第六章-段课件_第1页
第六章-段课件_第2页
第六章-段课件_第3页
第六章-段课件_第4页
第六章-段课件_第5页
已阅读5页,还剩88页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第6章

污水的厌氧生物处理

TheAnaerobicProcesses1精选课件ppt一、概述二、厌氧法的基本原理三、厌氧法的工艺和设备四、厌氧法的影响因素五、厌氧处理工艺的运行2精选课件ppt

污水厌氧生物处理的发展过程早期发展1881~1950年第二代厌氧反应器1955年开发了厌氧接触法(反应器中增加填料)新工艺,标志着现代厌氧反应器的开端。

第三代厌氧反应器1980年Switzenbaum等推出了厌氧附着膜膨胀床反应器(AAFEB),还有厌氧流化床(AFB)。一、概述3精选课件ppt

早期的厌氧生物反应器①1881年法国Mouras的自动净化器:②1891英国Moncriff的装有填料的升流式反应器:③1895年,英国设计的化粪池(SepticTank);④1905,德Imhoff池(称隐化池、双层沉淀池)特点有:①处理废水同时,也处理从废水沉淀下来的污泥;②前几种构筑物由于废水与污泥不分隔而影响出水水质;③双层沉淀池则有了很大改进,有上层沉淀池和下层消化池;④停留时间很长,出水水质也较⑤后两种反应器曾在英、美、德、法等国得到广泛推广,在我国目前仍有应用4精选课件ppt现代的厌氧生物处理

进入20世纪90年代以后,随着以颗粒污泥为主要特点的UASB反应器的广泛应用,在其基础上又发展起来了同样以颗粒污泥为根本的颗粒污泥膨胀床(EGSB)反应器和厌氧内循环(IC)反应器。其中EGSB反应器利用外加的出水循环可以使反应器内部形成很高的上升流速,提高反应器内的基质与微生物之间的接触和反应,可以在较低温度下处理较低浓度的有机废水,如城市废水等;而IC反应器则主要应用于处理高浓度有机废水,依靠厌氧生物过程本身所产生的大量沼气形成内部混合液的充分循环与混合,可以达到更高的有机负荷。这些反应器又被统一称为“第三代厌氧生物反应器”。5精选课件ppt

我国高浓度有机工业废水排放量巨大,这些废水浓度高、多含有大量的碳水化合物、脂肪、蛋白质、纤维素等有机物;我国当前的水体污染物还主要是有机污染物以及营养元素N、P的污染;目前高浓度有机工业废水的处理特点是:能源昂贵、土地价格剧增、剩余污泥的处理费用也越来越高。

①能将有机污染物转变成沼气并加以利用;②运行能耗低;③有机负荷高,占地面积少;④污泥产量少,剩余污泥处理费用低;等等;厌氧工艺的综合效益表现在环境、能源、生态三个方面。我国的厌氧技术特点我国的厌氧工艺技术特点6精选课件ppt7精选课件ppt厌氧生化法的优点:(1)应用范围广

因供氧限制,好氧法一般适用于中、低浓度有机废水的处理,而厌氧法适用于中、高浓度有机废水。有些有机物对好氧生物处理法来说是难降解的,但对厌氧生物处理是可降解的,如固体有机物、着色剂蒽醌和某些偶氮染料等。8精选课件ppt(2)能耗低

好氧法需要消耗大量能量供氧,曝气费用随着有机物浓度的增加而增大,而厌氧法不需要充氧,而且产生的沼气可作为能源。

废水有机物达一定浓度后,沼气能量可以抵偿消耗能量。研究表明,当原水BOD5达到1500mg/L时,采用厌氧处理即有能量剩余。有机物浓度愈高,剩余能量愈多。一般厌氧法的动力消耗约为活性污泥法的1/10。9精选课件ppt(3)氮、磷营养需要量较少好氧法一般要求BOD:N:P为l00:5:1,而厌氧法的BOD:N:P为l00:2.5:0.5,对氮、磷缺乏的工业废水所需投加的营养盐量较少。(4)有杀菌作用

厌氧处理过程有一定的杀菌作用,可以杀死废水和污泥中的寄生虫卵、病毒等。(5)污泥易贮存

厌氧活性污泥可以长期贮存,厌氧反应器可以季节性或间歇性运转。10精选课件ppt厌氧生物处理法缺点:(1)厌氧微生物增殖缓慢,因而厌氧设备启动和处理所需时间比好氧设备长;(2)出水往往达不到排放标准,需要进一步处理,故一般在厌氧处理后串联好氧处理;(3)厌氧处理系统操作控制因素较为复杂。(4)厌氧过程会产生气味对空气有污染。11精选课件ppt2厌氧法的基本原理

废水厌氧生物处理是指在无分子氧条件下通过厌氧微生物(anaerobicmicrobes)(包括兼氧微生物)的作用,将废水中的各种复杂有机物分解转化成甲烷(methane)和二氧化碳(carbondioxide)等物质的过程,也称为厌氧消化(anaerobicdigestion)。对批量污泥静置考察,可以见到污泥的消化过程明显分为两个阶段。固态有机物先是液化,称液化阶段;接着降解产物气化,称气化阶段;在常温下,整个过程历时半年以上。12精选课件ppt传统的厌氧消化理论为两阶段理论第一阶段:酸化阶段,最显著的特征是液态污泥的pH值迅速下降。污泥中的固态有机物或污水中的大分子化合物,如淀粉、纤维素、油脂、蛋白质等,在无氧环境中降解时,转化为有机酸、醇、醛、水分子等液态产物和CO2、H2、NH3、H2S等气体分子,气体大多溶解在泥液中。转化产物中有机酸是主体。低pH值有抑制细菌生长的作用,NH3的溶解产物NH4OH有中和作用。13精选课件ppt第二阶段:气化阶段,由低分子的有机酸经微生物作用转化为气体,气体类似沼泽散发的气体,可称沼气,主体是CH4,CO2也相当多,还有微量H2、H2S等,因此气化阶段常称甲烷化阶段。14精选课件ppt与好氧过程的根本区别在于不以分子态氧作为受氢体,而以化合态氧、碳、硫、氮等作为受氢体。厌氧生物处理是一个复杂的微生物化学过程,依靠三大主要类群的细菌,即水解产酸细菌(fermentativebacteria)、产氢产乙酸细菌(acetogenicbacteria)和产甲烷细菌(methanogenicbacteria)的联合作用完成。参与消化的细菌,酸化阶段的统称产酸或酸化细菌,几乎包括所有的兼性细菌;甲烷化阶段的统称甲烷细菌。15精选课件ppt新的研究成果阐明厌氧消化经历四个阶段大分子有机物(碳水化合物、蛋白质、脂肪等)

水解细菌的胞外酶水解和溶解的有机物

酸化产酸细菌

有机酸、醇类、醛类等/H2,CO2

乙酸化乙酸细菌

乙酸

甲烷细菌

甲烷化甲烷细菌

CH4CH4复杂的大分子、不溶性有机物先在细胞外酶的作用下水解为小分子、溶解性有机物,然后渗入细胞体内,分解产生挥发性有机酸、醇类、醛类等。这个阶段主要产生较高级脂肪酸。产甲烷细菌将乙酸、乙酸盐、CO2和H2等转化为甲烷。在产氢产乙酸细菌的作用下,第一阶段产生的各种有机酸被分解转化成乙酸和H2,在降解奇数碳素有机酸时还形成CO2。16精选课件ppt此过程由两组生理上不同的产甲烷菌完成,一组把氢和二氧化碳转化成甲烷,另一组从乙酸或乙酸盐脱羧产生甲烷,前者约占总量的l/3后者约占2/3。上述三个阶段的反应速度依废水性质而异,在含纤维素、半纤维素、果胶和脂类等污染物为主的废水中,水解易成为速度限制步骤;简单的糖类、淀粉、氨基酸和一般的蛋白质均能被微生物迅速分解,对含这类有机物为主的废水,产甲烷易成为限速阶段。17精选课件ppt理论产生甲烷量:

1、糖类、脂类和蛋白质等有机物经过厌氧消化能转化为甲烷和CO2等气体,这样的混合气体统称为沼气;产生沼气的数量和成分取决于被消化的有机物的化学组成,一般可以用下式进行估算:

2、理论上认为,1gCOD在厌氧条件下完全降解可以生成0.25gCH4,相当于标准状态下的甲烷气体体积为0.35L;沼气中CO2和CH4的百分含量不仅与有机物的化学组成有关,还与其各自的溶解度有关;由于一部分沼气(主要是其中的CO2)会溶解在出水中而被带走,同时,一小部分有机物还会被用于微生物细胞的合成,所以实际的产气量要比理论产气量小。18精选课件ppt其他厌氧生物处理过程硫酸盐还原过程:又叫硫酸盐呼吸或反硫化作用

1.定义:在厌氧条件下,化能异养型硫酸菌还原细菌利用废水中的有机物作为电子供体,将氧化态硫化物还原为硫化物的过程

2.硫酸盐在处理中的危害:(1)与产甲烷菌竞争底物,抑制产甲烷菌的生成。(2)H2S对产甲烷菌和其他厌氧细菌抑制。影响沼气产量和利用。

3.解决办法:用两相厌氧生物处理工艺中的产酸相先期还原硫酸菌。反硝化与厌氧氨氧化:1.无氧条件下存在:NH4+和NO2-化能异养型硫酸菌2.定义:在厌氧条件下,过程为厌氧氨氧化3.有氧条件:

NH4+→NH2OH→NO2-→NO3-4.厌氧条件:

NO3-→NO2-→NO→N2O→N219精选课件ppt甲烷菌的微生物学特征简介:甲烷菌属于古菌中的一类。古菌(Archaeobacteria)与原核生物极其接近。研究利用基因分析手段(DNA的G+C%,16SrRNA碱基顺序比较)发现,有一些特点与真核生物相同。20精选课件ppt三、厌氧法的工艺和设备(1)按微生物生长状态分为厌氧活性污泥法(anaerobicactivatedsludge)和厌氧生物膜法(anaerobicslime);(2)按投料、出料及运行方式分为分批式(batch)、连续式(continuous)和半连续式(semi-continuous);(3)根据厌氧消化中物质转化反应的总过程是否在同一反应器中并在同一工艺条件下完成,又可分为一步厌氧消化(onestagedigestion)与两步厌氧消化(twostagedigestion)等(4)厌氧活性污泥法包括普通消化池、厌氧接触工艺、上流式厌氧污泥床反应器等。21精选课件ppt3.1、普通厌氧消化池3.2、厌氧滤池3.3、厌氧接触法3.4、分段厌氧污泥法3.5、上流式厌氧污泥床反应器UASB22精选课件ppt3.1普通厌氧消化池普通消化池又称传统或常规消化池(conventionaldigester)消化池常用密闭的圆柱形池,废水定期或连续进入池中,经消化的污泥和废水分别由消化池底和上部排出,所产沼气从顶部排出。池径从几米至三、四十米,柱体部分的高度约为直径的1/2,池底呈圆锥形,以利排泥。为使进水与微生物尽快接触,需要一定的搅拌。常用搅拌方式有三种:(a)池内机械搅拌;(b)沼气搅拌;(c)循环消化液搅拌。23精选课件ppt螺旋桨(机械)搅拌的消化池24精选课件ppt循环消化液搅拌式消化池高温厌氧消化需要加温,常用加热方式有三种:(a)废水在消化池外先经热交换器预热到规定温度再进入消化池;(b)热蒸汽直接在消化器内加热;(c)在消化池内部安装热交换管。25精选课件ppt普通消化池的特点是:可以直接处理悬浮固体含量较高或颗粒较大的料液。厌氧消化反应与固液分离在同一个池内实现,结构较简单。缺乏持留或补充厌氧活性污泥的特殊装置,消化器中难以保持大量的微生物细胞。对无搅拌的消化器,还存在料液的分层现象严重,微生物不能与料液均匀接触的问题。温度不均匀,消化效率低。26精选课件ppt化粪池化粪池用于处理来自厕所的粪便污水。广泛用于不设污水厂的合流制排水系统。例如,郊区的别墅式建筑。下图是化粪池的一种构造方式。27精选课件ppt28精选课件ppt3.2厌氧滤池

厌氧滤池(anaerobicfilter又称厌氧固定膜反应器,是60年代末开发的新型高效厌氧处理装置。滤池呈圆柱形,池内装放填料,池底和池顶密封。厌氧微生物附着于填料的表面生长,当废水通过填料层时,在填料表面的厌氧生物膜作用下,废水中的有机物被降解,并产生沼气,沼气从池顶部排出。29精选课件ppt废水从池底进入,从池上部排出,称升流式厌氧滤池;废水从池上部进入,以降流的形式流过填料层,从池底部排出,称降流式厌氧滤池。

填料可采用拳状石质滤料,如碎石、卵石等,也可使用塑料填料。30精选课件ppt厌氧生物滤池的特点及改进:在厌氧生物滤池中,厌氧微生物大部分存在于生物膜中,少部分以厌氧活性污泥的形式存在于滤料的孔隙中。厌氧微生物总量沿池高度分布是很不均匀的,在池进水部位高,相应的有机物去除速度快。

当废水中有机物浓度高时,特别是进水悬浮固体浓度和颗粒较大时,进水部位容易发生堵塞现象。31精选课件ppt对厌氧生物滤池采取如下改进:

(a)出水回流;(b)部分充填载体;(c)采用软性填料。厌氧生物滤池的特点是:

(a)由于填料为微生物附着生长提供了较大的表面积,滤池中的微生物量较高,又因生物膜停留时间长,平均停留时间长达100天左右,因而可承受的有机容积负荷高,COD容积负荷为2-16kgCOD/(m3·d),且耐冲击负荷能力强;32精选课件ppt(b)废水与生物膜两相接触面大,强化了传质过程,因而有机物去除速度快(c)微生物固着生长为主,不易流失,因此不需污泥回流和搅拌设备;(d)启动或停止运行后再启动比前述厌氧工艺法时间短。(e)处理含悬浮物浓度高的有机废水,易发生堵塞,尤以进水部位更严重。滤池的清洗也还没有简单有效的方法。33精选课件ppt主要缺点:

滤料费用较贵

滤料容易堵塞主要优点:

处理能力较高滤池内可以保持很高的微生物浓度不需另设泥水分离设备、出水SS较低设备简单、操作方便34精选课件ppt3.3厌氧接触法在消化池后设沉淀池,将沉淀污泥回流至消化池,形成了厌氧接触法(anaerobiccontactprocess)。厌氧接触法工艺动画35精选课件ppt厌氧接触法实质上是厌氧活性污泥法,不需要曝气而需要脱气。厌氧接触法对悬浮物高的有机废水(如肉类加工废水等)效果很好,悬浮颗粒成为微生物的载体,并且很容易在沉淀池中沉淀。在混合接触池中,要进行适当搅拌以使污泥保持悬浮状态。搅拌可以用机械方法,也可以用泵循环池水。36精选课件ppt厌氧接触法的特点:(a)通过污泥回流,保持消化池内污泥浓度较高,一般为10-15g/L,耐冲击能力强;(b)消化池的容积负荷较普通消化池高,中温消化时,一般为2-l0kgCOD/m3·d,水力停留时间比普通消化池大大缩短,如常温下,普通消化池为15-30天,而接触法小于10天;37精选课件ppt(c)可以直接处理悬浮固体含量较高或颗粒较大的料液,不存在堵塞问题;

(d)混合液经沉降后,出水水质好,(e)但需增加沉淀池、污泥回流和脱气等设备(f)厌氧接触法存在混合液难于在沉淀池中进行固液分离的缺点。38精选课件ppt几种脱气方法:(a)真空脱气,由消化池排出的混合液经真空脱气器(真空度为0.005MPa),将污泥絮体上的气泡除去,改善污泥的沉降性能;(b)热交换器急冷法,将从消化池排出的混合液进行急速冷却。(c)絮凝沉降,向混合液中投加絮凝剂,使厌氧污泥易凝聚成大颗粒,加速沉降;(d)用超滤器代替沉淀池,以改善固液分离效果。39精选课件ppt3.4分段厌氧处理法消化可将水解酸化过程和甲烷化过程分开在两个反应器内分阶段进行,以使两类微生物都能在各自的最适条件下生长繁殖。第一段的功能是:水解和液化固态有机物为有机酸缓冲和稀释负荷冲击与有害物质截留难降解的固态物质第二段的功能是:保持严格的厌氧条件和pH值,以利于甲烷菌的生长降解、稳定有机物,产生含甲烷较多的消化气截留悬浮固体,以改善出水水质40精选课件ppt二段式厌氧处理法可以采用不同构筑物予以组合。例如对悬浮物高的工业废水,采用厌氧接触法与上流式厌氧污泥床反应器串联的组合,其流程如下图。41精选课件ppt二段式厌氧处理法的特点优点:运行稳定可靠能承受pH值、毒物的冲击有机负荷率高消化气中甲烷含量高缺点:使用设备较多流程和操作复杂不能对各种废水都提高负荷42精选课件ppt3.5上流式厌氧污泥床反应器UASB3.5.1概述3.5.2基本特点(优点、缺点)3.5.3UASB的构造和组成3.5.4颗粒污泥3.5.5UASB的设计(1)容积(2)配水(3)排泥的设计(4)结构设计的要求(5)三相分离器设计3.5.6UASB的启动43精选课件ppt上流式厌氧污泥床反应器(up-flowanaerobicsludgeblanketreactor),简称UASB反应器,是由荷兰的G.Lettnga等人在70年代初研制开发的。污泥床反应器内没有人工载体,反应器内微生物以自身聚集生长,为颗粒污泥状态存在,因而能达到高生物量和高效高负荷。3.5.1概述44精选课件ppt上流式厌氧污泥床的池形有圆形、方形、矩形。小型装置常为圆柱形,底部呈锥形或圆弧形。大型装置为便于设置气、液、固三相分离器,则一般为矩形,高度一般为3-8m,其中污泥床1-2m,污泥悬浮层2-4m,多用钢结构或钢筋混凝土结构。

45精选课件pptUASB反应器示意图46精选课件ppt47精选课件ppt48精选课件ppt3.5.2上流式厌氧污泥床反应器的基本特点

优点:有机负荷居第二代反应器之首,水力负荷满足要求;污泥颗粒化后使反应器对不利条件的抗性增强;在一定的水力负荷下,可以靠反应器内产生的气体来实现污泥与基质的充分接触。(a)反应器内污泥浓度高,一般平均污泥浓度为30-40g/L,其中底部污泥床(sludgebed)污泥浓度60-80g/L,污泥悬浮层(sludgeblanket)污泥浓度5-7g/L;49精选课件ppt污泥床中的污泥由活性生物量占70-80%的高度发展的颗粒污泥(sludgegranules)组成,颗粒的直径一般在0.5-5.0mm之间,颗粒污泥是UASB反应器的一个重要特征。(b)有机负荷高,水力停留时间短,中温消化,COD容积负荷在小试验和中型试验中可高达20-40kgCOD/(m3·d)在大型生产装置中可达到6-8kgCOD/(m3·d)。(c)反应器内设三相分离器,被沉淀区分离的污泥能自动回流到反应区,一般无污泥回流设备;简化了工艺,节约了投资和运行费用。

(d)无混合搅拌设备。投产运行正常后,利用本身产生的沼气和进水来搅动;50精选课件ppt(e)污泥床内不填载体,提高了容积利用率,节省造价及避免堵塞问题。缺点:(a)大型装置内会有短流现象(要求配水装置性能要好)(b)进水SS要求≤200mg/L,以免对污泥颗粒化不利或减少反应区的有效容积,甚至引起堵塞(c)在没有颗粒污泥接种的情况下,启动时间长(d)对水质和负荷突然变化比较敏感(e)要求水温高些,最好35℃左右。51精选课件ppt由图可见,UASB工作时,废水从反应器底部进入,与污泥床层的高浓度颗粒污泥接触,污染物被分解产生沼气。污水、污泥和沼气一起向上流动,进入反应器的上部的三相分离器,完成气、液、固三相的分离。被分离的消化气从上部导出,被分离的污泥则自动滑落到悬浮污泥层。出水则从澄清区流出。3.5.3UASB的构造和组成52精选课件ppt53精选课件ppt54精选课件pptUASB反应器的组成(1)进水配水系统将废水尽可能均匀地分配到整个反应器,并有水力搅拌功能。(2)反应区其中包括污泥床区和污泥悬浮层区,有机物主要在这里被厌氧菌所分解。(3)三相分离器由沉淀区、回流缝和气封组成,其功能是把沼气、污泥和液体分开。55精选课件ppt(4)出水系统其作用是把沉淀区表层处理过的水均匀地加以收集,排出反应器。(5)气室也称集气罩,其作用是收集沼气。(6)浮渣清除系统其功能是清除沉淀区液面和气室表面的浮渣,根据需要设置。(7)排泥系统其功能是均匀地排除反应区的剩余污泥。56精选课件ppt厌氧污泥的主要聚集形式包括颗粒(granules)、团体(pellets)、絮体(flocs)、絮状污泥(nocculentsludge)等。定义:团体和颗粒是结构紧密的聚集体。这些聚集体沉降后呈现固定的形态。絮体和絮状污泥则是具有蓬松结构的聚集体,这些聚集体沉降后无固定形态。3.5.4厌氧颗粒污泥57精选课件ppt1.接种污泥2.废水的性质3.反应器的工艺条件4.不同的出水乙酸浓度可以决定优势菌种影响污泥颗粒化的因素影响颗粒污泥直径大小的因素1.温度2.底物在传质过程中所能进入颗粒内部的深度3.有机负荷的高低4.如果低负荷忽然增加负荷将使颗粒污泥破碎5.用较大的上升气流与产气量可选择性的洗出较小的颗粒污泥。58精选课件ppt

颗粒污泥的性质

颗粒污泥的物理性质

1.形状不规则2.颜色呈灰黑色或褐黑色,包裹灰白色生物膜3.相对密度在1.01---1.05左右4.污泥指数与颗粒大小有关5.颗粒污泥在反应器中的沉降速率为0.3---0.8m/h颗粒污泥的成分

1.微生物及其分泌物微生物:各类产酸细菌和产甲烷细菌,产酸细菌在颗粒外部,产甲烷细菌在颗粒污泥内部2.惰性物质3.金属离子颗粒污泥的活性

采用最大比底物利用速率表示,不同底物培养的颗粒污泥的活性不同59精选课件pptUASB反应器的结构设计原理UASB反应器的构造

1.进水配水系统,将进入反应器的废水均匀地分配到反应器整个横断面,起到水力搅拌并均匀上升。

2.反应区,反应区内存留大量具有良好凝聚和沉淀性能的污泥,在池底部形成颗粒污泥层。废水从厌氧污泥床底部流入,与颗粒污泥层中的污泥进行混合接触,污泥中的微生物分解有机物,同时产生的微小沼气气泡不断地放出。微小气泡在上升过程中,不断合并,逐渐形成较大的气泡。在颗粒污泥层上部,由于沼气的搅动,形成一个污泥浓度较小的悬浮污泥层。

3.三相分离器,其功能是将气体、固体和液体三相进行分离。

4.集气室,其功能是收集产生的沼气,并将其导出气室送往沼气柜。

5.处理水排出系统,均匀收集处理水并将其排出反应器。60精选课件pptUASB反应器的设计计算1.UASB反应器设计计算的主要内容有:①池型选择、有效容积以及各主要部位尺寸的确定;②进水配水系统、出水系统、三相分离器等主要设备的设计计算;③其它设备和管道如排泥和排渣系统等的设计计算2.有效容积及主要构造尺寸的确定:

UASB反应器的有效容积,一般将沉淀区和反应区的总容积作为反应器的有效容积进行考虑,多采用进水容积负荷法确定,即:

V=Q×Si/Lv

式中:Q——废水流量,m3/d;

Si——进水有机物浓度,mgCOD/l;

Lv——COD容积负荷,kgCOD/m3.d。61精选课件ppt3.三相分离器的设计:三相分离器的基本原理与构造在UASB反应器中三相分离器可以有以下几种布置形式62精选课件ppt①沉淀区的设计:要求表面负荷应小于1.0m3/m2.d;集气罩斜面的坡度应为55~60°;沉淀区的总水深应不小于1.5m,废水在沉淀区的停留时间应在1.5~2.0h之间;②回流缝的设计;③气液分离效果的计算与校核;三相分离器的设计要点4.出水系统的设计:5.浮渣清除系统的设计:6.排泥系统设计:7.其他设计中应考虑的问题:加热和保温;沼气的收集、贮存和利用;防腐;63精选课件ppt8.UASB的布水系统:为使底物与污泥能充分接触,布水应尽量,避免沟流,进水方式分为间歇式,脉冲式,连续均匀流,连续与间歇回流结合9.进水水质的特性:应考虑是否影响污泥的颗粒化,形成泡沫的浮渣、降解速率等问题。10.UASB的有机容积负荷:确定有机负荷,以及进水流量和进水COD,可确定反应器的有效容积。11.UASB的水封高度:控制一定的气囊高度可压破泡沫,可避免泡沫和浮泥进入排气系统。64精选课件ppt3.5.6升流式厌氧污泥床反应器的启动

UASB反应器的启动可分为两个阶段:接种污泥在适宜的驯化过程中获得一个合理分布的微生物群体。这种合理分布群体的大量生长、繁殖

65精选课件ppt

UASB反应器的启动运行1.直接启动:用颗粒污泥接种,所需时间较短,负荷上升较快;2.间接启动:用絮状污泥启动,首先需要培养颗粒污泥。颗粒污泥的培养对于反应器的稳定高效运行十分关键,一般需要按以下步骤进行:①投加接种污泥:厌氧消化污泥,或剩余活性污泥等;接种量一般为10~20kgVSS/m3;②启动初期的污泥负荷应低于0.1~0.2kgCOD/kgSS.d,容积负荷应小于0.5kgCOD/m3.d;③保证一定的水力上升流速,一般要求大于1m3/m2.d,当其大于0.25m3/m2.h时,就会产生水力分级作用;④进水浓度过高时,可回流或稀释等措施;⑤一般要求溶解性COD的去除率大于80%左右时,应及时提高负荷;⑥出水VFA浓度一般应控制在1000mg/l以下。66精选课件pptUASB反应器初次启动的操作原则1、启动阶段的目的:污泥适应将要处理废水中的有机物污泥具有很好的沉降性2、启动时要遵守的原则:最初污泥负荷不要太高在挥发酸未能有效分解之前,不应增加反应器负荷控制厌氧细菌的生存环境种泥量要尽量多控制一定的上升流速3.形成颗粒污泥的过程:启动与提高污泥活性阶段形成颗粒污泥阶段逐渐形成颗粒污泥层阶段67精选课件ppt1、运行管理指标废水厌氧生物处理的运行管理指标主要有:COD去除率、有机容积负荷、有机污泥负荷、水力停留时间、剩余污泥产量、产气量等。2、水质管理指标水质管理指标又称为监测项目,即通过水质监测,对厌氧反应器进行管理,使其达到运行要求;主要有:进水量、进出水水质(COD、BOD、SS、pH、VFA等)、污泥浓度、温度、产气量、气体成分等。运行管理指标

68精选课件ppt四、厌氧法的影响因素控制厌氧处理效率的基本因素有两类:一类是基础因素,包括微生物量(污泥浓度)、营养比、混合接触状况、有机负荷等;另一类是环境因素,如温度、pH值、氧化还原电位、有毒物质等。产甲烷细菌是决定厌氧消化效率和成败的主要微生物,对于一般工业废水,产甲烷阶段是厌氧过程速率的限制步骤。69精选课件ppt4.1温度条件各类微生物适宜的温度范围是不同的,一般认为,产甲烷菌的温度范围为25-60℃。在35℃和53℃上下可以分别获得较高的消化效率,温度为40-45℃时,厌氧消化效率较低。据产甲烷菌适宜温度条件的不同,厌氧法可分为常温消化、中温消化和高温消化三种类型。

70精选课件ppt温度对厌氧消化过程的影响71精选课件ppt4.2pH值每种微生物可在一定的pH值范围内活动,产酸细菌对酸碱度不及甲烷细菌敏感,其适宜的pH值范围较广,在4.5-8.0之间。产甲烷菌要求环境介质pH值在中性附近,最适宜pH值为7.0-7.2。

在厌氧法处理废水的应用中,由于产酸和产甲烷大多在同一构筑物内进行,故为了维持平衡,避免过多的酸积累,常保持反应器内的pH值在6.5-7.5(最好在6.8-7.2)的范围内。72精选课件ppt4.3氧化还原电位无氧环境是严格厌氧的产甲烷菌繁殖的最基本条件之一。产甲烷菌对氧和氧化剂非常敏感,这是因为它不象好氧菌那样具有过氧化氢酶。氧是影响厌氧反应器中氧化还原电位条件的重要因素,但不是唯一因素。

挥发性有机酸的增减、pH值的升降以及铵离子浓度的高低等因素均影响系统的还原强度。如pH值低,氧化还原电位高;pH值高,氧化还原电位低。73精选课件ppt4.4有机负荷在厌氧法中,有机负荷通常指容积有机负荷,简称容积负荷,即消化器单位有效容积每天接受的有机物量(kgCOD/m3·d)。对悬浮生长工艺,也有用污泥负荷表达的,即kgCOD/(kg污泥·d)。在污泥消化中,有机负荷习惯上以投配率或进料率表达,即每天所投加的湿污泥体积占消化器有效容积的百分数。由于各种湿污泥的含水率、挥发组分不尽一致,投配率不能反映实际的有机负荷,为此,又引入反应器单位有效容积每天接受的挥发性固体重量这一参数,即kgMLVSS/m3·d。74精选课件ppt4.5厌氧活性污泥厌氧活性污泥主要由厌氧微生物及其代谢的和吸附的有机物、无机物组成。厌氧活性污泥的浓度和性状与消化的效能有密切的关系。性状良好的污泥是厌氧消化效率的基础保证。厌氧活性污泥的性质主要表现为它的作用效能与沉降性能。

故在一定的范围内,活性污泥浓度愈高,厌氧消化的效率也愈高。但也不是越高越好。75精选课件ppt4.6搅拌和混合通过搅拌可消除池内梯度,增加食料与微生物之间的接触,避免产生分层,促进沼气分离。在连续投料的消化池中,还使进料迅速与池中原有料液相混匀。在传统厌氧消化工艺中,也将有搅拌的消化器称为高效消化器。搅拌程度与强度要适当。76精选课件ppt4.7废水的营养比厌氧微生物的生长繁殖需按一定的比例摄取碳、氮、磷以及其他微量元素。工程上主要控制进料的碳、氮、磷比例,因为其他营养元素不足的情况较少见。厌氧法中碳:氮:磷控制为200-300:5:1为宜。77精选课件ppt4.8有毒物质包括有毒有机物、重金属离子和一些阴离子等。对有机物来说,带醛基、双键、氯取代基、苯环等结构,往往具有抑制性。有毒物质的最高容许浓度与处理系统的运行方式、污泥驯化程度、废水特性、操作控制条件等因素有关。78精选课件ppt792024/4/17五、厌氧生物处理的运行管理UASB反应器运行的三个重要前提反应器内形成沉降性能良好的颗粒污泥或絮状污泥由产气和进水的均匀分布所形成的良好的自然搅拌作用设计合理的三相分离器,这使沉淀性能良好的污泥能保留在反应器内79精选课件ppt802024/4/171、水质分析项目与运行指标

水质分析项目反映处理效果的项目:进出水COD、VFA、进出水SS、进出水的有毒物质(对应工业废水)反映污泥情况的项目:污泥沉降比(SV%)、MLSS、MLVSS、SVI等;碱度ALK;挥发酸VFA,沼气产量;反映污泥营养和环境条件的项目:氮磷、pH、水温等。80精选课件ppt812024/4/17测定频次进出水总的COD、进出水SS

——每天一次氮、磷、MLSS、SVI——定期测定记录进水量、剩余污泥量81精选课件ppt822024/4/17运行控制指标(表6-582精选课件ppt832024/4/172、UASB反应器的启动

颗粒污泥化的过程和优点颗粒污泥有极好的沉降性能,它能在很高的产气量和高上流速度下保留在反应器内。因此使UASB反应器有更高的有机负荷和水力负荷。一般絮状污泥的UASB反应器负荷在10KgCOD/(m3·d),而颗粒污泥使UASB反应器负荷在30~5010KgCOD/(m3·d)。83精选课件ppt842024/4/17UASB反应器的初次启动

初次启动通常指对一个新建的UASB系统以未经驯化的非颗粒污泥(例如污水厂污泥消化池的消化污泥)接种,使反应器到达设计负荷和有机物去除率的过程,通常这一过程伴随着颗粒化的完成,因此也称之为污泥的颗粒化。84精选课件ppt852024/4/17UASB反应器初次启动的若干认识——洗出的污泥不再返回——当进液COD浓度大于5000mg/L时采用出水循环或稀释进液——逐步增加有机负荷,有机负荷的增加应当在可降解COD能被去除80%之后再进行——保持乙酸浓度始终低于1000mg/L;——启动时稠型污泥的接种量大约为10~15KgVSS/m3,小于40KgVSS/m3的稀释消化污泥接种量可略为小些;——低浓度的废水有利于颗粒化的形成,但当浓度也应当足够维持良好的细菌生产条件,最小的COD浓度应为1000mg/L;85精选课件ppt862024/4/17——过量的悬浮物会阻碍颗粒化的形成;——溶解性碳水化合物为主要底物的废水VFA为主的废水颗粒化过程快,当废水含有蛋白质时,应使蛋白质尽可能降解;——高的离子浓度(例如Ca2+、Mg2+)能引起化学沉淀(CaCO3、CaPHO4、MgNH4PO4),

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论