版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
宜昌市重点中学2024届八年级下册数学期末学业水平测试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B,则这个一次函数的解析式是()A.y=2x+3B.y=x﹣3C.y=2x﹣3D.y=﹣x+32.如图,在平面直角坐标系中,为,,与轴重合,反比例函数的图象经过中点与相交于点,点的横坐标为,则的长()A. B. C. D.3.若A(x1,y1)、B(x2,y2)、C(x3,y3)是反比例函数y=图象上的点,且x1<x2<0<x3,则y1、y2、y3的大小关系正确的是()A.y3>y1>y2 B.y1>y2>y3C.y2>y1>y3 D.y3>y2>y14.如图,A,B,C是⊙O上三点,∠α=140°,那么∠A等于().A.70° B.110° C.140° D.220°5.下列一次函数中,y随x增大而减小的是A. B. C. D.6.七巧板是我国祖先的一项卓越创造.下列四幅图中有三幅是小明用如图所示的七巧板拼成的,则不是小明拼成的那副图是()A. B. C. D.7.在△ABC中,AB=AC=10,BD是AC边上的高,DC=4,则BD等于()A.2 B.4 C.6 D.88.已知,为实数,且,,设,,则,的大小关系是().A. B. C. D.无法确定9.下列不等式的变形中,不正确的是()A.若,则 B.若,则C.若,则 D.若,则10.如图,在正方形ABCD中,点P是AB上一动点(不与A,B重合),对角线AC,BD相交于点O,过点P分别作AC,BD的垂线,分别交AC,BD于点E,F,交AD,BC于点M,N.下列结论:①△APE≌△AME;②PM+PN=BD;③PE2+PF2=PO2.其中正确的有()A.0个 B.1个 C.2个 D.3个11.如图,矩形中,,,点是的中点,平分交于点,过点作于点,连接,则的长为()A.3 B.4 C.5 D.612.平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是()A.5 B.6 C.7 D.8二、填空题(每题4分,共24分)13.在△ABC中,BC=a.作BC边的三等分点C1,使得CC1:BC1=1:2,过点C1作AC的平行线交AB于点A1,过点A1作BC的平行线交AC于点D1,作BC1边的三等分点C2,使得C1C2:BC2=1:2,过点C2作AC的平行线交AB于点A2,过点A2作BC的平行线交A1C1于点D2;如此进行下去,则线段AnDn的长度为______________.14.当________时,的值最小.15.在直角坐标系中,直线与y轴交于点,按如图方式作正方形、、…,、、…在直线上,点、、…,在x轴上,图中阴影部分三角形的面积从左到右依次记为、、、..,则的值为________.16.不等式的正整数解的和______;17.若一次函数的函数值随的增大而增大,则的取值范围是_____.18.如图,△ABC和△BDE都是等边三角形,A、B、D三点共线.下列结论:①AB=CD;②BF=BG;③HB平分∠AHD;④∠AHC=60°,⑤△BFG是等边三角形.其中正确的有____________(只填序号).三、解答题(共78分)19.(8分)某剧院的观众席的座位为扇形,且按下列分式设置:排数(x)
1
2
3
4
…
座位数(y)
50
53
56
59
…
(1)按照上表所示的规律,当x每增加1时,y如何变化?(2)写出座位数y与排数x之间的关系式;(3)按照上表所示的规律,某一排可能有90个座位吗?说说你的理由.20.(8分)如图,直线AB与x轴交于点C,与y轴交于点B,点A(1,3),点B(0,2).连接AO(1)求直线AB的解析式;(2)求三角形AOC的面积.21.(8分)如图所示,在平面直角坐标系中,一次函数y=kx+1的图象与反比例函数y=的图象在第一象限相交于点A,过点A分别作x轴、y轴的垂线,垂足为点
B、C,如果四边形OBAC是正方形.
(1)求一次函数的解析式。(2)一次函数的图象与y轴交于点D.在x轴上是否存在一点P,使得PA+PD最小?若存在,请求出P点坐标及最小值;若不存在,请说明理由。22.(10分)平行四边形ABCD在平面直角坐标系中的位置如图所示,已知AB=8,AD=6,∠BAD=60°,点A的坐标为(-2,0).求:(1)点C的坐标;(2)直线AC与y轴的交点E的坐标.23.(10分)如图,方格纸中每一个小方格的边长为1个单位,试解答下列问题:(1)的顶点都在方格纸的格点上,先将向右平移2个单位,再向上平移3个单位,得到,其中点、、分别是、、的对应点,试画出;(2)连接,则线段的位置关系为____,线段的数量关系为___;(3)平移过程中,线段扫过部分的面积_____.(平方单位)24.(10分)某学校组织了“热爱宪法,捍卫宪法”的知识竞赛,赛后发现所有学生的成绩(总分100分)均不低于50分,为了解本次竞赛的成绩分布情况,随机抽取若干名学生的成绩作为样本进行整理,并绘制了不完整的统计图表,请你根据统计图表解答下列问题.(1)此次抽样调查的样本容量是_________;(2)写出表中的a=_____,b=______,c=________;(3)补全学生成绩分布直方图;(4)比赛按照分数由高到低共设置一、二、三等奖,若有25%的参赛学生能获得一等奖,则一等奖的分数线是多少?25.(12分)如图,四边形为菱形,已知,.(1)求点的坐标;(2)求经过点,两点的一次函数的解析式.(3)求菱形的面积.26.某区对即将参加中考的初中毕业生进行了一次视力抽样调查,绘制出频数分布表和频数分布直方图的一部分.请根据图表信息回答下列问题:视力频数(人)频率4.0≤x<4.3200.14.3≤x<4.6400.24.6≤x<4.9700.354.9≤x<5.2a0.35.2≤x<5.510b(1)本次调查的样本为,样本容量为;(2)在频数分布表中,组距为,a=,b=,并将频数分布直方图补充完整;(3)若视力在4.6以上(含4.6)均属正常,计算抽样中视力正常的百分比.
参考答案一、选择题(每题4分,共48分)1、D【解析】试题分析:∵B点在正比例函数y=2x的图象上,横坐标为1,∴y=2×1=2,∴B(1,2),设一次函数解析式为:y=kx+b,∵过点A的一次函数的图象过点A(0,1),与正比例函数y=2x的图象相交于点B(1,2),∴可得出方程组b=3k+b=2解得b=3k=-1则这个一次函数的解析式为y=﹣x+1.故选D.考点:1.待定系数法求一次函数解析式2.两条直线相交或平行问题.2、B【解析】
把E点的横坐标代入,确定E的坐标,根据题意得到B的坐标为(2,4),把B的横坐标代入求得D的纵坐标,就可求得AD,进而求得BD.【详解】解:反比例函数的图象经过OB中点E,E点的横坐标为1,,∴E(1,2),∴B(2,4),∵△OAB为Rt△,∠OAB=90°,∴AB=4,把x=2代入得,∴AD=1,∴BD=AB-AD=4-1=3,故选:B.【点睛】此题考查了反比例函数与一次函数的交点问题、反比例函数图象上点的坐标特征、三角形中位线性质,解题的关键是求得B、D的纵坐标.3、A【解析】
先根据反比例函数y=的系数1>0判断出函数图象在一、三象限,在每个象限内,y随x的增大而减小,再根据x1<x1<0<x3,判断出y1、y1、y3的大小.【详解】解:∵反比例函数y=的系数3>0,∴该反比例函数的图象如图所示,该图象在第一、三象限,在每个象限内,y随x的增大而减小,又∵x1<x1<0<x3,,∴y3>y1>y1.故选A.4、B【解析】
解:根据周角可以计算360°﹣∠α=220°,再根据圆周角定理,得∠A的度数.∵∠1=360°﹣∠α=220°,∴∠A=∠1=220°÷2=110°.故选B.考点:圆周角定理.5、D【解析】∵A,B,C中,自变量的系数大于0,∴y随x增大而增大;∵D中,自变量的系数小于0,∴y随x增大而减小;故选D.6、C【解析】观察可得,选项C中的图形与原图中的④、⑦图形不符,故选C.7、D【解析】
求出AD,在Rt△BDA中,根据勾股定理求出BD即可.【详解】∵AB=AC=10,CD=4,∴AD=10-4=6,∵BD是AC边上的高,∴∠BDA=90°,在Rt△BDA中由勾股定理得:,故选:D.【点睛】本题考查了勾股定理的应用,主要考查学生能否正确运用勾股定理进行计算,注意:在直角三角形中,两直角边的平方和等于斜边的平方.8、C【解析】
对M、N分别求解计算,进行异分母分式加减,然后把ab=1代入计算后直接选取答案【详解】解:∵,∴∵,∴∴M=N故选C【点睛】本题考查分式的加减法,熟练掌握分式的运算为解题关键9、D【解析】
根据不等式的基本性质进行判断。【详解】A.∴,故A正确;B.,在不等式两边同时乘以(-1)则不等号改变,∴,故B正确;C.,在不等式两边同时乘以(-3)则不等号改变,∴,故C正确;D.,在不等式两边同时除以(-3)则不等号改变,∴,故D错误所以,选项D不正确。【点睛】主要考查了不等式的基本性质:1、不等式两边同时加(或减去)同一个数(或式子),不等号方向不变;2、不等式两边同时乘以(或除以)同一个正数,不等号方向不变;3、不等式两边同时乘以(或除以)同一个负数,不等号方向改变。10、D【解析】
依据正方形的性质以及勾股定理、矩形的判定方法即可判断△APM和△BPN以及△APE、△BPF都是等腰直角三角形,四边形PEOF是矩形,从而作出判断.【详解】解:∵四边形ABCD是正方形,
∴∠BAC=∠DAC=45°.
在△APE和△AME中,
∠BAC=∠DAC
AE=AE
∠AEP=∠AEM,
∴△APE≌△AME(ASA),故①正确;
∴PE=EM=PM,
同理,FP=FN=NP.
∵正方形ABCD中,AC⊥BD,
又∵PE⊥AC,PF⊥BD,
∴∠PEO=∠EOF=∠PFO=90°,且△APE中AE=PE
∴四边形PEOF是矩形.
∴PF=OE,
∴PE+PF=OA,
又∵PE=EM=PM,FP=FN=NP,OA=AC,
∴PM+PN=AC,∴PM+PN=BD;故②正确;
∵四边形ABCD是矩形,
∴AC⊥BD,
∴∠AOB=90°,
∵PE⊥AC,PF⊥BD,
∴∠OEP=∠EOF=∠OFP=90°,
∴四边形PEOF是矩形,
∴OE=PF,OF=PE,
在直角△OPF中,OE²+PE²=PO²,
∴PE²+PF²=PO²,故③正确;∴正确的有3个,故选:D【点睛】本题是正方形的性质、矩形的判定、勾股定理的综合应用,认识△APM和△BPN以及△APE、△BPF都是等腰直角三角形,四边形PEOF是矩形是关键.11、C【解析】
连接CG,由矩形的性质好已知条件可证明EF是△DGC的中位线,在直角三角形GBC中利用勾股定理可求出CG的长,进而可求出EF的长.【详解】连接CG,∵四边形ABCD是矩形,∴AB∥CD,∠B=90∘,AD=BC=8,∴∠AGD=∠GDC,∵DG平分∠ADC,∴∠ADG=∠GDC,∴∠AGD=∠ADG,∴AG=AD=8,∵AF⊥DG于点F,∴FG=FD,∵点E是CD的中点,∴EF是△DGC的中位线,∴EF=CG,∵AB=14,∴GB=6,∴CG==10,∴EF=×10=5,故选C.【点睛】此题主要考查矩形的线段求解,解题的关键是熟知平行线的性质、三角形中位线定理及勾股定理的运用.12、A【解析】试题分析:构造等腰三角形,①分别以A,B为圆心,以AB的长为半径作圆;②作AB的中垂线.如图,一共有5个C点,注意,与B重合及与AB共线的点要排除.故答案选A.考点:等腰三角形的判定;坐标与图形性质.二、填空题(每题4分,共24分)13、【解析】
根据平行四边形的判定定理得到四边形A1C1CD1为平行四边形,根据平行四边形的性质得到A1D1=C1C,总结规律,根据规律解答.【详解】∵A1C1∥AC,A1D1∥BC,∴四边形A1C1CD1为平行四边形,∴A1D1=C1C=a=,同理,四边形A2C2C1D2为平行四边形,∴A2D2=C1C2=a=,……∴线段AnDn=,故答案为:.【点睛】本题考查的是平行四边形的判定和性质、图形的变化规律,掌握平行四边形的判定定理和性质定理是解题的关键.14、【解析】
根据二次根式的意义和性质可得答案.【详解】解:由二次根式的性质可知,当时,取得最小值0故答案为:2【点睛】本题考查二次根式的“双重非负性”即“根式内的数或式大于等于零”和“根式的计算结果大于等于零”15、【解析】
根据=,=,找出规律从而得解.【详解】解:∵直线,当x=0时,y=1,当y=0时,x=﹣1,∴OA1=1,OD=1,∴∠ODA1=45°,∴∠A2A1B1=45°,∴A2B1=A1B1=1,∴=,∵A2B1=A1B1=1,∴A2C1=2=,∴=,同理得:A3C2=4=,…,=,∴=,故答案为.16、3.【解析】
先解出一元一次不等式,然后选取正整数解,再求和即可.【详解】解:解得;x<3,;则正整数解有2和1;所以正整数解的和为3;故答案为3.【点睛】本题考查了解一元一次不等式组和正整数的概念,其关键在于选取正整数解.17、k>2【解析】
试题分析:本题主要考查一次函数的性质,掌握一次函数的性质是解题的关键,即在y=kx+b中,当k>0时y随x的增大而增大,当k<0时y随x的增大而减小.【详解】根据题意可得:k-2>0,解得:k>2.【点睛】考点:一次函数的性质;一次函数的定义18、②③④⑤【解析】
由题中条件可得△ABE≌△CBD,得出对应边、对应角相等,进而得出△BGD≌△BFE,△ABF≌△CGB,再由边角关系即可求解题中结论是否正确,进而可得出结论.【详解】∴AB=BC,BD=BE,∠ABC=∠DBE=60°,∴∠ABE=∠CBD,在△ABE和△CBD中,,∴△ABE≌△CBD(SAS),∴AE=CD,∠BDC=∠AEB,又∵∠DBG=∠FBE=60°,∴在△BGD和△BFE中,,∴△BGD≌△BFE(ASA),∴BG=BF,∠BFG=∠BGF=60°,∴△BFG是等边三角形,∴FG∥AD,在△ABF和△CGB中,,∴△ABF≌△CGB(SAS),∴∠BAF=∠BCG,∴∠CAF+∠ACB+∠BCD=∠CAF+∠ACB+∠BAF=60°+60°=120°,∴∠AHC=60°,∴②③④⑤都正确.故答案为②③④⑤.【点睛】本题主要考查了等边三角形的性质及全等三角形的判定及性质问题,能够熟练掌握.三、解答题(共78分)19、(1)当x每增加1时,y增加3;(2)y=3x+47;(3)不可能;理由见解析.【解析】
(1)根据表格可得:后面的一排比前面的多3个座位;(2)根据表格信息求出函数解析式;(3)将y=90代入函数解析式,求出x的值,看x是否是整数.【详解】(1)当排数x每增加1时,座位y增加3.(2)由题意得:(x为正整数);(3)当时,解得因为x为正整数,所以此方程无解.即某一排不可能有90个座位.【点睛】本题主要考查的就是一次函数的实际应用,属于基础题型.解决这个问题的关键就是利用待定系数法求出一次函数的解析式.20、(1)y=x+2;(2)1.【解析】
(1)设直线AB的解析式为y=kx+b,把A、B的坐标代入求出k、b的值即可,(2)把y=0代入(1)所求出的解析式,便能求出C点坐标,从而利用三角形的面积公式求出三角形AOC的面积即可.【详解】(1)设直线AB的解析式y=kx+b,把点A(1,1),B(0,2)代入解析式得:,解得:k=1,b=2,把k=1,b=2代入y=kx+b得:y=x+2,直线AB的解析式:y=x+2;(2)把y=0代入y=x+2得:x+2=0,解得:x=﹣2,∴点C的坐标为(﹣2,0),∴OC=2,∵△AOC的底为2,△AOC的高为点A的纵坐标1,∴S△ABC=2×1×=1,故三角形AOC的面积为1.【点睛】本题考查了待定系数法求一次函数解析式和三角形的面积,解答本题的关键是明确题意,用待定系数法求出一次函数解析式.21、(1)y=x+1;(2)(,0)【解析】
(1)若四边形OBAC是正方形,那么点A的横纵坐标相等,代入反比例函数即可求得点A的坐标,进而代入一次函数即可求得未知字母k.(2)在y轴负半轴作OD′=OD,连接AD′,与x轴的交点即为P点的坐标,进而求出P点的坐标.【详解】(1)∵四边形OBAC是正方形,∴S四边形OBAC=AB=OB=9,∴点A的坐标为(3,3),∵一次函数y=kx+1的图象经过A点,∴3=3k+1,解得k=,∴一次函数的解析式y=x+1,(2)y轴负半轴作OD′=OD,连接AD′,如图所示,AD′与x轴的交点即为P点的坐标,∵一次函数的解析式y=x+1,∴D点的坐标为(0,1),∴D′的坐标为(0,−1),∵A点坐标为(3,3),设直线AD′的直线方程为y=mx+b,即,解得m=,b=−1,∴直线AD′的直线方程为y=x−1,令y=0,解得x=,∴P点坐标为(,0)【点睛】此题考查反比例函数综合题,解题关键在于熟练掌握一次函数和反比例函数的性质.22、(1)C(3,);(1)E(0,)【解析】
(1)过C作CH⊥x轴于点H,利用平行四边形的性质结合直角三角形的性质得出C点坐标;(1)利用待定系数法求出一次函数解析式,再利用x=0进而得出答案.【详解】解:(1)过C作CH⊥x轴于点H,∵四边形ABCD为平行四边形,∴CD=AB=8,BC=AD=2,AB//DC,AD//BC.∴∠BAD=∠HBC∵∠BAD=20°,∴∠HBC=20°.∴BH=3,CH=.∵A(-1,0),∴AO=1.∴OB=2.∴OH=OB+BH=3.∴C(3,).(1)设直线AC的表达式为:y=kx+b,把A(-1,0)和C(3,)代入,得∴,解得:∴.∴E(0,)【点睛】此题主要考查了平行四边形的性质和待定系数法求一次函数解析式,正确掌握平行四边形的性质是解题关键.23、(1)见解析;(2)平行,相等;(3)1.【解析】
(1)直接利用平移的性质分别得出对应点位置进而得出答案;
(2)利用平移的性质得出线段AA1、BB1的位置与数量关系;
(3)利用三角形面积求法进而得出答案.【详解】解:(1)如图所示:△A1B1C1,即为所求;
(2)线段AA1、BB1的位置关系为平行,线段AA1、BB1的数量关系为:相等.
故答案为:平行,相等;
(3)平移过程中,线段AB扫过部分的面积为:2××3×5=1.
故答案为:1.【点睛】此题考查平移变换以及三角形面积求法,正确得出对应点位置是解题关键.24、(1)200;(2)62,0.06,38;(3)见解析;(4)1【解析】
(1)根据统计图中的数据可以求得此次抽样调查的样本容量;(2)根据统计图中的数据可以求得a、b、c的值;(3)根据(2)中a、c的值可以将统计图补充完整;(4)根据表格中的数据可以求得一等奖的分数线.【详解】解:(1)16÷0.08=200,故答案为:200;(2)a=200×0.31=62,b=12÷200=0.06,c=200-16-62-7
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高中物理天体观测与宇宙探索兴趣激发的课题报告教学研究课题报告
- 初中生物实验操作中误差来源识别与控制策略研究课题报告教学研究课题报告
- 上海上海大学2025年公开招聘23人(第五批)笔试历年备考题库附带答案详解
- 三明市2025福建三明高新技术产业开发区管理委员会直属事业单位招聘紧缺急需专业工笔试历年参考题库典型考点附带答案详解(3卷合一)
- 三亚三亚市市场监督管理局2025年招聘5名下属事业单位工作人员(第1号)笔试历年难易错考点试卷带答案解析
- 2026陕西黄河集团校园招聘笔试参考题库附带答案详解
- 2026年河北水利发展集团有限公司公开招聘工作人员41名笔试参考题库附带答案详解
- 2026国家电投集团中国重燃招聘18人笔试参考题库附带答案详解
- 2026“青春逐梦全球启航”中国河南国际合作集团校园招聘20人笔试参考题库附带答案详解
- 2025广东中山市三角镇资产经营有限公司招聘管理人员1人笔试参考题库附带答案详解
- 机电设备安装与调试技术教案
- 甲状腺的中医护理
- 纪念册后记的格式范文
- 2024版装修公司软装合同范本
- 加压站清水池建设工程勘察设计招标文件
- 工会制度汇编
- 2023年医务科工作计划-1
- 地基与基础分项工程质量验收记录
- 一文多用作文课公开课课件
- 水运工程施工课程设计指导书
- 惊恐障碍诊治课件
评论
0/150
提交评论