




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省南充市名校2024年八年级数学第二学期期末质量跟踪监视模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.以下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是A.2,3,4 B.,, C.,,1 D.6,9,132.如图,平行于BC的直线DE把△ABC分成面积相等的两部分,则的值为()A.1 B. C.-1 D.+13.如图,正方形ABCD的边长为8,点M在边DC上,且,点N是边AC上一动点,则线段的最小值为A.8B.C.D.104.对于数据3,3,1,3,6,3,10,3,6,3,1.①这组数据的众数是3;②这组数据的众数与中位数的数值不等;③这组数据的中位数与平均数的数值相等;④这组数据的平均数与众数的数值相等,其中正确的结论有()A.1个 B.1个 C.3个 D.4个5.已知一次函数y=kx﹣b(k≠0)图象如图所示,则kx﹣1<b的解集为()A.x>2 B.x<2 C.x>0 D.x<06.做抛掷两枚硬币的实验,事件“一正一反”的“频率”的值正确的是()A.0 B.约为 C.约为 D.约为17.从2004年5月起某次列车平均提速20千米/小时,用相同的时间,列车提速前行驶200千米,提速后比提速前多行驶50千米,提速前列车的平均速度是多少?设提速前这次列车的平均速度为千米/小时,则下列列式中正确的是()A. B. C. D.8.若分式有意义,则x的取值范围是()A.x=1 B.x≠1 C.x>1 D.x<19.若反比例函数图象上有两个点,设,则不经过第()象限.A.一 B.二 C.三 D.四10.如图,在平行四边形ABCD中,AB=10,AD=12,将平行四边形ABCD沿AE翻折后,点B恰好与点C重合,则折痕AE的长为()A.8 B. C. D.6二、填空题(每小题3分,共24分)11.两个反比例函数C1:y=和C2:y=在第一象限内的图象如图所示,设点P在C1上,PC⊥x轴于点C,交C2于点A,PD⊥y轴于点D,交C2于点B,则四边形PAOB的面积为_____.12.如图,矩形纸片,,,点在边上,将沿折叠,点落在点处,,分别交于点,,且,则的值为_____________.13.准备在一块长为30米,宽为24米的长方形花圃内修建四条宽度相等,且与各边垂直的小路,(如图所示)四条小路围成的中间部分恰好是一个正方形,且边长是小路宽度的4倍,若四条小路所占面积为80平方米,则小路的宽度为_____米.14.如图,在菱形中,,过的中点作,垂足为点,与的延长线相交于点,则_______,_______.15.若一次函数y=kx+1(k为常数,k≠0)的图象经过第一、二、三象限,则k的取值范围是
.16.已知,,,则的值是_______.17.反比例函数与一次函数图象的交于点,则______.18.某校四个绿化小组一天植树棵数分别是10、10、x、8,已知这组数据的众数与平均数相等,则这组数据的中位数是_____.三、解答题(共66分)19.(10分)某学校开展课外体育活动,决定开设A:篮球、B:羽毛球、C:跑步、D:乒乓球这四种活动项目.为了解学生最喜欢哪一种活动项目(每人只选取一种),随机抽取了部分学生进行调查,并将调查结果绘成如甲、乙所示的统计图,请你结合图中信息解答下列问题.(1)样本中最喜欢A项目的人数所占的百分比为,其所在扇形统计图中对应的圆心角度数是度;(2)请把条形统计图补充完整;(3)若该校有学生2500人,请根据样本估计全校最喜欢跑步的学生人数约是多少?20.(6分)如图①,四边形ABCD为正方形,点E,F分别在AB与BC上,且∠EDF=45°,易证:AE+CF=EF(不用证明).(1)如图②,在四边形ABCD中,∠ADC=120°,DA=DC,∠DAB=∠BCD=90°,点E,F分别在AB与BC上,且∠EDF=60°.猜想AE,CF与EF之间的数量关系,并证明你的猜想;(2)如图③,在四边形ABCD中,∠ADC=2α,DA=DC,∠DAB与∠BCD互补,点E,F分别在AB与BC上,且∠EDF=α,请直接写出AE,CF与EF之间的数量关系,不用证明.21.(6分)如图1,矩形ABCD中,AB=2,BC=3,过对角线AC中点O的直线分别交边BC、AD于点E、F(1)求证:四边形AECF是平行四边形;(2)如图2,当EF⊥AC时,求EF的长度.22.(8分)每年的6月5日为世界环保日,为了提倡低碳环保,某公司决定购买10台节省能源的新设备,现有A、B两种型号的设备可供选购,A、B两种型号的设备每台的价格分别为12万元和10万元(1)该公司经预算决定购买节省能源的新设备的资金不超过110万元,则A型设备最多购买多少台?(2)已知A型设备的产量为240吨/月,B型设备的产量为180吨/月,若每月要求总产量不低于2040吨,则A型设备至少要购买多少台?23.(8分)如图,在菱形ABCD中,∠BAD=60°,AC与BD交于点O,E为CD延长线上的一点,且CD=DE,连接BE分别交AC、AD于点F、G,连接OG,则下列结论中一定成立的是()①OG=AB;②与△EGD全等的三角形共有5个;③S四边形ODGF>S△ABF;④由点A、B、D、E构成的四边形是菱形.A.1个 B.2个 C.3个 D.4个24.(8分)计算:(1)(2).25.(10分)解下列方程:(1)(2)26.(10分)如图,大拇指与小指尽量张开时,两指尖的距离称为指距,某项研究表明,一般情况下人的身高h是指距d的一次函数,下表是测得指距与身高的一组数据:(1)求出h与d之间的函数关系式;(2)某人身高为196cm,一般情况下他的指距应是多少?
参考答案一、选择题(每小题3分,共30分)1、C【解析】
由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【详解】解:A、,不能构成直角三角形,故本选项错误;B、,不能构成直角三角形,故本选项错误;C、,能构成直角三角形,故本选项正确;D、,不能构成直角三角形,故本选项错误.故选:C.【点睛】本题考查的是勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足,那么这个三角形就是直角三角形是解答此题的关键.2、C【解析】【分析】由DE∥BC可得出△ADE∽△ABC,利用相似三角形的性质结合S△ADE=S四边形BCED,可得出,结合BD=AB﹣AD即可求出的值.【详解】∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴△ADE∽△ABC,∴,∵S△ADE=S四边形BCED,S△ABC=S△ADE+S四边形BCED,∴,∴,故选C.【点睛】本题考查了相似三角形的判定与性质,牢记相似三角形的面积比等于相似比的平方是解题的关键.3、D【解析】
要使DN+MN最小,首先应分析点N的位置.根据正方形的性质:正方形的对角线互相垂直平分.知点D的对称点是点B,连接MB交AC于点N,此时DN+MN最小值即是BM的长.【详解】解:根据题意,连接BD、BM,则BM就是所求DN+MN的最小值,在Rt△BCM中,BC=8,CM=6根据勾股定理得:BM=,即DN+MN的最小值是10;故选:D.【点睛】本题考查了轴对称问题以及正方形的性质,难点在于确定满足条件的点N的位置:利用轴对称的方法.然后熟练运用勾股定理.4、A【解析】
将这组数据从小到大排列为:1,1,2,2,2,2,2,2,6,6,10,共11个数,所以第6个数据是中位数,即中位数为2.数据2的个数为6,所以众数为2.平均数为,由此可知(1)正确,(1)、(2)、(4)均错误,故选A.5、C【解析】
将kx-1<b转换为kx-b<1,再根据函数图像求解.【详解】由kx-1<b得到:kx-b<1.∵从图象可知:直线与y轴交点的坐标为(2,1),∴不等式kx-b<1的解集是x>2,∴kx-1<b的解集为x>2.故选C.【点睛】本题考查的是一次函数的图像,熟练掌握函数图像是解题的关键.6、C【解析】
列举抛两枚硬币可能出现的情况,得出“一正一反”的概率,即为“频率”的估计值.【详解】抛两枚硬币可能出现的情况有:正正,正反,反正,反反四种等可能的情况,出现“一正一反”的概率为,则事件“一正一反”的“频率”的值约为,故选C.【点睛】本题考查概率与频率,掌握大量重复同一实验时,事件A出现的频率与概率大致相等是解题的关键.7、B【解析】
设提速前列车的平均速度为x千米/小时,则提速之后的速度为(x+20)千米/小时,根据题意可得,相同的时间提速之后比提速之前多走50千米,据此列方程.【详解】设提速前列车的平均速度为x千米/小时,由题意得:.故选B.【点睛】考查了由实际问题抽象出分式方程问题,解答此类问题的关键是分析题意找出相等关系,(1)在确定相等关系时,一是要理解一些常用的数量关系和一些基本做法,如行程问题中的相遇问题和追击问题,最重要的是相遇的时间相等、追击的时间相等.(2)列分式方程解应用题要多思、细想、深思,寻求多种解法思路.8、B【解析】
根据分式有意义的条件即可求出答案.【详解】由分式有意义的条件可知:x-1≠0,∴x≠1,故选:B.【点睛】本题考查分式有意义的条件,解题的关键是熟练运用分式有意义的条件,本题属于基础题型.9、C【解析】
利用反比例函数的性质判断出m的正负,再根据一次函数的性质即可判断.【详解】解:∵,∴a-1>0,∴图象在三象限,且y随x的增大而减小,∵图象上有两个点(x1,y1),(x2,y2),x1与y1同负,x2与y2同负,∴m=(x1-x2)(y1-y2)<0,∴y=mx-m的图象经过一,二、四象限,不经过三象限,故选:C.【点睛】本题考查反比例函数的性质,一次函数的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10、A【解析】
由点B恰好与点C重合,可知AE垂直平分BC,根据勾股定理计算AE的长即可.【详解】解:∵翻折后点B恰好与点C重合,∴AE⊥BC,BE=CE,∵BC=AD=12,∴BE=6,∴AE=,故选:A.【点睛】本题主要考查了平行四边形的性质,作图-轴对称变换,掌握平行四边形的性质,作图-轴对称变换是解题的关键.二、填空题(每小题3分,共24分)11、1【解析】试题解析:∵PC⊥x轴,PD⊥y轴,∴S矩形PCOD=2,S△AOC=S△BOD=,∴四边形PAOB的面积=S矩形PCOD-S△AOC-S△BOD=2--=1.12、【解析】
由矩形的性质和已知条件,可判定,设,根据全等三角形的性质及矩形的性质可用含x的式子表示出DF和AF的长,在根据勾股定理可求出x的值,即可确定AF的值.【详解】解:四边形ABCD是矩形,,,是由沿折叠而来的,,又(AAS)设,则在中,根据勾股定理得:,即解得故答案为:【点睛】本题考查了求多边形中的线段长,主要涉及的知识点有矩形的性质,全等三角形的判定与性质,勾股定理,数学的方程思想,用同一个字母表示出直角三角形中的三边长是解题的关键.13、1.25【解析】
设小路的宽度为,根据图形所示,用表示出小路的面积,由小路面积为80平方米,求出未知数.【详解】设小路的宽度为,由题意和图示可知,小路的面积为,解一元二次方程,由,可得.【点睛】本题综合考查一元二次方程的列法和求解,这类实际应用的题目,关键是要结合题意和图示,列对方程.14、1【解析】
由菱形的性质可得AB=AD=CD=4,AB∥CD,由“ASA”可证△AEF≌△DEH,可得AF=HD=1,由三角形面积公式可求△CEF的面积.【详解】∵四边形是菱形,∴.∵点是的中点,∴.∵,∴,∴.∵,∴,且,∴,∴,∴.∴.故答案为:1,.【点睛】此题考查菱形的性质,全等三角形的判定和性质,直角三角形的性质,证明AF=HD=1是解题的关键.15、k>0【解析】试题分析:一次函数的图象有四种情况:①当,时,函数的图象经过第一、二、三象限;②当,时,函数的图象经过第一、三、四象限;③当,时,函数的图象经过第一、二、四象限;④当,时,函数的图象经过第二、三、四象限。由题意得,y=kx+1(k为常数,k≠0)的图象经过第一、二、三象限,故。16、【解析】
首先根据a+b=−8,和ab=10确定a和b的符号,然后对根式进行化简,然后代入求解即可.【详解】解:原式=则原式=故答案为:.【点睛】本题考查了根式的化简求值,正确确定a和b的符号是解决本题的关键.17、-1【解析】试题分析:将点A(-1,a)代入一次函数可得:-1+2=a,则a=1,将点A(-1,1)代入反比例函数解析式可得:k=1×(-1)=-1.考点:待定系数法求反比例函数解析式18、1【解析】
根据这组数据的众数与平均数相等确定x的值,再根据中位数的定义求解即可.【详解】解:当x=8时,有两个众数,而平均数只有一个,不合题意舍去.当众数为1时,根据题意得(1+1+x+8)÷4=1,解得x=12,将这组数据从小到大的顺序排列8,1,1,12,处于中间位置的是1,1,所以这组数据的中位数是(1+1)÷2=1.故答案为1【点睛】本题为统计题,考查平均数、众数与中位数的意义,解题时需要理解题意,分类讨论.三、解答题(共66分)19、(1)40%,144;(2)详见解析;(3)250人【解析】
(1)根据扇形统计图中的数据可以求得最喜欢A项目的人数所占的百分比,并求出其所在扇形统计图中对应的圆心角度数;(2)根据统计图中的数据可以求得选择A的人数,从而可以将条形统计图补充完整;(3)根据统计图中的数据可以求得全校最喜欢跑步的学生人数约是多少.【详解】解:(1)样本中最喜欢A项目的人数所占的百分比为:1﹣30%﹣10%﹣20%=40%,其所在扇形统计图中对应的圆心角度数是:360°×40%=144°,故答案为40%,144;(2)选择A的人有:45÷30%×40%=60(人),补全的条形统计图如右图所示;(3)2500×10%=250(人),答:全校最喜欢跑步的学生人数约是250人.【点睛】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.20、(1)AE+CF=EF,证明见解析;(2),理由见解析.【解析】
(1)由题干中截长补短的提示,再结合第(1)问的证明结论,在第二问可以用截长补短的方法来构造全等,从而达到证明结果.(2)同理作辅助线,同理进行即可,直接写出猜想,并证明.【详解】(1)图2猜想:AE+CF=EF,证明:在BC的延长线上截取CA'=AE,连接A'D,∵∠DAB=∠BCD=90°,∴∠DAB=∠DCA'=90°,
又∵AD=CD,AE=A'C,∴△DAE≌△DCA'(SAS),∴ED=A'D,∠ADE=∠A'DC,∵∠ADC=120°,∴∠EDA'=120°,∵∠EDF=60°,∴∠EDF=∠A'DF=60°,
又DF=DF,∴△EDF≌△A'DF(SAS),则EF=A'F=FC+CA'=FC+AE;(2)如图3,AE+CF=EF,证明:在BC的延长线上截取CA'=AE,连接A'D,∵∠DAB与∠BCD互补,∠BCD+∠DCA'=180°∴∠DAB=∠DCA',
又∵AD=CD,AE=A'C,∴△DAE≌△DCA'(SAS),∴ED=A'D,∠ADE=∠A'DC,∵∠ADC=2α,∴∠EDA'=2α,∵∠EDF=α,∴∠EDF=∠A'DF=α
又DF=DF,∴△EDF≌△A'DF(SAS),则EF=A'F=FC+CA'=FC+AE.【点睛】本题是常规的角含半角的模型,解决这类问题的通法:旋转(截长补短)构造全等即可,题目所给例题的思路,为解决此题做了较好的铺垫.21、(1)见解析;(2)EF=.【解析】
(1)证明△AOF≌△COE全等,可得AF=EC,∵AF∥EC,∴四边形AECF是平行四边形;(2)由(1)知四边形AECF是平行四边形,且EF⊥AC,∴四边形AECF为菱形,假设BE=a,根据勾股定理求出a,从而得知EF的长度;【详解】解:(1)∵矩形ABCD,∴AF∥EC,AO=CO∴∠FAO=∠ECO∴在△AOF和△COE中,,∴△AOF≌△COE(ASA)∴AF=EC又∵AF∥EC∴四边形AECF是平行四边形;(2)由(1)知四边形AECF是平行四边形,∵EF⊥AC,∴四边形AECF为菱形,设BE=a,则AE=EC=3-a∴a2+22=(3-a)2∴a=则AE=EC=,∵AB=2,BC=3,∴AC==∴AO=OC=,∴OE===,∴EF=2OF=.【点睛】此题考查平行四边形的判定,菱形的性质,勾股定理,全等三角形的判定与性质,熟练掌握矩形的性质和勾股定理,证明三角形全等是解题的关键.22、(1)A型设备最多购买5台;(2)A型设备至少要购买4台.【解析】
(1)设购买A型号的x台,购买B型号的为(10-x)台,根据购买节省能源的新设备的资金不超过110万元.可列出不等式求解.(2)设购买A型号的a台,购买B型号的为(10-a)台,根据每月要求总产量不低于2040吨,可列不等式求解.【详解】(1)设购买A型号的x台,购买B型号的为(10﹣x)台,则:12x+10(10﹣x)≤110,解得:x≤5,答:A型设备最多购买5台;(2)设购买A型号的a台,购买B型号的为(10﹣a)台,可得:240a+180(10﹣a)≥2040,解得:a≥4,∴A型设备至少要购买4台.【点睛】本题考查了一元一次不等式的应用,解题的关键是根据题意列出的一元一次不等式.23、B【解析】
由AAS证明△ABG≌△DEG,得出AG=DG,证出OG是△ACD的中位线,得出OG=CD=AB,①正确;先证明四边形ABDE是平行四边形,证出△ABD、△BCD是等边三角形,得出AB=BD=AD,因此OD=AG,得出四边形ABDE是菱形,④正确;由菱形的性质得得出△ABG≌△BDG≌△DEG,由SAS证明△ABG≌△DCO,得出△ABO≌△BCO≌△CDO≌△AOD≌△ABG≌△BDG≌△DEG,得出②不正确;证出OG是△ABD的中位线,得出OG∥AB,OG=AB,得出△GOD∽△ABD,△ABF∽△OGF,由相似三角形的性质和面积关系得出S四边形ODGF=S△ABF;③不正确;即可得出结果.【详解】∵四边形ABCD是菱形,∴AB=BC=CD=DA,AB∥CD,OA=OC,OB=OD,AC⊥BD,∴∠BAG=∠EDG,△ABO≌△BCO≌△CDO≌△AOD,∵CD=DE,∴AB=DE,在△ABG和△DEG中,,∴△ABG≌△DEG(AAS),∴AG=DG,∴OG是△ACD的中位线,∴OG=CD=AB,①正确;∵AB∥CE,AB=DE,∴四边形ABDE是平行四边形,∵∠BCD=∠BAD=60°,∴△ABD、△BCD是等边三角形,∴AB=BD=AD,∠ODC=60°,∴OD=AG,四边形ABDE是菱形,④正确;∴AD⊥BE,由菱形的性质得:△ABG≌△BDG≌△DEG,在△AB
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高清放映机升级企业制定与实施新质生产力项目商业计划书
- 耐磨塑料捆扎带技术升级企业制定与实施新质生产力项目商业计划书
- 高端床上纺织品定制行业深度调研及发展项目商业计划书
- 电磁屏蔽与吸波复合材料行业跨境出海项目商业计划书
- 书画艺术交流民宿行业跨境出海项目商业计划书
- 金融科技沙盒监管试点企业制定与实施新质生产力项目商业计划书
- 2025年互联网金融平台用户信任建立与维护的金融科技安全与用户隐私保护报告
- 书法碑林游览企业制定与实施新质生产力项目商业计划书
- 博白县永安镇农贸综合市场可行性分析报告
- 2025年远程医疗助力偏远地区医疗服务提升研究报告
- 生产良率系统统计表
- 用TOC理论提高生产制造的竞争力课件
- SketchUp (草图大师) 基础培训PPT课件
- 生命线安装方案
- 代理机构服务质量考核评价表
- 浅谈打击乐器在小学低段音乐课堂中的运用
- 电厂保安人员管理制度
- 2018年泸州市生物中考试题含答案
- ge核磁共振机房专用精密空调机技术要求
- 新干县人民医院血液透析治疗患者告知书
- 消防电气检验批质量验收记录表
评论
0/150
提交评论