2024中考数学几何模型12讲第11讲阿氏圆最值模型含解析_第1页
2024中考数学几何模型12讲第11讲阿氏圆最值模型含解析_第2页
2024中考数学几何模型12讲第11讲阿氏圆最值模型含解析_第3页
2024中考数学几何模型12讲第11讲阿氏圆最值模型含解析_第4页
2024中考数学几何模型12讲第11讲阿氏圆最值模型含解析_第5页
已阅读5页,还剩54页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024中考数学几何模型12讲第11讲阿氏圆最值模型含解析中考数学几何模型11:阿氏圆最值模型名师点睛拨开云雾开门见山在前面的“胡不归”问题中,我们见识了“kPA+PB”最值问题,其中P点轨迹是直线,而当P点轨迹变为圆时,即通常我们所说的“阿氏圆”问题.【模型来源】“阿氏圆”又称为“阿波罗尼斯圆”,如下图,已知A、B两点,点P满足PA:PB=k(k≠1),则满足条件的所有的点P的轨迹构成的图形为圆.这个轨迹最早由古希腊数学家阿波罗尼斯发现,故称“阿氏圆”.【模型建立】如图1所示,⊙O的半径为R,点A、B都在⊙O外,P为⊙O上一动点,已知R=OB,连接PA、PB,则当“PA+PB”的值最小时,P点的位置如何确定?解决办法:如图2,在线段OB上截取OC使OC=R,则可说明△BPO与△PCO相似,则有PB=PC。故本题求“PA+PB”的最小值可以转化为“PA+PC”的最小值,其中与A与C为定点,P为动点,故当A、P、C三点共线时,“PA+PC”值最小。【技巧总结】计算的最小值时,利用两边成比例且夹角相等构造母子型相似三角形问题:在圆上找一点P使得的值最小,解决步骤具体如下:如图,将系数不为1的线段两端点与圆心相连即OP,OB计算出这两条线段的长度比在OB上取一点C,使得,即构造△POM∽△BOP,则,则,当A、P、C三点共线时可得最小值典题探究启迪思维探究重点例题1.如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,以点C为圆心,2为半径作圆C,分别交AC、BC于D、E两点,点P是圆C上一个动点,则的最小值为__________.变式练习>>>1.如图1,在RT△ABC中,∠ACB=90°,CB=4,CA=6,圆C的半径为2,点P为圆上一动点,连接AP,BP,求①,②,③,④的最小值.例题2.如图,点C坐标为(2,5),点A的坐标为(7,0),⊙C的半径为,点B在⊙C上一动点,的最小值为________.变式练习>>>2.如图,在平面直角坐标系xoy中,A(6,-1),M(4,4),以M为圆心,为半径画圆,O为原点,P是⊙M上一动点,则PO+2PA的最小值为________.例题3.如图,半圆的半径为1,AB为直径,AC、BD为切线,AC=1,BD=2,P为上一动点,求PC+PD的最小值.变式练习>>>3.如图,四边形ABCD为边长为4的正方形,⊙B的半径为2,P是⊙B上一动点,则PD+PC的最小值为;PD+4PC的最小值为.例题4.如图,已知正方ABCD的边长为6,圆B的半径为3,点P是圆B上的一个动点,则的最大值为_______.变式练习>>>4.(1)如图1,已知正方形ABCD的边长为9,圆B的半径为6,点P是圆B上的一个动点,那么PD+的最小值为,PD﹣的最大值为.(2)如图2,已知菱形ABCD的边长为4,∠B=60°,圆B的半径为2,点P是圆B上的一个动点,那么PD+的最小值为,PD﹣的最大值为.图1图2例题5.如图,抛物线y=﹣x2+bx+c与直线AB交于A(﹣4,﹣4),B(0,4)两点,直线AC:y=﹣x﹣6交y轴于点C.点E是直线AB上的动点,过点E作EF⊥x轴交AC于点F,交抛物线于点G.(1)求抛物线y=﹣x2+bx+c的表达式;(2)连接GB,EO,当四边形GEOB是平行四边形时,求点G的坐标;(3)①在y轴上存在一点H,连接EH,HF,当点E运动到什么位置时,以A,E,F,H为顶点的四边形是矩形?求出此时点E,H的坐标;②在①的前提下,以点E为圆心,EH长为半径作圆,点M为⊙E上一动点,求AM+CM它的最小值.变式练习>>>5.如图1,抛物线y=ax2+(a+3)x+3(a≠0)与x轴交于点A(4,0),与y轴交于点B,在x轴上有一动点E(m,0)(0<m<4),过点E作x轴的垂线交直线AB于点N,交抛物线于点P,过点P作PM⊥AB于点M.(1)求a的值和直线AB的函数表达式;(2)设△PMN的周长为C1,△AEN的周长为C2,若=,求m的值;(3)如图2,在(2)条件下,将线段OE绕点O逆时针旋转得到OE′,旋转角为α(0°<α<90°),连接E′A、E′B,求E′A+E′B的最小值.达标检测领悟提升强化落实1.如图,在RT△ABC中,∠B=90°,AB=CB=2,以点B为圆心作圆与AC相切,圆C的半径为,点P为圆B上的一动点,则的最小值________.2.如图,边长为4的正方形,内切圆记为⊙O,P是⊙O上一动点,则PA+PB的最小值为________.3.如图,等边△ABC的边长为6,内切圆记为⊙O,P是⊙O上一动点,则2PB+PC的最小值为________.4.如图,在Rt△ABC中,∠C=90°,CA=3,CB=4,的半径为2,点P是上的一动点,则的最小值为?5.如图,在平面直角坐标系中,,,,,P是△AOB外部第一象限内的一动点,且∠BPA=135°,则的最小值是多少?6.如图,Rt△ABC,∠ACB=90°,AC=BC=2,以C为顶点的正方形CDEF(C、D、E、F四个顶点按逆时针方向排列)可以绕点C自由转动,且CD=,连接AF,BD(1)求证:△BDC≌△AFC;(2)当正方形CDEF有顶点在线段AB上时,直接写出BD+AD的值;(3)直接写出正方形CDEF旋转过程中,BD+AD的最小值.7.(1)如图1,在△ABC中,AB=AC,BD是AC边上的中线,请用尺规作图做出AB边上的中线CE,并证明BD=CE:(2)如图2,已知点P是边长为6的正方形ABCD内部一动点,PA=3,求PC+PD的最小值;(3)如图3,在矩形ABCD中,AB=18,BC=25,点M是矩形内部一动点,MA=15,当MC+MD最小时,画出点M的位置,并求出MC+MD的最小值.中考数学几何模型11:阿氏圆最值模型名师点睛拨开云雾开门见山在前面的“胡不归”问题中,我们见识了“kPA+PB”最值问题,其中P点轨迹是直线,而当P点轨迹变为圆时,即通常我们所说的“阿氏圆”问题.【模型来源】“阿氏圆”又称为“阿波罗尼斯圆”,如下图,已知A、B两点,点P满足PA:PB=k(k≠1),则满足条件的所有的点P的轨迹构成的图形为圆.这个轨迹最早由古希腊数学家阿波罗尼斯发现,故称“阿氏圆”.【模型建立】如图1所示,⊙O的半径为R,点A、B都在⊙O外,P为⊙O上一动点,已知R=OB,连接PA、PB,则当“PA+PB”的值最小时,P点的位置如何确定?解决办法:如图2,在线段OB上截取OC使OC=R,则可说明△BPO与△PCO相似,则有PB=PC。故本题求“PA+PB”的最小值可以转化为“PA+PC”的最小值,其中与A与C为定点,P为动点,故当A、P、C三点共线时,“PA+PC”值最小。【技巧总结】计算的最小值时,利用两边成比例且夹角相等构造母子型相似三角形问题:在圆上找一点P使得的值最小,解决步骤具体如下:如图,将系数不为1的线段两端点与圆心相连即OP,OB计算出这两条线段的长度比在OB上取一点C,使得,即构造△POM∽△BOP,则,则,当A、P、C三点共线时可得最小值典题探究启迪思维探究重点例题1.如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,以点C为圆心,2为半径作圆C,分别交AC、BC于D、E两点,点P是圆C上一个动点,则的最小值为__________.【分析】这个问题最大的难点在于转化,此处P点轨迹是圆,注意到圆C半径为2,CA=4,连接CP,构造包含线段AP的△CPA,在CA边上取点M使得CM=2,连接PM,可得△CPA∽△CMP,故PA:PM=2:1,即PM=.问题转化为PM+PB≥BM最小值,故当B,P,M三点共线时得最小值,直接连BM即可得.变式练习>>>1.如图1,在RT△ABC中,∠ACB=90°,CB=4,CA=6,圆C的半径为2,点P为圆上一动点,连接AP,BP,求①,②,③,④的最小值.[答案]:①=,②=2,③=,④=.例题2.如图,点C坐标为(2,5),点A的坐标为(7,0),⊙C的半径为,点B在⊙C上一动点,的最小值为________.[答案]:5.变式练习>>>2.如图,在平面直角坐标系xoy中,A(6,-1),M(4,4),以M为圆心,为半径画圆,O为原点,P是⊙M上一动点,则PO+2PA的最小值为________.[答案]:10.例题3.如图,半圆的半径为1,AB为直径,AC、BD为切线,AC=1,BD=2,P为上一动点,求PC+PD的最小值.【解答】解:如图当A、P、D共线时,PC+PD最小.理由:连接PB、CO,AD与CO交于点M,∵AB=BD=4,BD是切线,∴∠ABD=90°,∠BAD=∠D=45°,∵AB是直径,∴∠APB=90°,∴∠PAB=∠PBA=45°,∴PA=PB,PO⊥AB,∵AC=PO=2,AC∥PO,∴四边形AOPC是平行四边形,∴OA=OP,∠AOP=90°,∴四边形AOPC是正方形,∴PM=PC,∴PC+PD=PM+PD=DM,∵DM⊥CO,∴此时PC+DP最小=AD﹣AM=2﹣=.变式练习>>>3.如图,四边形ABCD为边长为4的正方形,⊙B的半径为2,P是⊙B上一动点,则PD+PC的最小值为5;PD+4PC的最小值为10.【解答】解:①如图,连接PB、在BC上取一点E,使得BE=1.∵PB2=4,BE•BC=4,∴PB2=BE•BC,∴=,∵∠PBE=∠CBE,∴△PBE∽△CBE,∴==,∴PD+PC=PD+PE,∵PE+PD≤DE,在Rt△DCE中,DE==5,∴PD+PC的最小值为5.②连接DB,PB,在BD上取一点E,使得BE=,连接EC,作EF⊥BC于F.∵PB2=4,BE•BD=×4=4,∴BP2=BE•BD,∴=,∵∠PBE=∠PBD,∴△PBE∽△DBP,∴==,∴PE=PD,∴PD+4PC=4(PD+PC)=4(PE+PC),∵PE+PC≥EC,在Rt△EFC中,EF=,FC=,∴EC=,∴PD+4PC的最小值为10.故答案为5,10.例题4.如图,已知正方ABCD的边长为6,圆B的半径为3,点P是圆B上的一个动点,则的最大值为_______.【分析】当P点运动到BC边上时,此时PC=3,根据题意要求构造,在BC上取M使得此时PM=,则在点P运动的任意时刻,均有PM=,从而将问题转化为求PD-PM的最大值.连接PD,对于△PDM,PD-PM<DM,故当D、M、P共线时,PD-PM=DM为最大值.变式练习>>>4.(1)如图1,已知正方形ABCD的边长为9,圆B的半径为6,点P是圆B上的一个动点,那么PD+的最小值为,PD﹣的最大值为.(2)如图2,已知菱形ABCD的边长为4,∠B=60°,圆B的半径为2,点P是圆B上的一个动点,那么PD+的最小值为,PD﹣的最大值为.图1图2【解答】解:(1)如图3中,在BC上取一点G,使得BG=4.∵==,==,∴=,∵∠PBG=∠PBC,∴△PBG∽△CBP,∴==,∴PG=PC,∴PD+PC=DP+PG,∵DP+PG≥DG,∴当D、G、P共线时,PD+PC的值最小,最小值为DG==.∵PD﹣PC=PD﹣PG≤DG,当点P在DG的延长线上时,PD﹣PC的值最大,最大值为DG=.故答案为,(2)如图4中,在BC上取一点G,使得BG=1,作DF⊥BC于F.∵==2,==2,∴=,∵∠PBG=∠PBC,∴△PBG∽△CBP,∴==,∴PG=PC,∴PD+PC=DP+PG,∵DP+PG≥DG,∴当D、G、P共线时,PD+PC的值最小,最小值为DG,在Rt△CDF中,∠DCF=60°,CD=4,∴DF=CD•sin60°=2,CF=2,在Rt△GDF中,DG==∵PD﹣PC=PD﹣PG≤DG,当点P在DG的延长线上时,PD﹣PC的值最大(如图2中),最大值为DG=.故答案为,.例题5.如图,抛物线y=﹣x2+bx+c与直线AB交于A(﹣4,﹣4),B(0,4)两点,直线AC:y=﹣x﹣6交y轴于点C.点E是直线AB上的动点,过点E作EF⊥x轴交AC于点F,交抛物线于点G.(1)求抛物线y=﹣x2+bx+c的表达式;(2)连接GB,EO,当四边形GEOB是平行四边形时,求点G的坐标;(3)①在y轴上存在一点H,连接EH,HF,当点E运动到什么位置时,以A,E,F,H为顶点的四边形是矩形?求出此时点E,H的坐标;②在①的前提下,以点E为圆心,EH长为半径作圆,点M为⊙E上一动点,求AM+CM它的最小值.【解答】解:(1)∵点A(﹣4,﹣4),B(0,4)在抛物线y=﹣x2+bx+c上,∴,∴,∴抛物线的解析式为y=﹣x2﹣2x+4;(2)设直线AB的解析式为y=kx+n过点A,B,∴,∴,∴直线AB的解析式为y=2x+4,设E(m,2m+4),∴G(m,﹣m2﹣2m+4),∵四边形GEOB是平行四边形,∴EG=OB=4,∴﹣m2﹣2m+4﹣2m﹣4=4,∴m=﹣2,∴G(﹣2,4);(3)①如图1,由(2)知,直线AB的解析式为y=2x+4,∴设E(a,2a+4),∵直线AC:y=﹣x﹣6,∴F(a,﹣a﹣6),设H(0,p),∵以点A,E,F,H为顶点的四边形是矩形,∵直线AB的解析式为y=2x+4,直线AC:y=﹣x﹣6,∴AB⊥AC,∴EF为对角线,∴(﹣4+0)=(a+a),(﹣4+p)=(2a+4﹣a﹣6),∴a=﹣2,P=﹣1,∴E(﹣2,0).H(0,﹣1);②如图2,由①知,E(﹣2,0),H(0,﹣1),A(﹣4,﹣4),∴EH=,AE=2,设AE交⊙E于G,取EG的中点P,∴PE=,连接PC交⊙E于M,连接EM,∴EM=EH=,∴=,∵=,∴=,∵∠PEM=∠MEA,∴△PEM∽△MEA,∴=,∴PM=AM,∴AM+CM的最小值=PC,设点P(p,2p+4),∵E(﹣2,0),∴PE2=(p+2)2+(2p+4)2=5(p+2)2,∵PE=,∴5(p+2)2=,∴p=或p=﹣(由于E(﹣2,0),所以舍去),∴P(,﹣1),∵C(0,﹣6),∴PC==,即:AM+CM=.变式练习>>>5.如图1,抛物线y=ax2+(a+3)x+3(a≠0)与x轴交于点A(4,0),与y轴交于点B,在x轴上有一动点E(m,0)(0<m<4),过点E作x轴的垂线交直线AB于点N,交抛物线于点P,过点P作PM⊥AB于点M.(1)求a的值和直线AB的函数表达式;(2)设△PMN的周长为C1,△AEN的周长为C2,若=,求m的值;(3)如图2,在(2)条件下,将线段OE绕点O逆时针旋转得到OE′,旋转角为α(0°<α<90°),连接E′A、E′B,求E′A+E′B的最小值.【解答】解:(1)令y=0,则ax2+(a+3)x+3=0,∴(x+1)(ax+3)=0,∴x=﹣1或﹣,∵抛物线y=ax2+(a+3)x+3(a≠0)与x轴交于点A(4,0),∴﹣=4,∴a=﹣.∵A(4,0),B(0,3),设直线AB解析式为y=kx+b,则,解得,∴直线AB解析式为y=﹣x+3.(2)如图1中,∵PM⊥AB,PE⊥OA,∴∠PMN=∠AEN,∵∠PNM=∠ANE,∴△PNM∽△ANE,∴=,∵NE∥OB,∴=,∴AN=(4﹣m),∵抛物线解析式为y=﹣x2+x+3,∴PN=﹣m2+m+3﹣(﹣m+3)=﹣m2+3m,∴=,解得m=2.(3)如图2中,在y轴上取一点M′使得OM′=,连接AM′,在AM′上取一点E′使得OE′=OE.∵OE′=2,OM′•OB=×3=4,∴OE′2=OM′•OB,∴=,∵∠BOE′=∠M′OE′,∴△M′OE′∽△E′OB,∴==,∴M′E′=BE′,∴AE′+BE′=AE′+E′M′=AM′,此时AE′+BE′最小(两点间线段最短,A、M′、E′共线时),最小值=AM′==.达标检测领悟提升强化落实1.如图,在RT△ABC中,∠B=90°,AB=CB=2,以点B为圆心作圆与AC相切,圆C的半径为,点P为圆B上的一动点,求的最小值.[答案]:.2.如图,边长为4的正方形,内切圆记为⊙O,P是⊙O上一动点,则PA+PB的最小值为________.[答案]:.3.如图,等边△ABC的边长为6,内切圆记为⊙O,P是⊙O上一动点,则2PB+PC的最小值为________.[答案]:.4.如图,在Rt△ABC中,∠C=90°,CA=3,CB=4,的半径为2,点P是上的一动点,则的最小值为?5.如图,在平面直角坐标系中,,,,,P是△AOB外部第一象限内的一动点,且∠BPA=135°,则的最小值是多少?[答案]6.如图,Rt△ABC,∠ACB=90°,AC=BC=2,以C为顶点的正方形CDEF(C、D、E、F四个顶点按逆时针方向排列)可以绕点C自由转动,且CD=,连接AF,BD(1)求证:△BDC≌△AFC;(2)当正方形CDEF有顶点在线段AB上时,直接写出BD+AD的值;(3)直接写出正方形CDEF旋转过程中,BD+AD的最小值.【解答】(1)证明:如图1中,∵四边形CDEF是正方形,∴CF=CD,∠DCF=∠ACB=90°,∴∠ACF=∠DCB,∵AC=CB,∴△FCA≌△DCB(SAS).(2)解:①如图2中,当点D,E在AB边上时,∵AC=BC=2,∠ACB=90°,∴AB=2,∵CD⊥AB,∴AD=BD=,∴BD+AD=+1.②如图3中,当点E,F在边AB上时.BD=CF=,AD==,∴BD+AD=+.(3)如图4中.取AC的中点M.连接DM,BM.∵CD=,CM=1,CA=2,∴CD2=CM•CA,∴=,∵∠DCM=∠ACD,∴△DCM∽△ACD,∴==,∴DM=AD,∴BD+AD=BD+DM,∴当B,D,M共线时,BD+AD的值最小,最小值==.7.(1)如图1,在△ABC中,AB=AC,BD是AC边上的中线,请用尺规作图做出AB边上的中线CE,并证明BD=CE:(2)如图2,已知点P是边长为6的正方形ABCD内部一动点,PA=3,求PC+PD的最小值;(3)如图3,在矩形ABCD中,AB=18,BC=25,点M是矩形内部一动点,MA=15,当MC+MD最小时,画出点M的位置,并求出MC+MD的最小值.【解答】解:(1)如图1中,作线段AB的垂直平分线MN交AB于点E,连接EC.线段EC即为所求;∵AB=AC,AE=EC,AD=CD,∴AE=AD,∵AB=AC,∠A=∠A,AD=AE,∴△BAD≌△CAE(SAS),∴BD=CE.(2)如图2中,在AD上截取AE,使得AE=.∵PA2=9,AE•AD=×6=9,∴PA2=AE•AD,∴=,∵∠PAE=∠DAP,∴△PAE∽△DAP,∴==,∴PE=PD,∴PC+PD=PC+PE,∵PC+PE≥EC,∴PC+PD的最小值为EC的长,在Rt△CDE中,∵∠CDE=90°,CD=6,DE=,∴EC==,∴PC+PD的最小值为.(3)如图3中,如图2中,在AD上截取AE,使得AE=9.∵MA2=225,AE•AD=9×25=225,∴MA2=AE•AE,∴=,∵∠MAE=∠DAM,∴△MAE∽△DAM,∴===,∴ME=MD,∴MC+MD=MC+ME,∵MC+ME≥EC,∴MC+MD的最小值为EC的长,在Rt△CDE中,∵∠CDE=90°,CD=18,DE=16,∴EC==2,∴MC+MD的最小值为2.中考数学几何模型12:主从联动模型名师点睛①当轨迹为直线时思考1如图,P是直线BC上一动点,连接AP,取AP中点Q,当点P在BC上运动时,Q点轨迹是?揭秘:将点P看成主动点,点Q看成从动点,当P点轨迹是直线时,Q点轨迹也是一条直线.可以这样理解:分别过A、Q向BC作垂线,垂足分别为M、N,在运动过程中,因为AP=2AQ,所以QN始终为AM的一半,即Q点到BC的距离是定值,故Q点轨迹是一条直线,且Q点运动路径长为P点运动路径长的一半.思考2如图,点C为定点,点P、Q为动点,CP=CQ,且∠PCQ为定值,当点P在直线AB上运动,请探究点Q的运动轨迹.揭秘:当CP与CQ夹角固定,且AP=AQ时,P、Q轨迹是同一种图形,且PP1=QQ1.可以这样理解:易知△CPP1≌△CPP1,则∠CPP1=CQQ1,故可知Q点轨迹为一条直线.思考3如图,点C为定点,点P是直线AB上的一动点,以CP为斜边作Rt△CPQ,且∠P=30°,当点P在直线AB上运动,请探究点Q的运动轨迹.揭秘:条件CP与CQ夹角固定时,P、Q轨迹是同一种图形,且有.可以这样理解:由CPQ∽△CP1Q1,易得△CPP1≌△CPP1,则∠CPP1=CQQ1,故可知Q点轨迹为一条直线.;SHAPE;轨迹是直线轨迹是直线总结条件:主动点、从动点与定点连线的夹角是定量;主动点、从动点到定点的距离之比是定量.结论:①主动点、从动点的运动轨迹是同样的图形;②主动点路径做在直线与从动点路径所在直线的夹角等于定角③当主动点、从动点到定点的距离相等时,从动点的运动路径长等于主动点的运动路径长;④当主动点、从动点到定点的距离不相等时,.典题探究启迪思维探究重点例题1.如图,在等边△ABC中,AB=10,BD=4,BE=2,点P从点E出发沿EA方向运动,连结PD,以PD为边,在PD的右侧按如图所示的方式作等边△DPF,当点P从点E运动到点A时,点F运动的路径长是________.变式练习>>>1.如图,在平面直角坐标系中,A(-3,0),点B是y轴正半轴上一动点,以AB为边在AB的下方作等边△ABP,点B在y轴上运动时,求OP的最小值.例题2.如图,正方形ABCD的边长为4,E为BC上一点,且BE=1,F为AB边上的一个动点,连接EF,以EF为边向右侧作等边△EFG,连接CG,则CG的最小值为.变式练习>>>2.(2017秋•江汉区校级月考)如图,△ABC是边长为6的等边三角形,点E在AB上,点D为BC的中点,△EDM为等边三角形.若点E从点B运动到点A,则M点所经历的路径长为.例3.如图,已知点A是第一象限内横坐标为的一个定点,AC⊥x轴于点M,交直线y=-x于点N,若点P是线段ON上的一个动点,∠APB=30°,BA⊥PA,则点P在线段ON上运动时,A点不变,B点随之运动.求当点P从点O运动到点N时,点B运动的路径长是________.变式练习>>>3.(2019•东台市模拟)如图,平面直角坐标系中,点A(0,﹣2),B(﹣1,0),C(﹣5,0),点D从点B出发,沿x轴负方向运动到点C,E为AD上方一点,若在运动过程中始终保持△AED~△AOB,则点E运动的路径长为.名师点睛②当轨迹为弧线时思考1:如图,P是圆O上一个动点,A为定点,连接AP,Q为AP中点.当点P在圆O上运动时,Q点轨迹是?揭秘:Q点轨迹是一个圆,考虑到Q点始终为AP中点,连接AO,取AO中点M,则M点即为Q点轨迹圆圆心,半径MQ是OP一半,任意时刻,均有△AMQ∽△AOP,.小结:确定Q点轨迹圆即确定其圆心与半径,由A、Q、P始终共线可得:A、M、O三点共线,由Q为AP中点可得:AM=1/2AO.Q点轨迹相当于是P点轨迹成比例缩放.根据动点之间的相对位置关系分析圆心的相对位置关系;根据动点之间的数量关系分析轨迹圆半径数量关系.SHAPE轨迹是圆轨迹是圆思考2:如图,P是圆O上一个动点,A为定点,连接AP,作AQ⊥AP且AQ=AP.当点P在圆O上运动时,Q点轨迹是?揭秘:Q点轨迹是个圆,可理解为将AP绕点A逆时针旋转90°得AQ,故Q点轨迹与P点轨迹都是圆.接下来确定圆心与半径.考虑AP⊥AQ,可得Q点轨迹圆圆心M满足AM⊥AO;考虑AP=AQ,可得Q点轨迹圆圆心M满足AM=AO,且可得半径MQ=PO.即可确定圆M位置,任意时刻均有△APO≌△AQM.思考3:如图,△APQ是直角三角形,∠PAQ=90°,且AP=2AQ,当P在圆O运动时,Q点轨迹是?揭秘:考虑AP⊥AQ,可得Q点轨迹圆圆心M满足AM⊥AO;考虑AP:AQ=2:1,可得Q点轨迹圆圆心M满足AO:AM=2:1.即可确定圆M位置,任意时刻均有△APO∽△AQM,且相似比为2.推理:(1)如图,P是圆O上一个动点,A为定点,连接AP,以AP为一边作等边△APQ.当点P在圆O上运动时,Q点轨迹是和圆O全等的一个圆.(2)如图,P是圆O上一个动点,A为定点,连接AP,以AP为斜边作等腰直角△APQ.当点P在圆O上运动时,Q点轨迹为按AP:AQ=AO:AM=:1的比例缩放的一个圆.总结:为了便于区分动点P、Q,可称点P为“主动点”,点Q为“从动点”.此类问题的必要条件:两个定量,即:①主动点、从动点与定点连线的夹角是定量(∠PAQ是定值);②主动点、从动点到定点的距离之比是定量(AP:AQ是定值).结论:(1)主、从动点与定点连线的夹角等于两圆心与定点连线的夹角:∠PAQ=∠OAM;(2)主、从动点与定点的距离之比等于两圆心到定点距离之比:AP:AQ=AO:AM,也等于两圆半径之比,也等于两动点运动轨迹长之比,按以上两点即可确定从动点轨迹圆,Q与P的关系相当于旋转+伸缩.古人云:种瓜得瓜,种豆得豆.“种”圆得圆,“种”线得线,谓之“瓜豆原理”.典题探究启迪思维探究重点例题4.如图,点P(3,4),圆P半径为2,A(2.8,0),B(5.6,0),点M是圆P上的动点,点C是MB的中点,则AC的最小值是_______.变式练习>>>4.如图,在等腰Rt△ABC中,AC=BC=,点P在以斜边AB为直径的半圆上,M为PC的中点,当点P从点A运动至点B时,点M运动的路径长为________.例题5.如图,正方形ABCD中,,O是BC边的中点,点E是正方形内一动点,OE=2,连接DE,将线段DE绕点D逆时针旋转90°得DF,连接AE、CF.求线段OF长的最小值.变式练习>>>5.△ABC中,AB=4,AC=2,以BC为边在△ABC外作正方形BCDE,BD、CE交于点O,则线段AO的最大值为_____________.名师点睛③当轨迹为其他种类时根据刚才我们的探究,所谓“瓜豆原理”,就是主动点的轨迹与从动点的轨迹是相似性,根据主、从动点与定点连线形成的夹角以及主、从动点到定点的距离之比,可确定从动点的轨迹,而当主动点轨迹是其他图形时,从动点轨迹必然也是.典题探究启迪思维探究重点例题6.如图,在反比例函数的图像上有一个动点A,连接AO并延长交图像的另一支于点B,在第一象限内有一点C,满足AC=BC,当点A运动时,点C始终在函数的图像上运动,若tan∠CAB=2,则k的值为()A.2 B.4 C.6 D.8变式练习>>>6.(2017•深圳模拟)如图,反比例函数y=的图象上有一动点A,连接AO并延长交图象的另一支于点B,在第二象限内有一点C,满足AC=BC,当点A运动时,点C始终在函数y=的图象上运动,tan∠CAB=2,则关于x的方程x2﹣5x+k=0的解为.例题7.如图,A(-1,1),B(-1,4),C(-5,4),点P是△ABC边上一动点,连接OP,以OP为斜边在OP的右上方作等腰直角△OPQ,当点P在△ABC边上运动一周时,点Q的轨迹形成的封闭图形面积为________.变式练习>>>7.(2017春•工业园区期末)如图,△ABC的面积为9,点P在△ABC的边上运动.作点P关于原点O的对称点Q,再以PQ为边作等边△PQM.当点P在△ABC的边上运动一周时,点M随之运动所形成的图形面积为()A.3 B.9 C.27 D.例题8.如图所示,AB=4,AC=2,以BC为底边向上构造等腰直角三角形BCD,连接AD并延长至点P,使AD=PD,则PB的取值范围为___________.变式练习>>>8.(2018秋•新吴区期末)如图已知:正方形OCAB,A(2,2),Q(5,7),AB⊥y轴,AC⊥x轴,OA,BC交于点P,若正方形OCAB以O为位似中心在第一象限内放大,点P随正方形一起运动,当PQ达到最小值时停止运动.以PQ的长为边长,向PQ的右侧作等边△PQD,求在这个位似变化过程中,D点运动的路径长()A.5 B.6 C.2 D.4例题9.(2019秋•硚口区期中)如图,一副含30°和45°角的三角板ABC和EDF拼合在一个平面上,边AC与EF重合,BC=4cm.当点E从点A出发沿AC方向滑动时,点F同时从点C出发沿射线BC方向滑动,当点E从点A滑动到点C时,点D运动的路径长为cm.变式练习>>>9.(2018•金华模拟)如图,Rt△ABC中,BC=4,AC=8,Rt△ABC的斜边在x轴的正半轴上,点A与原点重合,随着顶点A由O点出发沿y轴的正半轴方向滑动,点B也沿着x轴向点O滑动,直到与点O重合时运动结束.在这个运动过程中.(1)AB中点P经过的路径长.(2)点C运动的路径长是.达标检测领悟提升强化落实1.(2018秋•黄冈期中)在△ABC中,∠BAC=90°,AB=AC=2cm,线段BC上一动点P从C点开始运动,到B点停止,以AP为边在AC的右侧作等边△APQ,则Q点运动的路径为cm.2.如图,在矩形ABCD中,AB=4,∠DCA=30°,点F是对角线AC上的一个动点,连接DF,以DF为斜边作∠DFE=30°的直角三角形DEF,使点E和点A位于DF两侧,点F从点A到点C的运动过程中,点E的运动路径长是.3.(2019•铜山区二模)如图,已知点M(0,4),N(4,0),开始时,△ABC的三个顶点A、B、C分别与点M、N、O重合,点A在y轴上从点M开始向点O滑动,到达点O结束运动,同时点B沿着x轴向右滑动,则在此运动过程中,点C的运动路径长.3.(2018•宝应县三模)在Rt△ABC中,∠C=90°,AC=2,BC=2,若P是以AB为直径所作半圆上由A沿着半圆向B运动的一点,连接CP,过P向下作PM⊥CP,且有PM=0.5CP,如图示,求点P运动过程中,点M的运动路径长是.4.如图,已知线段AB=8,O为AB的中点,P是平面内的一个动点,在运动过程中保持OP=2不变,连结BP,将PB绕点P逆时针旋转90°到PC,连结BC、AC,则线段AC长的最大值是.5.(2017•江阴市二模)如图,线段AB为⊙O的直径,点C在AB的延长线上,AB=4,BC=2,点P是⊙O上一动点,连接CP,以CP为斜边在PC的上方作Rt△PCD,且使∠DCP=60°,连接OD,则OD长的最大值为.6.(2018•建湖县一模)如图,在平面直角坐标系中,A(4,0)、B(0,﹣3),以点B为圆心、2为半径的⊙B上有一动点P.连接AP,若点C为AP的中点,连接OC,则OC的最小值为.7.(2016•江岸区校级模拟)如图,线段AB=2,C是AB上一动点,以AC、BC为边在AB同侧作正△ACE、正△BCF,连EF,点P为EF的中点.当点C从A运动到B时,P点运动路径长为.8.(2019秋•江岸区校级月考)如图,正△ABC中,AB=2,AD⊥BC于D,P,Q分别是AB,BC上的动点,且PQ=AD,点M在PQ的右上方且PM=QM,∠M=120°,当P从点A运动到点B时,M运动的路径长为.9.如图,点P(t,0)(t>0)是x轴正半轴上的一定点,以原点为圆心作半径为1的弧分别交x轴.y轴于A,B两点,点M是上的一个动点,连结PM,作∠MPM1=90°,∠PMM1=60°,当P是x轴正半轴上的任意一点时,点M从点A运动至点B,M1的运动路径长是.10.(2017秋•宜兴市期末)如图,在平面直角坐标系中,有一条长为10的线段AB,其端点A、点B分别在y轴、x轴上滑动,点C为以AB为直径的⊙D上一点(C始终在第一象限),且tan∠BAC=.则当点A从A0(0,10)滑动到O(0,0),B从O(0,0)滑动到B0(10,0)的过程中,点C运动的路径长为.中考数学几何模型12:主从联动模型名师点睛①当轨迹为直线时思考1如图,P是直线BC上一动点,连接AP,取AP中点Q,当点P在BC上运动时,Q点轨迹是?揭秘:将点P看成主动点,点Q看成从动点,当P点轨迹是直线时,Q点轨迹也是一条直线.可以这样理解:分别过A、Q向BC作垂线,垂足分别为M、N,在运动过程中,因为AP=2AQ,所以QN始终为AM的一半,即Q点到BC的距离是定值,故Q点轨迹是一条直线,且Q点运动路径长为P点运动路径长的一半.思考2如图,点C为定点,点P、Q为动点,CP=CQ,且∠PCQ为定值,当点P在直线AB上运动,请探究点Q的运动轨迹.揭秘:当CP与CQ夹角固定,且AP=AQ时,P、Q轨迹是同一种图形,且PP1=QQ1.可以这样理解:易知△CPP1≌△CPP1,则∠CPP1=CQQ1,故可知Q点轨迹为一条直线.思考3如图,点C为定点,点P是直线AB上的一动点,以CP为斜边作Rt△CPQ,且∠P=30°,当点P在直线AB上运动,请探究点Q的运动轨迹.揭秘:条件CP与CQ夹角固定时,P、Q轨迹是同一种图形,且有.可以这样理解:由CPQ∽△CP1Q1,易得△CPP1≌△CPP1,则∠CPP1=CQQ1,故可知Q点轨迹为一条直线.轨迹是直线轨迹是直线总结条件:主动点、从动点与定点连线的夹角是定量;主动点、从动点到定点的距离之比是定量.结论:①主动点、从动点的运动轨迹是同样的图形;②主动点路径做在直线与从动点路径所在直线的夹角等于定角③当主动点、从动点到定点的距离相等时,从动点的运动路径长等于主动点的运动路径长;④当主动点、从动点到定点的距离不相等时,.典题探究启迪思维探究重点例题1.如图,在等边△ABC中,AB=10,BD=4,BE=2,点P从点E出发沿EA方向运动,连结PD,以PD为边,在PD的右侧按如图所示的方式作等边△DPF,当点P从点E运动到点A时,点F运动的路径长是________.【分析】根据△DPF是等边三角形,所以可知F点运动路径长与P点相同,P从E点运动到A点路径长为8,故此题答案为8.变式练习>>>1.如图,在平面直角坐标系中,A(-3,0),点B是y轴正半轴上一动点,以AB为边在AB的下方作等边△ABP,点B在y轴上运动时,求OP的最小值.【分析】求OP最小值需先作出P点轨迹,根据△ABP是等边三角形且B点在直线上运动,故可知P点轨迹也是直线.取两特殊时刻:(1)当点B与点O重合时,作出P点位置P1;(2)当点B在x轴上方且AB与x轴夹角为60°时,作出P点位置P2.连接P1P2,即为P点轨迹.根据∠ABP=60°可知:与y轴夹角为60°,作OP⊥,所得OP长度即为最小值,OP2=OA=3,所以OP=.例题2.如图,正方形ABCD的边长为4,E为BC上一点,且BE=1,F为AB边上的一个动点,连接EF,以EF为边向右侧作等边△EFG,连接CG,则CG的最小值为.【分析】同样是作等边三角形,区别于上一题求动点路径长,本题是求CG最小值,可以将F点看成是由点B向点A运动,由此作出G点轨迹:考虑到F点轨迹是线段,故G点轨迹也是线段,取起点和终点即可确定线段位置,初始时刻G点在位置,最终G点在位置(不一定在CD边),即为G点运动轨迹.CG最小值即当CG⊥的时候取到,作CH⊥于点H,CH即为所求的最小值.根据模型可知:与AB夹角为60°,故⊥.过点E作EF⊥CH于点F,则HF==1,CF=,所以CH=,因此CG的最小值为.变式练习>>>2.(2017秋•江汉区校级月考)如图,△ABC是边长为6的等边三角形,点E在AB上,点D为BC的中点,△EDM为等边三角形.若点E从点B运动到点A,则M点所经历的路径长为6.【解答】解:当点E在B时,M在AB的中点N处,当点E与A重合时,M的位置如图所示,所以点E从点B运动到点A,则M点所经历的路径为MN的长,∵△ABC是等边三角形,D是BC的中点,∴AD⊥BC,∠BAD=30°,∵AB=6,∴AD==3,∵△EDM是等边三角形,∴AM=AD=3,∠DAM=60°,∴∠NAM=30°+60°=90°,∵AN=AB=3,在Rt△NAM中,由勾股定理得:MN===6,则M点所经历的路径长为6,故答案为:6.例题3.如图,已知点A是第一象限内横坐标为的一个定点,AC⊥x轴于点M,交直线y=-x于点N,若点P是线段ON上的一个动点,∠APB=30°,BA⊥PA,则点P在线段ON上运动时,A点不变,B点随之运动.求当点P从点O运动到点N时,点B运动的路径长是________.【分析】根据∠PAB=90°,∠APB=30°可得:AP:AB=,故B点轨迹也是线段,且P点轨迹路径长与B点轨迹路径长之比也为,P点轨迹长ON为,故B点轨迹长为.变式练习>>>3.(2019•东台市模拟)如图,平面直角坐标系中,点A(0,﹣2),B(﹣1,0),C(﹣5,0),点D从点B出发,沿x轴负方向运动到点C,E为AD上方一点,若在运动过程中始终保持△AED~△AOB,则点E运动的路径长为.【解答】解:如图,连接OE.∵∠AED=∠AOD=90°,∴A,O,E,D四点共圆,∴∠EOC=∠EAD=定值,∴点E在射线OE上运动,∠EOC是定值.∵tan∠EOD=tan∠OAB=,∴可以假设E(﹣2m,m),当点D与C重合时,AC==,∵AE=2EC,∴EC==,∴(﹣2m+5)2+m2=,解得m=或(舍弃),∴E(﹣,),∴点E的运动轨迹=OE的长=,故答案为.名师点睛②当轨迹为弧线时思考1如图,P是圆O上一个动点,A为定点,连接AP,Q为AP中点.当点P在圆O上运动时,Q点轨迹是?揭秘:Q点轨迹是一个圆,考虑到Q点始终为AP中点,连接AO,取AO中点M,则M点即为Q点轨迹圆圆心,半径MQ是OP一半,任意时刻,均有△AMQ∽△AOP,.小结:确定Q点轨迹圆即确定其圆心与半径,由A、Q、P始终共线可得:A、M、O三点共线,由Q为AP中点可得:AM=1/2AO.Q点轨迹相当于是P点轨迹成比例缩放.根据动点之间的相对位置关系分析圆心的相对位置关系;轨迹是圆根据动点之间的数量关系分析轨迹圆半径数量关系.轨迹是圆思考2:如图,P是圆O上一个动点,A为定点,连接AP,作AQ⊥AP且AQ=AP.当点P在圆O上运动时,Q点轨迹是?揭秘:Q点轨迹是个圆,可理解为将AP绕点A逆时针旋转90°得AQ,故Q点轨迹与P点轨迹都是圆.接下来确定圆心与半径.考虑AP⊥AQ,可得Q点轨迹圆圆心M满足AM⊥AO;考虑AP=AQ,可得Q点轨迹圆圆心M满足AM=AO,且可得半径MQ=PO.即可确定圆M位置,任意时刻均有△APO≌△AQM.思考3:如图,△APQ是直角三角形,∠PAQ=90°,且AP=2AQ,当P在圆O运动时,Q点轨迹是?揭秘:考虑AP⊥AQ,可得Q点轨迹圆圆心M满足AM⊥AO;考虑AP:AQ=2:1,可得Q点轨迹圆圆心M满足AO:AM=2:1.即可确定圆M位置,任意时刻均有△APO∽△AQM,且相似比为2.推理:(1)如图,P是圆O上一个动点,A为定点,连接AP,以AP为一边作等边△APQ.当点P在圆O上运动时,Q点轨迹是和圆O全等的一个圆.(2)如图,P是圆O上一个动点,A为定点,连接AP,以AP为斜边作等腰直角△APQ.当点P在圆O上运动时,Q点轨迹为按AP:AQ=AO:AM=:1的比例缩放的一个圆.总结:为了便于区分动点P、Q,可称点P为“主动点”,点Q为“从动点”.此类问题的必要条件:两个定量,即:①主动点、从动点与定点连线的夹角是定量(∠PAQ是定值);②主动点、从动点到定点的距离之比是定量(AP:AQ是定值).结论:(1)主、从动点与定点连线的夹角等于两圆心与定点连线的夹角:∠PAQ=∠OAM;(2)主、从动点与定点的距离之比等于两圆心到定点距离之比:AP:AQ=AO:AM,也等于两圆半径之比,也等于两动点运动轨迹长之比,按以上两点即可确定从动点轨迹圆,Q与P的关系相当于旋转+伸缩.古人云:种瓜得瓜,种豆得豆.“种”圆得圆,“种”线得线,谓之“瓜豆原理”.典题探究启迪思维探究重点例题4.如图,点P(3,4),圆P半径为2,A(2.8,0),B(5.6,0),点M是圆P上的动点,点C是MB的中点,则AC的最小值是_______.【分析】M点为主动点,C点为从动点,B点为定点.考虑C是BM中点,可知C点轨迹:取BP中点O,以O为圆心,OC为半径作圆,即为点C轨迹.当A、C、O三点共线且点C在线段OA上时,AC取到最小值,根据B、P坐标求O,利用两点间距离公式求得OA,再减去OC即可.答案为变式练习>>>4.如图,在等腰Rt△ABC中,AC=BC=,点P在以斜边AB为直径的半圆上,M为PC的中点,当点P从点A运动至点B时,点M运动的路径长为________.【分析】考虑C、M、P共线及M是CP中点,可确定M点轨迹:取AB中点O,连接CO取CO中点D,以D为圆心,DM为半径作圆D分别交AC、BC于E、F两点,则弧EF即为M点轨迹.当然,若能理解M点与P点轨迹关系,可直接得到M点的轨迹长为P点轨迹长一半,即可解决问题.答案为例题5.如图,正方形ABCD中,,O是BC边的中点,点E是正方形内一动点,OE=2,连接DE,将线段DE绕点D逆时针旋转90°得DF,连接AE、CF.求线段OF长的最小值.【分析】E是主动点,F是从动点,D是定点,E点满足EO=2,故E点轨迹是以O为圆心,2为半径的圆.考虑DE⊥DF且DE=DF,故作DM⊥DO且DM=DO,F点轨迹是以点M为圆心,2为半径的圆.直接连接OM,与圆M交点即为F点,此时OF最小.可构造三垂直全等求线段长,再利用勾股定理求得OM,减去MF即可得到OF的最小值.答案为变式练习>>>5.△ABC中,AB=4,AC=2,以BC为边在△ABC外作正方形BCDE,BD、CE交于点O,则线段AO的最大值为_____________.【分析】考虑到AB、AC均为定值,可以固定其中一个,比如固定AB,将AC看成动线段,由此引发正方形BCED的变化,求得线段AO的最大值.根据AC=2,可得C点轨迹是以点A为圆心,2为半径的圆.接下来题目求AO的最大值,所以确定O点轨迹即可,观察△BOC是等腰直角三角形,锐角顶点C的轨迹是以点A为圆心,2为半径的圆,所以O点轨迹也是圆,以AB为斜边构造等腰直角三角形,直角顶点M即为点O轨迹圆圆心.连接AM并延长与圆M交点即为所求的点O,此时AO最大,根据AB先求AM,再根据BC与BO的比值可得圆M的半径与圆A半径的比值,得到MO,相加即得AO.答案为,本题或者直接利用托勒密定理可得最大值.名师点睛③当轨迹为其他种类时根据刚才我们的探究,所谓“瓜豆原理”,就是主动点的轨迹与从动点的轨迹是相似性,根据主、从动点与定点连线形成的夹角以及主、从动点到定点的距离之比,可确定从动点的轨迹,而当主动点轨迹是其他图形时,从动点轨迹必然也是.典题探究启迪思维探究重点例题6.如图,在反比例函数的图像上有一个动点A,连接AO并延长交图像的另一支于点B,在第一象限内有一点C,满足AC=BC,当点A运动时,点C始终在函数的图像上运动,若tan∠CAB=2,则k的值为()A.2 B.4 C.6 D.8【分析】∠AOC=90°且AO:OC=1:2,显然点C的轨迹也是一条双曲线,分别作AM、CN垂直x轴,垂足分别为M、N,连接OC,易证△AMO∽△ONC,∴CN=2OM,ON=2AM,∴ON·CN=4AM·OM,故k=4×2=8.【思考】若将条件“tan∠CAB=2”改为“△ABC是等边三角形”,k会是多少?变式练习>>>6.(2017•深圳模拟)如图,反比例函数y=的图象上有一动点A,连接AO并延长交图象的另一支于点B,在第二象限内有一点C,满足AC=BC,当点A运动时,点C始终在函数y=的图象上运动,tan∠CAB=2,则关于x的方程x2﹣5x+k=0的解为x1=﹣1,x2=6.【解答】解:连接OC,过点A作AE⊥y轴于点E,过点C作CF⊥y轴于点F,如图所示,∵由直线AB与反比例函数y=的对称性可知A、B点关于O点对称,∴AO=BO.又∵AC=BC,∴CO⊥AB.∵∠AOE+∠AOF=90°,∠AOF+∠COF=90°,∴∠AOE=∠COF,又∵∠AEO=90°,∠CFO=90°,∴△AOE∽△COF,∴==,∵tan∠CAB==2,∴CF=2AE,OF=2OE.又∵AE•OE=,CF•OF=|k|,∴k=±6.∵点C在第二象限,∴k=﹣6,∴关于x的方程x2﹣5x+k=0可化为x2﹣5x﹣6=0,解得x1=﹣1,x2=6.故答案为:x1=﹣1,x2=6.例题7.如图,A(-1,1),B(-1,4),C(-5,4),点P是△ABC边上一动点,连接OP,以OP为斜边在OP的右上方作等腰直角△OPQ,当点P在△ABC边上运动一周时,点Q的轨迹形成的封闭图形面积为________.【分析】根据△OPQ是等腰直角三角形可得:Q点运动轨迹与P点轨迹形状相同,根据OP:OQ=,可得P点轨迹图形与Q点轨迹图形相似比为,故面积比为2:1,△ABC面积为1/2×3×4=6,故Q点轨迹形成的封闭图形面积为3.【小结】根据瓜豆原理,类似这种求从动点轨迹长或者轨迹图形面积,根据主动点轨迹推导即可,甚至无需作图.变式练习>>>7.(2017春•工业园区期末)如图,△ABC的面积为9,点P在△ABC的边上运动.作点P关于原点O的对称点Q,再以PQ为边作等边△PQM.当点P在△ABC的边上运动一周时,点M随之运动所形成的图形面积为()A.3 B.9 C.27 D.【解答】解:如图,∵点P从点A出发,沿△ABC的边从A﹣B﹣C﹣A运动一周,且点Q关于原点O与点P对称,∴点Q随点P运动所形成的图形是△ABC关于O的中心对称图形,以PQ为边作等边△PQM,M点对应的A,B,C的点分别为Ma,Mb,Mc,∵△MbQbB是等边三角形,∴MbO=OB,同理McO=OC,∴==,∵∠COB+∠BOMc=90°,∠McOMb+∠BOMc=90°∴∠COB=∠McOMb,∴△McOMb∽△COB,∴MbMc=BC,同理,MaMb=AB,MaMc=AC,∴△MaMbMc∽△ABC,∴△MaMbMc的面积=9×()2=27,即点M随点P运动所形成的图形的面积为27.故选:C.例题8.如图所示,AB=4,AC=2,以BC为底边向上构造等腰直角三角形BCD,连接AD并延长至点P,使AD=PD,则PB的取值范围为___________.【分析】固定AB不变,AC=2,则C点轨迹是以A为圆心,2为半径的圆,以BC为斜边作等腰直角三角形BCD,则D点轨迹是以点M为圆心、为半径的圆考虑到AP=2AD,故P点轨迹是以N为圆心,为半径的圆,即可求出PB的取值范围.答案为变式练习>>>8.(2018秋•新吴区期末)如图已知:正方形OCAB,A(2,2),Q(5,7),AB⊥y轴,AC⊥x轴,OA,BC交于点P,若正方形OCAB以O为位似中心在第一象限内放大,点P随正方形一起运动,当PQ达到最小值时停止运动.以PQ的长为边长,向PQ的右侧作等边△PQD,求在这个位似变化过程中,D点运动的路径长()A.5 B.6 C.2 D.4【解答】解:如图,连接OQ,以OQ为边向下作等边△OQH,连接DH,作QE⊥OA交OA的延长线于E.∵△OQH,△PQD都是等边三角形,∴QO=QH,QP=QD,∠OQH=∠PQD=60°,∴∠OQP=∠HQD,∴△OQP≌△HQD(SAS),∴OP=DH,∴点D的运动路径的长=点P的运动路径的长,∵直线OA的解析式为y=x,Q(5,7),QE⊥OA,∴直线EQ使得解析式为y=﹣x+12,由,解得,∴E(6,6),∵P(1,1),∴PE=5,根据垂线段最短可知,当点P与点E重合时,PQ的长最短,∴点P的运动路径的长为5,∴点D的运动路径的长为5,故选:A.例题9.(2019秋•硚口区期中)如图,一副含30°和45°角的三角板ABC和EDF拼合在一个平面上,边AC与EF重合,BC=4cm.当点E从点A出发沿AC方向滑动时,点F同时从点C出发沿射线BC方向滑动,当点E从点A滑动到点C时,点D运动的路径长为(24﹣12)cm.【解答】解:∵BC=4cm,∠A=30°,∠DEF=45°,∴AC=BC=12cm,AB=2BC=8cm,ED=DF=AC=6cm,当点E沿AC方向下滑时,得△E'D'F',过点D'作D'N⊥AC于点N,作D'M⊥BC于点M,如图所示:∴∠MD'N=90°,且∠E'D'F'=90°,∴∠E'D'N=∠F'D'M,在△D'NE'和△D'MF'中,,∴△D'NE'≌△D'MF'(AAS),∴D'N=D'M,且D'N⊥AC,D'M⊥CM,∴CD'平分∠ACM,即点E沿AC方向下滑时,点D'在射线CD上移动,∴当E'D'⊥AC时,DD'值最大,最大值=ED﹣CD=(12﹣6)cm,∴当点E从点A滑动到点C时,点D运动的路径长=2×(12﹣6)=(24﹣12)cm;故答案为:(24﹣12).变式练习>>>9.(2018•金华模拟)如图,Rt△ABC中,BC=4,AC=8,Rt△ABC的斜边在x轴的正半轴上,点A与原点重合,随着顶点A由O点出发沿y轴的正半轴方向滑动,点B也沿着x轴向点O滑动,直到与点O重合时运动结束.在这个运动过程中.(1)AB中点P经过的路径长π.(2)点C运动的路径长是8﹣12.【解答】解:(1)如图1,∵∠AOB=90°,P为AB的中点,∴OP=AB,∵AB=4,∴OP=2,∴AB中点P运动的轨迹是以O为圆心,以OP为半径的圆弧,即AB中点P经过的路径长=×2×2π=π;(2)①当A从O到现在的点A处时,如图2,此时C′A⊥y轴,点C运动的路径长是CC′的长,∴AC′=OC=8,∵AC′∥OB,∴∠AC′O=∠COB,∴cos∠AC′O=cos∠COB==,∴=,∴OC′=4,∴CC′=4﹣8;②当A再继续向上移动,直到点B与O重合时,如图3,此时点C运动的路径是从C′到C,长是CC′,CC′=OC′﹣BC=4﹣4,综上所述,点C运动的路径长是:4﹣8+4﹣4=8﹣12;故答案为:(1)π;(2)8﹣12.达标检测领悟提升强化落实1.(2018秋•黄冈期中)在△ABC中,∠BAC=90°,AB=AC=2cm,线段BC上一动点P从C点开始运动,到B点停止,以AP为边在AC的右侧作等边△APQ,则Q点运动的路径为2cm.【解答】解:如图,Q点运动的路径为QQ′的长,∵△ACQ和△ABQ′是等边三角形,∴∠CAQ=∠BAQ′=60°,AQ=AC=AQ′=2cm,∵∠BAC=90°,∴∠QAQ′=90°,由勾股定理得:QQ′===2,∴Q点运动的路径为2cm;故答案为:2.2.如图,在矩形ABCD中,AB=4,∠DCA=30°,点F是对角线AC上的一个动点,连接DF,以DF为斜边作∠DFE=30°的直角三角形DEF,使点E和点A位于DF两侧,点F从点A到点C的运动过程中,点E的运动路径长是.【解答】解:E的运动路径是线段EE'的长;∵AB=4,∠DCA=30°,∴BC=,当F与A点重合时,在Rt△ADE'中,AD=,∠DAE'=30°,∠ADE'=60°,∴DE'=,∠CDE'=30°,当F与C重合时,∠EDC=60°,∴∠EDE'=90°,∠DEE'=30°,在Rt△DEE'中,EE'=;故答案为.3.(2019•铜山区二模)如图,已知点M(0,4),N(4,0),开始时,△ABC的三个顶点A、B、C分别与点M、N、O重合,点A在y轴上从点M开始向点O滑动,到达点O结束运动,同时点B沿着x轴向右滑动,则在此运动过程中,点C的运动路径长4.【解答】解:过点C'作C'D⊥x轴,C'E⊥y轴∵点M(0,4),N(4,0),∴OM=ON,∵∠CA'C'+45°=∠EAB+∠MGB=45°+∠MGB,∴∠EA'C'=∠B'GB,∵∠B'GB+∠GB'B=45°,∠GB'B+∠DB'C'=45°,∴∠EA'C'=∠DB'C',又∵A'C'=B'C',∴Rt△A'C'E≌Rt△B'C'D(HL),∴EC'=DC',∴C'在第四象限的角平分线上,∴C的运动

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论