付费下载
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
“四步法”在岩性油藏砂体连通性研究中应用Title:ApplicationoftheFour-StepMethodintheStudyofSandBodyConnectivityinLithologicReservoirsIntroduction:Lithologicreservoirs,characterizedbycomplexlithologictypesandheterogeneousproperties,posechallengesinstudyingconnectivityofthesandbodies.Understandingtheconnectivityofsandbodiesisofparamountimportanceforreservoircharacterization,developmentplanning,andenhancedoilrecovery.TheFour-StepMethod,awidelyacceptedapproach,hasproventobeeffectiveinassessingsandbodyconnectivity.ThispaperaimstoexploretheapplicationoftheFour-StepMethodinthestudyofsandbodyconnectivityinlithologicreservoirs.1.TheFour-StepMethod:TheFour-StepMethodincludesattributerecognition,attributequantification,attributeclassification,andattributeintegration.Thesestepsprovideasystematicframeworkforcharacterizingtheconnectivityofsandbodiesinlithologicreservoirs.1.1AttributeRecognition:Attributerecognitioninvolvesidentifyingthekeyfactorsinfluencingconnectivity.Inlithologicreservoirs,theseattributesmayincludelithology,grainsize,porethroatdistribution,mineralogy,anddiageneticfactors.Gatheringgeologicalandpetrophysicaldataiscrucialforattributerecognition.1.2AttributeQuantification:Attributequantificationistheprocessofassigningquantitativevaluestotheidentifiedattributes.Thisstepinvolvesanalyzingcoredata,welllogs,andseismicdatatodeterminethenumericalvaluesoftheattributes.Techniquessuchascross-plots,statisticalanalysis,andgeostatisticalmethodsarecommonlyusedforattributequantification.1.3AttributeClassification:Attributeclassificationaimstodividethestudiedareaintodiscretezonesbasedonthequantifiedattributes.Thisstepinvolvesusingclustering,patternrecognition,ormachinelearningalgorithmstogroupsimilarvaluesofattributes.Theclassificationhelpstoidentifydifferentconnectivitypatternswithinthereservoir.1.4AttributeIntegration:Attributeintegrationinvolvescombiningtheclassifiedattributestocreateacomprehensiveconnectivitymodel.Thisstepallowsforthevisualizationofthesandbodyconnectivityandfacilitatestheidentificationofflowpathsandbarrierswithinthereservoir.Toolssuchasreservoirsimulationandflowsimulationareoftenappliedinattributeintegration.2.CaseStudies:TodemonstratetheapplicationoftheFour-StepMethod,twocasestudiesarepresented.2.1CaseStudy1:SandBodyConnectivityinaClasticLithologicReservoirThefirstcasestudyfocusesonaclasticlithologicreservoirwithheterogeneoussandbodies.Attributerecognitioninvolvesidentifyingfactorssuchaslithology,grainsizedistribution,andporethroatsize.Attributequantificationisperformedusingwelllogsandcoredata.Attributeclassificationisachievedthroughclusteringanalysis.Theattributeintegrationstepincorporatestheclassifiedattributesintoa3Dreservoirmodel,allowingforthevisualizationofsandbodyconnectivitypatterns.2.2CaseStudy2:SandBodyConnectivityinaCarbonateLithologicReservoirThesecondcasestudyexplorestheapplicationoftheFour-StepMethodinacarbonatelithologicreservoirwithhighlyvariablefacies.Attributequantificationisdoneusingwelllogs,seismicdata,andcoreanalysisdata.Attributeclassificationinvolvespatternrecognitiontechniquestodistinguishbetweendifferentfaciesandidentifypotentialflowpaths.Attributeintegrationenablestheconstructionofareservoirmodelthatrevealstheconnectivityandheterogeneityofthesandbodieswithinthecarbonatelithologicreservoir.3.BenefitsandLimitations:TheFour-StepMethodoffersseveralbenefitsinthestudyofsandbodyconnectivityinlithologicreservoirs.Itprovidesasystematicandstructuredapproachthatenhancesunderstanding,improvesdecision-making,andoptimizesreservoirdevelopmentstrategies.However,itisimportanttonotethatthemethodreliesheavilyondataqualityandavailability,anduncertaintiesassociatedwithattributequantificationandclassificationmayaffecttheaccuracyoftheresults.Conclusion:TheFour-StepMethodisavaluabletoolintheassessmentofsandbodyconnectivityinlithologicreservoirs.Attributerecognition,attributequantification,attributeclassification,andattributeintegrationofferasystematicframeworktounderstandthecomplexconnectivitypatternswithinthereservoirs.CasestudiesdemonstratetheeffectivenessoftheFour-StepMethodincapturingtheheterogeneityandconnectivityofsandbodiesinbothclasticandcarbonatelithologicreservoirs.However,itisessentialtoconsiderthelimitationsanduncert
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年云南省丽江地区单招职业倾向性考试题库及参考答案详解1套
- 2026年怀化师范高等专科学校单招职业适应性考试题库及完整答案详解1套
- 2026年潍坊环境工程职业学院单招职业技能考试题库及参考答案详解1套
- 2026年河北省保定市单招职业倾向性测试题库及答案详解1套
- 2026年浙江警官职业学院单招职业适应性考试题库及参考答案详解1套
- 2026年吉林科技职业技术学院单招职业适应性测试题库含答案详解
- 2026年哈尔滨幼儿师范高等专科学校单招职业技能测试题库含答案详解
- 2026年黑龙江省大庆市单招职业适应性测试题库及参考答案详解
- 2026年烟台黄金职业学院单招职业适应性测试题库及参考答案详解
- 2026年揭阳职业技术学院单招职业技能考试题库及答案详解1套
- 2026年山西省财政税务专科学校单招职业倾向性测试题库附答案
- 2025年阿里辅警协警招聘考试备考题库及答案1套
- 黄宝康药用植物学课件
- 2025年天车工(初级)考试试卷及模拟题库及答案
- 接地电阻测量方法培训课件
- 人教版八年级生物上册《神经调节》同步练习题及答案
- 2025年《道路运输安全培训》知识考试题库及答案解析
- 充电宝产品设计开发全流程
- 院内感染暴发应急响应全流程
- caac机长证考试内容
- 转移性副神经节瘤和嗜铬细胞瘤诊治专家共识2026
评论
0/150
提交评论