带答案详解
- 外研版(三起)(2024)三年级下册英语Unit 5 单元测试卷(含答案)
- 幼儿园防食物中毒安全主题
评论
0/150
提交评论