版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省迪庆2024届八年级下册数学期末综合测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.一次函数的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.已知直线y=kx-4(k<0)与两坐标轴所围成的三角形面积等于4,则该直线的表达式为()A.y=-x-4 B.y=-2x-4 C.y=-3x+4 D.y=-3x-43.计算的结果为()A. B. C.3 D.54.下列图形中,既是轴对称图形又是中心对称图形的是A. B. C. D.5.用配方法解一元二次方程x2﹣4x+2=0,下列配方正确的是()A.(x+2)2=2 B.(x﹣2)2=﹣2 C.(x﹣2)2=2 D.(x﹣2)2=66.已知P1(﹣3,y1),P2(2,y2)是一次函数y=﹣x﹣1的图象上的两个点,则y1,y2的大小关系是()A.y1=y2 B.y1<y2 C.y1>y2 D.不能确定7.已知:如图,折叠矩形ABCD,使点B落在对角线AC上的点F处,若BC=8,AB=6,则线段CE的长度是()A.3 B.4 C.5 D.68.△ABC与△DEF的相似比为1:4,则△ABC与△DEF的面积比为()A.1:2 B.1:3 C.1:4 D.1:169.兴趣小组的同学要测量树的高度.在阳光下,一名同学测得一根长为1米的竹竿的影长为0.4米,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶水平面上,测得此影子长为0.2米,一级台阶高为0.3米,如图所示,若此时落在地面上的影长为4.4米,则树高为()A.11.8米 B.11.75米C.12.3米 D.12.25米10.使有意义的x的取值范围是()A.x≤3 B.x<3 C.x≥3 D.x>311.如图,△ABC是等边三角形,点P是三角形内的任意一点,PD∥AB,PE∥BC,PF∥AC,若△ABC的周长为12,则PD+PE+PF=()A.12 B.8 C.4 D.312.如图,菱形ABCD的周长为16,面积为12,P是对角线BD上一点,分别作P点到直线AB,AD的垂线段PE,PF,则PE+PF等于()A.6 B.3 C.1.5 D.0.75二、填空题(每题4分,共24分)13.如果将直线平移,使其经过点,那么平移后所得直线的表达式是__________.14.化简:__________.15.如图,□ABCD与□DCFE的周长相等,且∠BAD=60°,∠F=110°,则∠DAE的度数为_______°.16.古算题:“笨人执竿要进屋,无奈门框拦住竿,横多四尺竖多二,没法急得放声哭,有个邻居聪明者,教他斜竿对两角,笨伯依言试一试,不多不少刚抵足,借问竿长多少数,谁人算出我佩服,”若设竿长为x尺,则可列方程为_____(方程无需化简).17.满足a2+b2=c2的三个正整数,称为勾股数.写出你比较熟悉的两组勾股数:①_____;②_____.18.如图,一名滑雪运动员沿着倾斜角为34°的斜坡,从A滑行至B,已知AB=500米,则这名滑雪运动员的高度下降了_____米.(参考数据:sin34°≈0.56,cos34°≈0.83,tan34°≈0.67)三、解答题(共78分)19.(8分)甲、乙两台机床同时生产一种零件.在连续周中,两台机床每周出次品的数量如下表.甲乙(1)分别计算两组数据的平均数与方差;(2)两台机床出次品的平均数怎样?哪台机床出次品的波动性小?20.(8分)如图,△ABC中,AD是边BC上的中线,过点A作AE∥BC,过点D作DE∥AB,DE与AC、AE分别交于点O、点E,连接EC.(1)求证:AD=EC;(2)当∠BAC=Rt∠时,求证:四边形ADCE是菱形.21.(8分)为了解某校八年级学生每周平均课外阅读时间的情况,随机抽查了该校八年级部分学生,对其每周平均课外阅读时间进行统计,根据统计数据绘制成如图的两幅尚不完整的统计图:(1)本次共抽取了多少人?并请将图1的条形图补充完整;(2)这组数据的众数是________;求出这组数据的平均数;(3)若全校有1500人,请你估计每周平均课外阅读时间为3小时的学生多少人?22.(10分)在菱形ABCD中,∠ABC=60°,点P是射线BD上一动点,以AP为边向右侧作等边△APE,点E的位置随着点P的位置变化而变化.(1)探索发现如图1,当点E在菱形ABCD内部时,连接CE,BP与CE的数量关系是_______,CE与AD的位置关系是_______.(2)归纳证明证明2,当点E在菱形ABCD外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由.(3)拓展应用如图3,当点P在线段BD的延长线上时,连接BE,若AB=5,BE=13,请直接写出线段DP的长.23.(10分)如图,直线l1:y=2x+1与直线l2:y=mx+4相交于点P(1,b),与x轴交于A,B两点,(1)求b,m的值;(2)求△ABP的面积;(3)垂直于x轴的直线x=a与直线l1,l2分别相交于C,D,若线段CD长为2,求a的值.24.(10分)(1)解方程:﹣=1(2)先化简,再求值:÷(﹣x﹣2),其中x=﹣225.(12分)在一条笔直的公路上有A、B、C三地,C地位于A、B两地之间,甲车从A地沿这条公路匀速驶向C地,乙车从B地沿这条公路匀速驶向A地,在甲车出发至甲车到达C地的过程中,甲、乙两车各自与C地的距离y(公里)与甲车行驶时间(小时)之间的函数关系如图,请根据所给图象关系解答下列问题:(1)求甲、乙两车的行驶速度;(2)求乙车出发1.5小时后,两车距离多少公里?(3)求乙车出发多少小时后,两车相遇?26.已知:如图,四边形ABCD为矩形,AB=10,BC=3,点E是CD的中点,点P在AB上以每秒2个单位的速度由A向B运动,设运动时间为t秒.(1)当点P在线段AB上运动了t秒时,BP=__________________(用代数式表示);(2)t为何值时,四边形PDEB是平行四边形:(3)在直线AB上是否存在点Q,使以D、E、Q、P四点为顶点的四边形是菱形?若存在,求出t的值:若不存在,说明理由.
参考答案一、选择题(每题4分,共48分)1、B【解析】根据一次函数的性质即可得到结果.,图象经过一、三、四象限,不经过第二象限,故选B.2、B【解析】
先求出直线y=kx-1(k<0)与两坐标轴的交点坐标,然后根据三角形面积等于1,得到一个关于k的方程,求出此方程的解,即可得到直线的解析式.【详解】解:直线y=kx-1(k<0)与两坐标轴的交点坐标为(0,-1)(,0),
∵直线y=kx-1(k<0)与两坐标轴所围成的三角形面积等于1,
∴×(-)×1=1,解得k=-2,
则直线的解析式为y=-2x-1.
故选:B.【点睛】本题考查用待定系数法求一次函数的解析式.根据三角形面积公式及已知条件,列出方程,求出k的值,即得一次函数的解析式.3、C【解析】针对二次根式化简,零指数幂2个考点分别进行计算,然后根据实数的运算法则求得计算结果:.故选C.4、D【解析】
根据轴对称图形和中心对称图形的定义逐项识别即可,在平面内,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:A.是轴对称图形,但不是中心对称图形,故不符合题意;B.不是轴对称图形,是中心对称图形,故不符合题意;C.是轴对称图形,但不是中心对称图形,故不符合题意;D.既是轴对称图形又是中心对称图形,故符合题意.故选D.【点睛】本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键.5、C【解析】
按照配方法的步骤:移项,配方(方程两边都加上4),即可得出选项.【详解】解:x2﹣4x+2=0,x2﹣4x=﹣2,x2﹣4x+4=﹣2+4,(x﹣2)2=2,故选:C.【点睛】本题主要考查配方法,掌握完全平方公式是解题的关键.6、C【解析】
根据P1(-3,y1),P1(1,y1)是一次函数y=-x-1的图象上的两个点,由-3<1,结合一次函数y=-x-1在定义域内是单调递减函数,判断出y1,y1的大小关系即可.【详解】∵P1(-3,y1),P1(1,y1)是一次函数y=-x-1的图象上的两个点,且-3<1,∴y1>y1.故选C.【点睛】此题主要考查了一次函数图象上点的坐标特征,要熟练掌握.7、C【解析】
在Rt△ABC中利用勾股定理可求出AC=1,设BE=a,则CE=8﹣a,根据折叠的性质可得出BE=FE=a,AF=AB=6,∠AFE=∠B=90°,进而可得出FC=2,在Rt△CEF中,利用勾股定理可得出关于a的一元二次方程,解之即可得出a值,将其代入8﹣a中即可得出线段CE的长度.【详解】解:在Rt△ABC中,AB=6,BC=8,∴AC=1.设BE=a,则CE=8﹣a,根据翻折的性质可知,BE=FE=a,AF=AB=6,∠AFE=∠B=90°,∴FC=2.在Rt△CEF中,EF=a,CE=8﹣a,CF=2,∴CE2=EF2+CF2,即(8﹣a)2=a2+22,解得:a=3,∴8﹣a=3.故选:C.【点睛】本题考查了翻折变换、矩形的性质、勾股定理以及解一元二次方程,在Rt△CEF中,利用勾股定理找出关于a的一元二次方程是解题的关键.8、D【解析】
直接根据相似三角形的性质即可得出结论.【详解】解:∵△ABC∽△DEF,且△ABC与△DEF相似比为1:4,∴△ABC与△DEF的面积比=(14)2=1:16故答案为:D【点睛】本题考查的是相似三角形的性质,熟知相似三角形的面积的比等于相似比的平方是解答此题的关键.9、A【解析】
在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.据此可构造出相似三角形.【详解】根据题意可构造相似三角形模型如图,其中AB为树高,EF为树影在第一级台阶上的影长,BD为树影在地上部分的长,ED的长为台阶高,并且由光沿直线传播的性质可知BC即为树影在地上的全长;延长FE交AB于G,则Rt△ABC∽Rt△AGF,∴AG:GF=AB:BC=物高:影长=1:0.4∴GF=0.4AG又∵GF=GE+EF,BD=GE,GE=4.4m,EF=0.2m,∴GF=4.6∴AG=11.5∴AB=AG+GB=11.8,即树高为11.8米.【点睛】此题考查相似三角形的应用,解题关键在于画出图形.10、C【解析】分析:先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.详解:∵式子有意义,∴x-1≥0,解得x≥1.故选C.点睛:本题考查的是二次根式有意义的条件,熟知二次根式具有非负性是解答此题的关键.11、C【解析】
过点P作平行四边形PGBD,EPHC,进而利用平行四边形的性质及等边三角形的性质即可.【详解】延长EP、FP分别交AB、BC于G、H,则由PD∥AB,PE∥BC,PF∥AC,可得,四边形PGBD,EPHC是平行四边形,∴PG=BD,PE=HC,又△ABC是等边三角形,又有PF∥AC,PD∥AB可得△PFG,△PDH是等边三角形,∴PF=PG=BD,PD=DH,又△ABC的周长为12,∴PD+PE+PF=DH+HC+BD=BC=×12=4,故选C.【点睛】本题主要考查了平行四边形的判定及性质以及等边三角形的判定及性质,等边三角形的性质:等边三角形的三个内角都相等,且都等于60°.12、B【解析】∵菱形ABCD的周长为16,∴BC=4,菱形面积为12,BC边上的高为3,∵∠ABD=∠CBD,P到BC距离等于h=PE,∴PE+PF=h+PF=3.所以选B.点睛:菱形的面积公式有两个:(1)知道底和高,按照平行四边形的面积公式计算:S=ah.
(2)知道两条对角线的长a和b,面积S=ab2二、填空题(每题4分,共24分)13、【解析】
根据平移不改变k的值可设平移后直线的解析式为y=x+b,然后将点(0,2)代入即可得出直线的函数解析式.【详解】解:设平移后直线的解析式为y=x+b,把(0,2)代入直线解析式得解得
b=2,所以平移后直线的解析式为.【点睛】本题考查了一次函数图象与几何变换,待定系数法求一次函数的解析式,掌握直线y=kx+b(k≠0)平移时k的值不变是解题的关键.14、【解析】
利用向量加法法则进行运算即可.【详解】解:原式===,故答案是:.【点睛】本题考查了向量加法运算,熟练的掌握运算法则是解题的关键.15、25【解析】∵□ABCD与□DCFE的周长相等,且有公共边CD,∴AD=DE,∠ADE=∠BCF=60°+70°=130°.∴∠DAE=116、(x−1)1+(x−4)1=x1【解析】
设竿长为x尺,根据题意可得,屋门的宽为x−4,高为x−1,对角线长为x,然后根据勾股定理列出方程.【详解】解:设竿长为x尺,由题意得:(x−1)1+(x−4)1=x1.故答案为:(x−1)1+(x−4)1=x1.【点睛】本题考查了利用勾股定理解决实际问题,解答本题的关键是根据题意表示出屋门的宽,高.17、3,4,56,8,10【解析】
根据勾股数的定义即可得出答案.【详解】∵3、4、5是三个正整数,且满足,∴3、4、5是一组勾股数;同理,6、8、10也是一组勾股数.故答案为:①3,4,5;②6,8,10.【点睛】本题考查了勾股数.解题的关键在于要判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.18、1.【解析】试题解析:在RtΔABC中,sin34°=∴AC=AB×sin34°=500×0.56=1米.故答案为1.三、解答题(共78分)19、(1)甲的平均数为:;乙的平均数为:;甲的方差为:;乙的方差为:;(2)两台机床出次品的平均数相同;甲机床出次品的波动性小.【解析】
(1)先分别计算出两组数据的平均数,然后利用方差公式分别计算即可;(2)根据(1)的数据进行比较得出答案即可.【详解】(1)甲的平均数为:;乙的平均数为:;甲的方差为:S2甲==;乙的方差为:S2乙==;(2)由(1)可得两台机床出次品的平均数相同,∵S2甲<S2乙,∴甲机床出次品的波动性小.【点睛】本题主要考查了平均数与方差的运用,熟练掌握相关概念是解题关键.20、(1)见解析;(2)见解析.【解析】
(1)先证四边形ABDE是平行四边形,再证四边形ADCE是平行四边形即可;(2)由∠BAC=90°,AD是边BC上的中线,得AD=BD=CD,即可证明.【详解】(1)证明:∵AE∥BC,DE∥AB,∴四边形ABDE是平行四边形,∴AE=BD,∵AD是边BC上的中线,∴BD=DC,∴AE=DC,又∵AE∥BC,∴四边形ADCE是平行四边形.(2)证明:∵∠BAC=90°,AD是边BC上的中线.∴AD=CD∵四边形ADCE是平行四边形,∴四边形ADCE是菱形.【点睛】本题考查了平行四边形的判定、菱形的判定、直角三角形斜边中线定理.根据图形与已知条件灵活应用平行四边形的判定方法是证明的关键.21、(1)60人,图见解析;(2)众数是3,平均数是2.75;(3)500人.【解析】
(1)根据统计图中的数据可以求得本次共抽取了学生多少人,阅读3小时的学生有多少人,从而可以将条形统计图补充完整;(2)根据统计图中的数据可以求得众数和平均数;(3)根据统计图中的数据可以求得课外阅读时间为3小时的学生有多少人.【详解】解:(1)由图2知阅读时间为2小时的扇形图圆形角为90°,即阅读时间为2小时的概率为,再根据图1可知阅读2小时的人数为15人,所以本次共抽取了15÷=60名学生,阅读3小时的学生有:60-10-15-10-5=20(名),补充完整的条形统计图如下图所示;(2)由条形统计图可得,这组数据的众数是3,这组数据的平均数是:;(3)1500×=500(人),答:课外阅读时间为3小时的学生有500人.【点睛】本题考查条形统计图、扇形统计图、用样本估计总体、加权平均数、众数,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.22、(1)BP=CE,CE⊥AD;(2)(1)中的结论仍成立.理由见解析;(3)PD=.【解析】
(1)由菱形ABCD和∠ABC=60°可证△ABC与△ACD是等边三角形,由等边△APE可得AP=AE,∠PAE=∠BAC=60°,减去公共角∠PAC得∠BAP=∠CAE,根据SAS可证得△BAP≌△CAE,故有BP=CE,∠ABP=∠ACE.由菱形对角线平分一组对角可证∠ABP=30°,故∠ACE=30°即CE平分∠ACD,由AC=CD等腰三角形三线合一可得CE⊥AD.
(2)证明过程同(1).
(3)由AB=5即△ABC为等边三角形可求得BD的长.连接CE,由(2)可求∠BCE=90°,故在Rt△BCE中,由勾股定理可求CE的长.又由(2)可得BP=CE,由DP=BP-BD即求得DP的长.【详解】解:(1)∵菱形ABCD中,∠ABC=60°
∴AB=BC=CD=AD,∠ADC=∠ABC=60°
∴△ABC、△ACD是等边三角形
∴AB=AC,AC=CD,∠BAC=∠ACD=60°
∵△APE是等边三角形
∴AP=AE,∠PAE=60°
∴∠BAC-∠PAC=∠PAE-∠PAC
即∠BAP=∠CAE
在△BAP与△CAE中
∴△BAP≌△CAE(SAS)
∴BP=CE,∠ABP=∠ACE
∵BD平分∠ABC
∴∠ACE=∠ABP=∠ABC=30°
∴CE平分∠ACD
∴CE⊥AD
故答案为:BP=CE,CE⊥AD;(2)(1)中的结论仍成立,证明如下:设AD与CE交于点O∵四边形ABCD为菱形,且∠ABC=60°∴△ABC为等边三角形.∴AB=AC,∠BAC=60°∴∠BAP=∠CAE又∵ΔAPE为等边三角形∴AP=AE在△BAP与△CAE中∴△BAP≌ΔCAE(SAS)∴BP=CE∴∠ACE=∠ABP=30°又∵∠CAD=60°∠A0C=90°∴AD⊥CE;(3)连接CE,设AC与BD相交于点O
∵AB=5
∴BC=AC=AB=5
∴AO=AC=∴BO===
∴BD=2BO=5
∵∠BCE=∠BCA+∠ACE=90°,BE=13
∴CE===12
由(2)可知,BP=CE=12
∴DP=BP-BD=12-5故答案为:(1)BP=CE,CE⊥AD;(2)(1)中的结论仍成立.理由见解析;(3)PD=.【点睛】本题考查菱形的性质,等边三角形的判定和性质,全等三角形的判定和性质,勾股定理.第(2)题的证明过程可由(1)适当转化而得,第(3)题则可直接运用(2)的结论解决问题.23、(1)m=-1;(2);(3)a=或a=.【解析】
(1)由点P(1,b)在直线l1上,利用一次函数图象上点的坐标特征,即可求出b值,再将点P的坐标代入直线l2中,即可求出m值;(2)根据解析式求得A、B的坐标,然后根据三角形面积公式即可求得;(3)由点C、D的横坐标,即可得出点C、D的纵坐标,结合CD=2即可得出关于a的含绝对值符号的一元一次方程,解之即可得出结论.【详解】(1)把点P(1,b)代入y=2x+1,得b=2+1=3,把点P(1,3)代入y=mx+4,得m+4=3,∴m=-1;(2)∵L1:y=2x+1
L2:y=-x+4,∴A(-,0)B(4,0)∴;(3)解:直线x=a与直线l1的交点C为(a,2a+1)与直线l2的交点D为(a,-a+4).∵CD=2,∴|2a+1-(-a+4)|=2,即|3
a-3|=2,∴3
a-3=2或3
a-3=-2,∴a=或a=.【点睛】本题考查两条直线相交或平行问题、一次函数图象上点的坐标特征以及三角形的面积,解题的关键是:(1)利用一次函数图象上点的坐标特征求出b、m的值;(2)根据解析式求得与坐标轴的交点;(3)根据CD=2,找出关于a的含绝对值符号的一元一次方程.24、(1)x=2;(2);-2.【解析】
(1)根据分式方程的解法即可求出答案.(2)根据分式的运算法则即可求出答案.【详解】(1)x(x+1)﹣3(x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年职场沟通技巧提升有效沟通与团队协作模拟题库
- 2026年景德镇陶瓷职业技术学院单招职测备考题库及答案1套
- 2026年成都纺织高等专科学校单招职业倾向性测试题库附答案
- 2026年广东岭南职业技术学院单招综合素质考试模拟测试卷及答案1套
- 2026年营销团队管理笔试模拟题
- 2026年河北政法职业学院单招职业技能考试模拟测试卷附答案
- 2026年山西经贸职业学院单招职业适应性测试模拟测试卷附答案
- 2026年汽车维修与保养技术标准操作题库
- 2026年一级律师考试案例分析题库与标准答案详解
- 2026年汽车维修技师高级技能考核试题
- GB/T 27728.1-2024湿巾及类似用途产品第1部分:通用要求
- 中建三局工程标准化施工手册(安装工程部分)
- FZ∕T 54007-2019 锦纶6弹力丝行业标准
- DZ∕T 0148-2014 水文水井地质钻探规程(正式版)
- 中国矿业权评估准则(2011年)
- 空调水系统设备的安装
- 基于流行音乐元素的动画电影娱乐性研究
- 读书分享读书交流会 《乡村教师》刘慈欣科幻小说读书分享
- iso9001质量管理体系-要求培训教材修订
- 法人变更转让协议书范本
- ISTA-3A(中文版)运输-试验标准
评论
0/150
提交评论