2024年山东省临沂市临沂经济开发区九级数学八年级下册期末复习检测模拟试题含解析_第1页
2024年山东省临沂市临沂经济开发区九级数学八年级下册期末复习检测模拟试题含解析_第2页
2024年山东省临沂市临沂经济开发区九级数学八年级下册期末复习检测模拟试题含解析_第3页
2024年山东省临沂市临沂经济开发区九级数学八年级下册期末复习检测模拟试题含解析_第4页
2024年山东省临沂市临沂经济开发区九级数学八年级下册期末复习检测模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年山东省临沂市临沂经济开发区九级数学八年级下册期末复习检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.下列二次根式中,属于最简二次根式的是A. B. C. D.2.的取值范围如数轴所示,化简的结果是()A. B. C. D.3.直线y=﹣kx+k﹣3与直线y=kx在同一坐标系中的大致图象可能是()A. B. C. D.4.生物刘老师对本班50名学生的血型进行了统计,列出如下统计表.则本班O型血的有()血型A型B型AB型O型频率0.340.30.260.1A.17人 B.15人 C.13人 D.5人5.直角三角形中,斜边,,则的长度为()A. B. C. D.6.已知关于x的一元二次方程x2-x+k=0的一个根是2,则k的值是()A.-2 B.2 C.1 D.17.如图,四边形ABCD是边长为5cm的菱形,其中对角线BD与AC交于点O,BD=6cm,则对角线AC的长度是()A.8cm B.4cm C.3cm D.6cm8.下列二次根式中,最简二次根式是()A. B. C. D.9.在平面直角坐标系中,点的位置所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.如图,已知函数y=ax+b和y=kx的图像交于点P,则根据图像可得关于x,y的二元一次方程组的解是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,圆柱体的高为8cm,底面周长为4cm,小蚂蚁在圆柱表面爬行,从A点到B点,路线如图所示,则最短路程为_____.12.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,则△AEF的周长=cm.13.如图,已知AB∥CD∥EF,FC平分∠AFE,∠C=25°,则∠A的度数是_____.14.如图,正方形ABCD的顶点C,A分别在x轴,y轴上,BC是菱形BDCE的对角线.若BC6,BD5,则点D的坐标是_____.15.函数中,自变量x的取值范围是___________.16.已知一组数据:10,8,6,10,8,13,11,10,12,7,10,11,10,9,12,10,9,12,9,8,把这组数据按照6~7,8~9,10~11,12~13分组,那么频率为0.4的一组是_________.17.如图,矩形的对角线相交于点,过点作交于点,若,的面积为6,则___.18.如图,将一宽为1dm的矩形纸条沿BC折叠,若,则折叠后重叠部分的面积为________dm2.三、解答题(共66分)19.(10分)如图,P为正方形ABCD的边BC上一动点(P与B、C不重合),连接AP,过点B作BQ⊥AP交CD于点Q,将△BQC沿BQ所在的直线对折得到△BQC′,延长QC′交BA的延长线于点M.(1)试探究AP与BQ的数量关系,并证明你的结论;(2)当AB=3,BP=2PC,求QM的长;(3)当BP=m,PC=n时,求AM的长.20.(6分)问题背景:对于形如这样的二次三项式,可以直接用完全平方公式将它分解成,对于二次三项式,就不能直接用完全平方公式分解因式了.此时常采用将加上一项,使它与的和成为一个完全平方式,再减去,整个式子的值不变,于是有:=====问题解决:(1)请你按照上面的方法分解因式:;(2)已知一个长方形的面积为,长为,求这个长方形的宽.21.(6分)如图,直线与直线相交于点A(3,1),与x轴交于点B.(1)求k的值;(2)不等式的解集是________________.22.(8分)如图,正方形ABCD中,P为AB边上任意一点,AE⊥DP于E,点F在DP的延长线上,且EF=DE,连接AF、BF,∠BAF的平分线交DF于G,连接GC.(1)求证:△AEG是等腰直角三角形;(2)求证:AG+CG=DG.23.(8分)阅读材料:在实数范围内,当且时,我们由非负数的性质知道,所以,即:,当且仅当=时,等号成立,这就是数学上有名的“均值不等式”,若与的积为定值.则有最小值:请问:若,则当取何值时,代数式取最小值?最小值是多少?24.(8分)某中学由6名师生组成一个排球队.他们的年龄(单位:岁)如下:151617171740(1)这组数据的平均数为,中位数为,众数为.(2)用哪个值作为他们年龄的代表值较好?25.(10分)如图,菱形的对角线相交于点,,,相交于点.求证:四边形是矩形.26.(10分)A、B两种机器人都被用来搬运化工原料,A型机器人比B型机器人每小时多搬运20千克,A型机器人搬运1000千克所用时间与B型机器人搬运800千克所用时间相等,两种机器人每小时分别搬运多少化工原料?

参考答案一、选择题(每小题3分,共30分)1、A【解析】

最简二次根式满足的条件是:被开方数不含能开方的因数或因式;被开方数不能是小数或分数;分母中不能出现二次根式.【详解】根据最简二次根式满足的条件可得:是最简二次根式,故选A.【点睛】本题主要考查最简二次根式的定义,解决本题的关键是要熟练掌握满足最简二次根式的条件.2、D【解析】

先由数轴判断出,再根据绝对值的性质、二次根式的性质化简即可.【详解】解:由数轴可知,,,原式,故选:.【点睛】本题考查的是二次根式的化简,掌握二次根式的性质、数轴的概念是解题的关键.3、B【解析】

若y=kx过第一、三象限,则k>0,所以y=-kx+k-3过第二、四象限,可对A、D进行判断;若y=kx过第二、四象限,则k<0,-k>0,k-3<0,所以y=-kx+k-3过第一、三象限,与y轴的交点在x轴下方,则可对B、C进行判断.【详解】A、y=kx过第一、三象限,则k>0,所以y=-kx+k-3过第二、四象限,所以A选项错误;B、y=kx过第二、四象限,则k<0,-k>0,k-3<0,所以y=-kx+k-3过第一、三象限,与y轴的交点在x轴下方,所以B选项正确;C、y=kx过第二、四象限,则k<0,-k>0,k-3<0,所以y=-kx+k-3过第一、三象限,与y轴的交点在x轴下方,所以C选项错误;D、y=kx过第一、三象限,则k>0,所以y=-kx+k-3过第二、四象限,所以D选项错误.故选B.【点睛】本题考查了一次函数的图象:一次函数y=kx+b(k≠0)的图象为一条直线,当k>0,图象过第一、三象限;当k<0,图象过第二、四象限;直线与y轴的交点坐标为(0,b).4、D【解析】

频率是指每个对象出现的次数与总次数的比值(或者百分比).即频率=频数÷总数一般称落在不同小组中的数据个数为该组的频数,频数与数据总数的比值为频率.频率反映了各组频数的大小在总数中所占的分量.【详解】解:本班O型血的有50×0.1=5(人),

故选:D.【点睛】本题考查了频率与频数,正确理解频率频数的意义是解题的关键.5、A【解析】

根据题意,是直角三角形,利用勾股定理解答即可.【详解】解:根据勾股定理,在中,故选A【点睛】本题考查勾股定理的运用,属于基础题型,熟练掌握勾股定理是解答本题的关键.6、A【解析】

知道方程的一根,把x=2代入方程中,即可求出未知量k.【详解】解:将x=2代入一元二次方程x2-x+k=0,

可得:4-2+k=0,

解得k=-2,

故选:A.【点睛】本题主要考查了一元二次方程的根的定义,把求未知系数的问题转化为解方程的问题,是待定系数法的应用.7、A【解析】

首先根据菱形的性质可得BO=DO,AC⊥DB,AO=CO,然后再根据勾股定理计算出AO长,进而得到答案.【详解】解:∵四边形ABCD是菱形,∴BO=DO,AC⊥DB,AO=CO,∵BD=6cm,∴BO=3cm,∵AB=5cm,∴AO==4(cm),∴AC=2AO=8cm.故选:A.【点睛】本题考查菱形的性质,要注意菱形的对角线互相垂直,有直角即可用勾股定理求某些边的长.8、B【解析】

化简得到结果,即可做出判断.【详解】解:A、=,不是最简二次根式;

B、是最简二次根式;

C、=7,不是最简二次根式;

D、=,不是最简二次根式;

故选:B.【点睛】此题考查了最简二次根式,熟练掌握二次根式的化简公式是解本题的关键.9、B【解析】

观察题目,根据象限的特点,判断出所求的点的横纵坐标的符号;接下来,根据题目的点的坐标,判断点所在的象限.【详解】∵点的横坐标是负数,纵坐标是正数,

∴在平面直角坐标系的第二象限,

故选:B.【点睛】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).10、B【解析】函数y=ax+b和y=kx的图象交于点P(−4,−2),即x=−4,y=−2同时满足两个一次函数的解析式。所以关于x,y的方程组的解是:x=-4,y=-2.故选B.点睛:由图可知:两个一次函数的交点坐标为(-4,-2);那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.二、填空题(每小题3分,共24分)11、10cm【解析】

将圆柱沿过点A和点B的母线剪开,展开成平面,由圆柱路线可知小蚂蚁在水平方向爬行的路程等于个底面周长,从而求出解题中的AC,连接AB,根据两点之间线段最短可得小蚂蚁爬行的最短路程为此时AB的长,然后根据勾股定理即可求出结论.【详解】解:将圆柱沿过点A和点B的母线剪开,展开成平面,由圆柱路线可知小蚂蚁在水平方向爬行的路程等于个底面周长,如下图所示:AC=1.5×4=6cm,连接AB,根据两点之间线段最短,∴小蚂蚁爬行的最短路程为此时AB的长∵圆柱体的高为8cm,∴BC=8cm在Rt△ABC中,AB=cm故答案为:10cm.【点睛】此题考查的是利用勾股定理求最短路径问题,将圆柱的侧面展开,根据两点之间线段最短即可找出最短路径,然后利用勾股定理求值是解决此题的关键.12、9【解析】∵四边形ABCD是矩形,∴∠ABC=90°,BD=AC,BO=OD,∵AB=6cm,BC=8cm,∴由勾股定理得:(cm),∴DO=5cm,∵点E.

F分别是AO、AD的中点,(cm),故答案为2.5.13、50°【解析】

先根据平行线的性质以及角平分线的定义,得到∠AFE的度数,再根据平行线的性质,即可得到∠A的度数.【详解】∵CD∥EF,∠C=∠CFE=25°.∵FC平分∠AFE,∴∠AFE=2∠CFE=50°.又∵AB∥EF,∴∠A=∠AFE=50°.故答案为50°.【点睛】本题考查了平行线的性质,解题时注意:两直线平行,内错角相等.14、10,3.【解析】

过点D作DG⊥BC于点G,根据四边形BDCE是菱形可知BD=CD,可得出△BCD是等腰三角形,即可得到CG=12BC,再根据勾股定理求出【详解】过点D作DG⊥BC于点G,∵四边形BDCE是菱形,∴BD=CD,∴△BCD是等腰三角形,∴点G是BC的中点,∴CG=1∴GD=C∵四边形ABCD是正方形,∴AB=BC=6,6+4=10,∴D10,3故答案为:10,3.【点睛】本题考查的是正方形的性质,根据题意作出辅助线,利用菱形的性质判断出△BCD是等腰三角形是解题的关键.15、且.【解析】

根据二次根式的性质以及分式的意义,分别得出关于的关系式,然后进一步加以计算求解即可.【详解】根据二次根式的性质以及分式的意义可得:,且,∴且,故答案为:且.【点睛】本题主要考查了二次根式的性质与分式的性质,熟练掌握相关概念是解题关键.16、【解析】

首先数出数据的总数,然后数出各个小组内的数据个数,根据频率的计算公式,求出各段的频率,即可作出判断.【详解】解:共有10个数据,其中6~7的频率是1÷10=0.1;

8~9的频率是6÷10=0.3;

10~11的频率是8÷10=0.4;

11~13的频率是4÷10=0.1.

故答案为.【点睛】本题考查频数与频率,掌握频率的计算方法:频率=频数÷总数.17、【解析】

首先连接EC,由题意可得OE为对角线AC的垂直平分线,可得CE=AE,S△AOE=S△COE=2,继而可得AE•BC=1,则可求得AE的长,即EC的长,然后由勾股定理求得答案.【详解】解:连接EC.∵四边形ABCD是矩形∴AO=CO,且OE⊥AC,∴OE垂直平分AC∴CE=AE,S△AOE=S△COE=2,∴S△AEC=2S△AOE=1.∴AE•BC=1,又∵BC=4,∴AE=2,∴EC=2.∴BE=故答案为:【点睛】本题考查了矩形的性质、勾股定理以及三角形的面积问题.此题难度适中,正确做出图形的辅助线是解题的关键.18、1【解析】

作出AB边上的高,求出AC的长;根据翻折不变性及平行线的性质,求出AC=AB,再利用三角形的面积公式解答即可【详解】作CD⊥AB,∵CG∥AB,∴∠1=∠2,根据翻折不变性,∠1=∠BCA,故∠2=∠BCA.∴AB=AC.又∵∠CAB=30∘,∴在Rt△ADC中,AC=2CD=2dm,∴AB=2dm,S△ABC=AB×CD=1dm2.故答案为:1.【点睛】本题考查翻折变换,熟练掌握翻折不变性及平行线的性质是解题关键.三、解答题(共66分)19、(1)AP=BQ;(1)QM的长为;(2)AM的长为.【解析】

(1)要证AP=BQ,只需证△PBA≌△QCB即可;(1)过点Q作QH⊥AB于H,如图.易得QH=BC=AB=2,BP=1,PC=1,然后运用勾股定理可求得AP(即BQ)=,BH=1.易得DC∥AB,从而有∠CQB=∠QBA.由折叠可得∠C′QB=∠CQB,即可得到∠QBA=∠C′QB,即可得到MQ=MB.设QM=x,则有MB=x,MH=x-1.在Rt△MHQ中运用勾股定理就可解决问题;(2)过点Q作QH⊥AB于H,如图,同(1)的方法求出QM的长,就可得到AM的长.【详解】解:(1)AP=BQ.理由:∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠C=90°,∴∠ABQ+∠CBQ=90°.∵BQ⊥AP,∴∠PAB+∠QBA=90°,∴∠PAB=∠CBQ.在△PBA和△QCB中,,∴△PBA≌△QCB,∴AP=BQ;(1)过点Q作QH⊥AB于H,如图.∵四边形ABCD是正方形,∴QH=BC=AB=2.∵BP=1PC,∴BP=1,PC=1,∴BQ=AP===,∴BH===1.∵四边形ABCD是正方形,∴DC∥AB,∴∠CQB=∠QBA.由折叠可得∠C′QB=∠CQB,∴∠QBA=∠C′QB,∴MQ=MB.设QM=x,则有MB=x,MH=x-1.在Rt△MHQ中,根据勾股定理可得x1=(x-1)1+21,解得x=.∴QM的长为;(2)过点Q作QH⊥AB于H,如图.∵四边形ABCD是正方形,BP=m,PC=n,∴QH=BC=AB=m+n.∴BQ1=AP1=AB1+PB1,∴BH1=BQ1-QH1=AB1+PB1-AB1=PB1,∴BH=PB=m.设QM=x,则有MB=QM=x,MH=x-m.在Rt△MHQ中,根据勾股定理可得x1=(x-m)1+(m+n)1,解得x=m+n+,∴AM=MB-AB=m+n+-m-n=.∴AM的长为.【点睛】本题主要考查了正方形的性质、全等三角形的判定与性质、勾股定理、轴对称的性质等知识,设未知数,然后运用勾股定理建立方程,是求线段长度常用的方法,应熟练掌握.20、(1);(2)长为时这个长方形的宽为【解析】

按照原题解题方法,进而借助完全平方公式以及平方差公式分解因式得出即可.【详解】(1)=====(2)∵==∴长为时这个长方形的宽为.21、(1);(2)x>3.【解析】

(1)根据直线y=kx+2与直线相交于点A(3,1),与x轴交于点B可以求得k的值和点B的坐标;

(2)根据函数图象可以直接写出不等式kx+2<的解集.【详解】(1),解得:(2),解得:x>3【点睛】本题考查一次函数与一元一次不等式,解题的关键是明确题意,利用数形结合的思想解答问题.22、证明见解析【解析】试题分析:(1)根据线段垂直平分线的定义得到AF=AD,根据等腰三角形的性质、角平分线的定义证明即可;

(2)作CH⊥DP,交DP于H点,证明△ADE≌△DCH(AAS),得到CH=DE,DH=AE=EG,证明CG=GH,AG=DH,计算即可.试题解析:(1)证明:∵DE=EF,AE⊥DP,∴AF=AD,∴∠AFD=∠ADF,∵∠ADF+∠DAE=∠PAE+∠DAE=90°,∴∠AFD=∠PAE,∵AG平分∠BAF,∴∠FAG=∠GAP.∵∠AFD+∠FAE=90°,∴∠AFD+∠PAE+∠FAP=90°∴2∠GAP+2∠PAE=90°,即∠GAE=45°,∴△AGE为等腰直角三角形;(2)证明:作CH⊥DP,交DP于H点,∴∠DHC=90°.∵AE⊥DP,∴∠AED=90°,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论