山东青岛崂山区2024届八年级下册数学期末复习检测模拟试题含解析_第1页
山东青岛崂山区2024届八年级下册数学期末复习检测模拟试题含解析_第2页
山东青岛崂山区2024届八年级下册数学期末复习检测模拟试题含解析_第3页
山东青岛崂山区2024届八年级下册数学期末复习检测模拟试题含解析_第4页
山东青岛崂山区2024届八年级下册数学期末复习检测模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东青岛崂山区2024届八年级下册数学期末复习检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,∠C=90°,AB=12,BC=3,CD=1.若∠ABD=90°,则AD的长为()A.10 B.13 C.8 D.112.下列二次根式中,最简二次根式的是()A. B. C. D.3.一次演讲比赛中,评委将从演讲内容、演讲能力、演讲效果三个方面为选手打分,然后再按演讲内容占50%、演讲能力占40%、演讲效果占10%的比例计算选手的综合成绩.某选手的演讲内容、演讲能力、演讲效果成绩依次为85,95,95,则该选手的综合成绩为()A.92 B.88 C.90 D.954.已知四边形ABCD的对角线AC、BD相交于点O,给出下列5个条件:①AB∥CD;②OA=OC;③AB=CD;④∠BAD=∠DCB;⑤AD∥BC,从以上5个条件中任选2个条件为一组,能判定四边形ABCD是平行四边形的有()组.A.4 B.5 C.6 D.75.已知直线y=(k﹣2)x+k经过第一、二、四象限,则k的取值范围是()A.k≠2 B.k>2 C.0<k<2 D.0≤k<26.一次函数,当时,x的取值范围是A. B. C. D.7.当x分别取-2019、-2018、-2017、…、-2、-1、0、1、、、…、、、时,分别计算分式的值,再将所得结果相加,其和等于()A.-1 B.1 C.0 D.20198.如图,点C在反比例函数y=(x>0)的图象上,过点C的直线与x轴,y轴分别交于点A,B,且AB=BC,△AOB的面积为1,则k的值为()A.1 B.2 C.3 D.49.在平面直角坐标系中,点与点关于原点对称,则的值为()A. B. C.1 D.310.下列选项中的计算,正确的是(

)A.9=±3 B.23-3=2 C.-52=-5 D.二、填空题(每小题3分,共24分)11.正十边形的外角和为__________.12.若<0,则代数式可化简为_____.13.计算=________________.14.把直线y=-x+3向上平移m个单位后,与直线y=2x+4的交点在第一象限,则m的取值范围是_________________.15.如图,在4×4正方形网格中,任选取一个白色的小正方形并涂黑,使图中黑色部分的图形构成一个轴对称图形的概率是______.16.某干果店本周售出若干千克三种核桃,销售单价、销售量如图所示,则可估算出该店本周销售核桃的平均单价是_______元.17.若数a使关于x的不等式组有且只有四个整数解,且使关于y的方程=2的解为非负数,则符合条件的所有整数a的和为_____.18.如图,函数y=2x和y=ax+5的图象相交于A(m,3),则不等式2x<ax+5的解集为.三、解答题(共66分)19.(10分)(1)因式分解:;(2)计算:20.(6分)求证:取任何实数时,关于的方程总有实数根.21.(6分)在平行四边形中,于E,于F.若,平行四边形周长为40,求平行四边形的面积.22.(8分)计算能力是数学的基本能力,为了进一步了解学生的计算情况,初2020级数学老师们对某次考试中第19题计算题的得分情况进行了调查,现分别从A、B两班随机各抽取10名学生的成绩如下:A班10名学生的成绩绘成了条形统计图,如下图,B班10名学生的成绩(单位:分)分别为:9,8,9,10,9,7,9,8,10,8经过老师对所抽取学生成绩的整理与分析,得到了如下表数据:A班B班平均数8.3a中位数b9众数8或10c极差43方差1.810.81根据以上信息,解答下列问题.(1)补全条形统计图;(2)直接写出表中a,b,c的值:a=,b=,c=;(3)根据以上数据,你认为A、B两个班哪个班计算题掌握得更好?请说明理由(写出其中两条即可):.(4)若9分及9分以上为优秀,若A班共55人,则A班计算题优秀的大约有多少人?23.(8分)如图,在平面直角标系中,△ABC的三个顶点坐标为A(-3,1)、B(-4,-3)、C(-1,-4),△ABC绕原点顺时针旋转180°,得到△A1B1C1再将△A1B1C1向左平移5个单位得到△A1B1C1.(1)画出△A1B1C1,并写出点A的对应点A1的坐标;(1)画出△A1B1C1,并写出点A的对应点A1的坐标;(3)P(a,b)是△ABC的边AC上一点,△ABC经旋转,平移后点P的对应点分别为P1、P1,请直接写出点P1的坐标.24.(8分)如图1,在矩形纸片ABCD中,AB=8,BC=16,将矩形纸片沿EF折叠,使点C与点A重合.(1)判断△AEF的形状,并说明理由;(2)求折痕EF的长度;(3)如图2,展开纸片,连接CF,则点E到CF的距离是.25.(10分)如图,在中,对角线AC,BD交于点O,E是AD上任意一点,连接EO并延长,交BC于点F,连接AF,CE.(1)求证:四边形AFCE是平行四边形;(2)若,°,.①直接写出的边BC上的高h的值;②当点E从点D向点A运动的过程中,下面关于四边形AFCE的形状的变化的说法中,正确的是A.平行四边形→矩形→平行四边形→菱形→平行四边形B.平行四边形→矩形→平行四边形→正方形→平行四边形C.平行四边形→菱形→平行四边形→菱形→平行四边形D.平行四边形→菱形→平行四边形→矩形→平行四边形26.(10分)如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若AB=5,AE=8,则BF的长为______.

参考答案一、选择题(每小题3分,共30分)1、B【解析】试题分析:在Rt△BCD中,因为BC=3,CD=1,∠C=90°,所以由勾股定理可得:BD=.在Rt△ABD中,BA=12,BD=5,∠ABD=90°,由勾股定理可得:AD=.故选B考点:勾股定理.2、A【解析】

根据最简二次根式的条件进行分析.【详解】A.,是最简二次根式;B.,不是最简二次根式;C.,不是最简二次根式;D.,不是最简二次根式;故选:A【点睛】满足下列条件的二次根式,叫做最简二次根式:

(1)被开方数的因数是整数,因式是整式;

(2)被开方数中不含能开得尽方的因数或因式3、C【解析】分析:根据加权平均数公式计算即可,若n个数x1,x2,x3,…,xn的权分别是w1,w2,w3,…,wn,则叫做这n个数的加权平均数,此题w1+w2+w3+…+wn=50%+40%+10%=1.详解:由题意得,85×50%+95×40%+95×10%=90(分).点睛:本题考查了加权平均数的计算,熟练掌握加权平均数的计算公式是解答本题的关键.4、C【解析】分析:根据平行四边形的判定来进行选择.①两组对边分别平行的四边形是平行四边形;②两组对角分别平行的四边形是平行四边形;③两组对边分别相等的四边形是平行四边形;④一组对边平行且相等的四边形是平行四边形;⑤对角线互相平分的四边形是平行四边形.详解:共有6组可能:①②;①③;①④;①⑤;②⑤;④⑤.

选择①与②:∵AB∥CD,

∴∠BAO=∠DCO,∠ABO=∠CDO,

在△AOB与△COD中,,

∴△AOB≌△COD,

∴AB=CD,

∴四边形ABCD为平行四边形.①与③(根据一组对边平行且相等)

①与④:∵∠BAD=∠DCB

∴AD∥BC

又AB∥DC

根据两组对边分别平行可推出四边形ABCD为平行四边形.

①与⑤,根据定义,两组对边分别平行的四边形是平行四边形;②与⑤:∵AD∥BC

OA=OC

∴△AOD≌△COB

故AD=BC,四边形ABCD为平行四边形.

④与⑤:根据两组对边分别平行可推出四边形ABCD为平行四边形.共有6种可能.故选C.点睛:本题考查了平行四边形的判定,熟练掌握判定定理是解题的关键.平行四边形共有五种判定方法,记忆时要注意技巧;这五种方法中,一种与对角线有关,一种与对角有关,其他三种与边有关.5、C【解析】

由一次函数经过的象限确定其图象的增减性,然后确定k的取值范围即可.【详解】∵一次函数y=(k-2)x+k的图象经过第一、二、四象限,

∴k-2<0且k>0;

∴0<k<2,

故选C.【点睛】考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限;b>0时,直线与y轴正半轴相交;b=0时,直线过原点;b<0时,直线与y轴负半轴相交.6、D【解析】

根据一次函数,可得:,解得:,即可求解.【详解】因为,所以当时,则,解得,故选D.【点睛】本题主要考查一次函数与不等式的关系,解决本题的关键是要熟练掌握一次函数与不等式的关系.7、A【解析】

设a为负整数,将x=a代入得:,将x=-代入得:,故此可知当x互为负倒数时,两分式的和为0,然后求得分式的值即可.【详解】∵将x=a代入得:,将x=-代入得:,∴,当x=0时,=-1,故当x取-2019,-2018,-2017,……,-2,-1,0,1,,,……,,,时,得出分式的值,再将所得结果相加,其和等于:-1.故选A.【点睛】本题主要考查的是数字的变化规律和分式的加减,发现当x的值互为负倒数时,两分式的和为0是解题的关键.8、D【解析】【分析】过点C作轴,设点,则得到点C的坐标,根据的面积为1,得到的关系式,即可求出的值.【解答】过点C作轴,设点,则

得到点C的坐标为:的面积为1,即故选D.【点评】考查反比例函数图象上点的坐标特征,掌握待定系数法是解题的关键.9、C【解析】

直接利用关于原点对称点的性质得出a,b的值,进而得出答案【详解】解:点与点关于原点对称,,,.故选:.【点睛】此题主要考查了关于原点对称点的性质,正确得出a,b的值是解题关键.10、D【解析】

根据算术平方根的定义,开方运算是求算术平方根,结果是非负数,同类根式相加减,把同类二次根式的系数相加减,做为结果的系数,根号及根号内部都不变.【详解】解:A、9=3B、23C、(-5)2D、34故答案为:D【点睛】本题考查了算术平方根的计算、二次根式的计算,熟练掌握数的开方、同类二次根式的合并及二次根式商的性质是解题的关键.二、填空题(每小题3分,共24分)11、360°【解析】

根据多边形的外角和是360°即可求出答案.【详解】∵任意多边形的外角和都是360°,∴正十边形的外交和是360°,故答案为:360°.【点睛】此题考查多边形的外角和定理,熟记定理是解题的关键.12、【解析】

二次根式有意义,就隐含条件b>1,由ab<1,先判断出a、b的符号,再进行化简即可.【详解】若ab<1,且代数式有意义;故有b>1,a<1;则代数式=|a|=-a.故答案为:-a.【点睛】本题主要考查二次根式的化简方法与运用:当a>1时,=a;当a<1时,=-a;当a=1时,=1.13、【解析】

直接利用二次根式的乘法运算法则计算得出答案.【详解】原式=,故答案为:.【点睛】本题考查了二次根式的乘法运算,正确化简二次根式是解题关键.14、m>1【解析】试题分析:直线y=-x+3向上平移m个单位后可得:y=-x+3+m,求出直线y=-x+3+m与直线y=2x+4的交点,再由此点在第一象限可得出m的取值范围.试题解析:直线y=-x+3向上平移m个单位后可得:y=-x+3+m,联立两直线解析式得:,解得:,即交点坐标为(,),∵交点在第一象限,∴,解得:m>1.考点:一次函数图象与几何变换.15、【解析】

根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有12个,而能构成一个轴对称图形的有2个情况(如图所示)∴使图中黑色部分的图形构成一个轴对称图形的概率是.16、1【解析】

根据题意,结合图形可知,所求单价即为加权平均数,利用加权平均数的定义计算解答即可【详解】由加权平均数得,24×25%+20×1%+10×60%=6+3+6=1,故答案为:1.【点睛】考查了加权平均数的定义,熟记加权平均数的定义,掌握有理数的混合运算法则是解题关键.17、1【解析】

解不等式组,得到不等式组的解集,根据整数解的个数判断a的取值范围,解分式方程,用含有a的式子表示y,根据解的非负性求出a的取值范围,确定符合条件的整数a,相加即可.【详解】解:,解①得,x<5;解②得,∴不等式组的解集为;∵不等式有且只有四个整数解,∴,解得,﹣1<a≤1;解分式方程得,y=1﹣a;∵方程的解为非负数,∴1﹣a≥0;即a≤1;综上可知,﹣1<a≤1,∵a是整数,∴a=﹣1,0,1,1;∴﹣1+0+1+1=1故答案为1.【点睛】本题考查了解一元一次不等式组,分式方程,根据题目条件确定a的取值范围,进一步确定符合条件的整数a,相加求和即可18、x<.【解析】

先把点A(m,3)代入函数y=2x求出m的值,再根据函数图象即可直接得出结论.【详解】∵点A(m,3)在函数y=2x的图象上,∴3=2m,解得m=,∴A(,3),由函数图象可知,当x<时,函数y=2x的图象在函数y=ax+5图象的下方,∴不等式2x<ax+5的解集为:x<.三、解答题(共66分)19、(1)y(x-2)2;(2).【解析】

(1)先提公因式,再利用完全平方公式矩形因式分解;

(2)根据分式的减法运算法则计算.【详解】解:(1)x2y-4xy+4y

=y(x2-4x+4)

=y(x-2)2;

(2)

====.故答案为:(1)y(x-2)2;(2).【点睛】本题考查因式分解、分式的加减运算,掌握提公因式法、完全平方公式因式分解、分式的加减法法则是解题的关键.20、见解析【解析】

由a是二次项的系数,分a=0及两种情况分别确定方程的根的情况即可得到结论.【详解】当时,方程为,;当,方程为一元二次方程,,原方程有实数根.综上所述,取任何值时,原方程都有实数根.【点睛】此题考查方程的根的情况,正确理解题意分情况解答是解题的关键.21、1【解析】

根据平行四边形的周长求出BC+CD=20,再根据平行四边形的面积求出BC=CD,然后求出CD的值,再根据平行四边形的面积公式计算即可得解.【详解】∵▱ABCD的周长=2(BC+CD)=40,∴BC+CD=20①,∵AE⊥BC于E,AF⊥CD于F,AE=4,AF=6,∴S▱ABCD=4BC=6CD,整理得,BC=CD②,联立①②解得,CD=8,∴▱ABCD的面积=AF•CD=6CD=6×8=1.【点睛】本题考查了平行四边形的性质,根据平行四边形的周长与面积得到关于BC、CD的两个方程并求出CD的值是解题的关键.22、(1)见解析;(2)8.7,8,9;(3)B班计算题掌握的更好,理由见详解;(4)A班计算题优秀的大约有22人.【解析】

(1)先根据A班的总人数求出成绩为10分的人数,然后即可补全条形统计图;(2)利用平均数的公式和中位数,众数的概念求解即可;(3)通过对比两班的平均数,中位数,众数,极差和方差即可得出答案;(4)用总人数55乘以优秀人数所占的百分比即可得出答案.【详解】(1)成绩为10分的人数=10﹣1﹣2﹣3﹣1=3,补全条形统计图如图所示,(2)a=(9+8+9+10+9+7+9+8+10+8)=8.7;中位数是将A班的10个成绩按照从小到大的顺序排列之后处于中间位置的数,此时第5个数和第6个数都是8,所以;众数为B班成绩中出现次数最多的数,可以看出9出现了4次,次数最多,所以c=9;(3)B班学生计算题掌握得更好,理由:B班的平均分高于A班,B班的中位数高于A班;(4)55×=22人,答:A班计算题优秀的大约有22人.【点睛】本题主要考查数据的分析与整理,掌握平均数,中位数,众数的求法是解题的关键.23、(1)如图,△A1B1C1为所作,见解析;点A的对应点A1的坐标为(3,1);(1)如图,△A1B1C1为所作,见解析;点A的对应点A1的坐标为(-1,1);(3)P1的坐标为(-a-5,-b).【解析】

(1)根据题意,分别找出点A、B、C关于原点的对称点A1、B1、C1,然后连接A1B1、A1C1、B1C1即可,然后根据关于原点对称的两点坐标关系:横纵坐标均互为相反数即可得出结论;(1)分别将点A1、B1、C1向左平移5个单位得到A1、B1、C1,然后连接A1B1、A1C1、B1C1即可,然后根据点的坐标平移规律:横坐标左减右加,纵坐标上加下减,即可得出结论;(3)先根据关于原点对称的两点坐标关系:横纵坐标均互为相反数即可求出P1的坐标,然后根据点的坐标平移规律:横坐标左减右加,纵坐标上加下减,即可求出P1的坐标【详解】(1)分别找出点A、B、C关于原点的对称点A1、B1、C1,然后连接A1B1、A1C1、B1C1,如图,△A1B1C1为所作,点A的对应点A1的坐标为(3,1);(1)分别将点A1、B1、C1向左平移5个单位得到A1、B1、C1,然后连接A1B1、A1C1、B1C1,如图,△A1B1C1为所作,点A的对应点A1的坐标为(-1,1);(3)P(a,b)经过旋转得到的对应点P1的坐标为(-a,-b),把P1平移得到对应点P1的坐标为(-a-5,-b).【点睛】此题考查的是画关于原点对称的图形、画图形的平移、求关于原点对称的点的坐标和点平移后的坐标,掌握关于原点对称的图形的画法、图形平移的画法、关于原点对称的两点坐标关系和点的坐标平移规律是解决此题的关键.24、(1)△DEF是等腰三角形,理由见解析;(2);(3)1【解析】

(1)根据折叠和平行的性质,可得∠AEF=∠AFE,即得出结论;(2)过点E作EM⊥AD于点M,得出四边形ABEM是矩形,设EC=x,则AE=x,BE=16-x,在Rt△ABE中,利用勾股定理求出x,在Rt△EMF中,用勾股定理即可求得;(3)证明四边形AECF是菱形,设点E到CF的距离为h,通过面积相等,即可求得.【详解】(1)△AEF是等腰三角形.理由如下:由折叠性质得∠AEF=∠FEC,在矩形ABCD中,AD∥BC,∴∠AFE=∠FEC,∴∠AEF=∠AFE,∴AF=AE;∴△AEF是等腰三角形;故答案为:△AEF是等腰三角形.(2)如图,过点E作EM⊥AD于点M,则∠AME=90°,又∵在矩形ABCD中,∠BAD=∠B=90°,∴四边形ABEM是矩形,∴AM=BE,ME=AB=1,设EC=x,则AE=x,BE=16-x,在Rt△ABE中,AE2=AB2+BE2,x2=12+(16-x)2,解之得x=10,∴EC=AE=10,BE=6,∴AM=6,AF=AE=10,∴MF=AF-AM=4,在Rt△EMF中,;故答案为:;(3)由(1)知,AE=AF=EC,∵AF∥EC,∴四边形AECF是平行四边形,∴四边形AECF是菱形,设点E到CF的距离为h,,∴h=1.即E到CF的距离为1,故答案为:1.【点睛】考查了折叠图形和平行线结合的性质,等腰三角形的判定和性质,勾股定理求角的应用,菱形的判定和性质,等面积法的应用,熟记和掌握几何图形的判定和性质内容是解题的关键.25

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论