高考数学考前冲刺攻略_第1页
高考数学考前冲刺攻略_第2页
高考数学考前冲刺攻略_第3页
高考数学考前冲刺攻略_第4页
高考数学考前冲刺攻略_第5页
已阅读5页,还剩93页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高考数学考前冲刺攻略目录contents复数(选填题)…………………03函数与导数(选填题)…………15不等式(选填题)………………39球(选填题)…………………53数列、统计与概率(解答题)…………………71④二.几种数列求和的常用方法(1)分组转化求和法:一个数列的通项公式是由若干个等差或等比或可求和的数列组成的,则求和时可用分组求和法,分别求和后相加减.(2)裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得前n项和.(3)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么求这个数列的前项和即可用错位相减法求解.(4)倒序相加法:如果一个数列与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前项和即可用倒序相加法求解.三.常见的裂项技巧积累裂项模型1:等差型(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)积累裂项模型2:根式型(1)(2)(3)(4)(5)(6)积累裂项模型3:指数型(1)(2)(3)(4)(5)(6),设,易得,于是(7)积累裂项模型4:对数型积累裂项模型5:三角型(1)(2)(3)(4),则二、统计与概率两点分布两点分布:是很简单的一种概率分布,其实验结果只有两种可能,且概率和为1;两点分布列又称分布列或佰努利分布列;两点分布能清晰的反映出事件的正反两面.两点分布的应用十分广泛,如抽取的彩票是否中奖,买回的意见产品是否为正品,新生儿的鉴定,投篮是否命中等.(想象成扔硬币问题)超几何分布超几何分布:一般地,在含有件次品的件产品中,任取件,其中恰有件次品数,则事件发生的概率为,其中,且.称分布列01……为超几何分布列.如果随机变量的分布列为超几何分布列,则称随机变量服从超几何分布.注意:若有件产品,其中件为次品,无放回地任意抽取件,则其中恰有的次品件数是服出超几何分布.二项分布1.n重伯努利试验的概念只包含两个可能结果的试验叫做伯努利试验,将一个伯努利试验独立地重复进行n次所组成的随机试验称为n重伯努利试验.2.n重伯努利试验具有如下共同特征(1)同一个伯努利试验重复做n次;(2)各次试验的结果相互独立.3.二项分布(若有件产品,其中件是次品,有放回地任意抽取件,则其中恰有的次品件数是服从二项分布的)一般地,在n重伯努利试验中,设每次试验中事件A发生的概率为p(0<p<1),用X表示事件A发生的次数,则X的分布列为:如果随机变量X的分布列具有上式的形式,则称随机变量X服从二项分布,记作X~B(n,p).4.一般地,可以证明:如果X~B(n,p),那么E(X)=np,D(X)=np(1-p).条件概率技巧总结1.条件概率的概念条件概率揭示了P(A),P(AB),P(B|A)三者之间“知二求一”的关系一般地,设A,B为两个随机事件,且P(A)>0,我们称P(B|A)=eq\f(P(AB),P(A))为在事件A发生的条件下,事件B发生的条件概率,简称条件概率.2.概率的乘法公式由条件概率的定义,对任意两个事件A与B,若P(A)>0,则P(AB)=P(A)P(B|A).我们称上式为概率的乘法公式.3.条件概率的性质设P(A)>0,则(1)P(Ω|A)=1;(2)如果B与C是两个互斥事件,则P((B∪C)|A)=P(B|A)+P(C|A);(3)设eq\o(B,\s\up6(-))和B互为对立事件,则P(eq\o(B,\s\up6(-))eq\b\lc\|(\a\vs4\al\co1(A)))=1-P(Beq\b\lc\|(\a\vs4\al\co1(A))).4.全概率公式在全概率的实际问题中我们经常会碰到一些较为复杂的概率计算,这时,我们可以用“化整为零”的思想将它们分解为一些较为容易的情况分别进行考虑一般地,设A1,A2,…,An是一组两两互斥的事件,A1∪A2∪…∪An=Ω,且P(Ai)>0,i=1,2,…,n,则对任意的事件B⊆Ω,有P(B)=eq\o(∑,\s\up10(n),\s\do10(i=1))P(Ai)P(Beq\b\lc\|(\a\vs4\al\co1(Ai))).我们称上面的公式为全概率公式,全概率公式是概率论中最基本的公式之一.5.贝叶斯公式设A1,A2,…,An是一组两两互斥的事件,A1∪A2∪…∪An=Ω,且P(Ai)>0,i=1,2,…,n,则对任意事件B⊆Ω,P(B)>0,有P(Aieq\b\lc\|(\a\vs4\al\co1(B)))=eq\f(P(Ai)P(B\b\lc\|(\a\vs4\al\co1(Ai))),P(B))=i=1,2,…,n.6.在贝叶斯公式中,P(Ai)和P(Ai|B)分别称为先验概率和后验概率.离散型随机变量的均值与方差技巧总结Ⅰ:随机变量的数字特征1.离散型随机变量的均值的概念一般地,若离散型随机变量X的分布列为Xx1x2…xi…xnPp1p2…pi…pn则称E(X)=x1p1+x2p2+…+xipi+…+xnpn=为随机变量X的均值或数学期望.2.离散型随机变量的均值的意义均值是随机变量可能取值关于取值概率的加权平均数,它综合了随机变量的取值和取值的概率,反映了随机变量取值的平均水平.3.离散型随机变量的均值的性质若Y=aX+b,其中a,b均是常数(X是随机变量),则Y也是随机变量,且有E(aX+b)=aE(X)+b.证明如下:如果Y=aX+b,其中a,b为常数,X是随机变量,那么Y也是随机变量.因此P(Y=axi+b)=P(X=xi),i=1,2,3,…,n,所以Y的分布列为Yax1+bax2+b…axi+b…axn+bPp1p2…pi…pn于是有E(Y)=(ax1+b)p1+(ax2+b)p2+…+(axi+b)pi+…+(axn+b)pn=a(x1p1+x2p2+…+xipi+…+xnpn)+b(p1+p2+…+pi+…+pn)=aE(X)+b,即E(aX+b)=aE(X)+b.方差:.称为随机变量的方差,随机变量的标准差,记作,方差(或标准差)越小表明的取值相对于期望越集中,否则越分散.Ⅱ:均值与方差的性质(1).(2)(为常数).(3)两点分布、二项分布、超几何分布的期望、方差(1)若X服从两点分布,则,.(2)若X服从二项分布,即,则.(3)若X服从超几何分布,即时,.方法总结:求离散型随机变量的均值、方差的基本步骤:第一步:判断取值:先根据随机变量的意义,确定随机变量可以取哪些值;第二步:探求概率:利用排列组合、枚举法、概率公式(常见的有古典概型公式、几何概型公式、互斥事件的概率和公式、独立事件的概率积公式,以及对立事件的概率公式)等,求出随机变量取每个值时的概率;第三步:写分布列:按规范形式写出分布列,并注意用分布列的性质(概率总和为1)检验所求的分布列是否正确;第四步:求期望值和方差:利用数学期望和方差的公式分别求期望和方差的值.对于有些实际问题中的随机变量,如果能够断定它服从某常见的典型分布(如二项分布X~B(n,p)),则此随机变量的期望可直接利用这种典型分布的期望公式(E(X)=np)求得.因此,应熟记常见的典型分布的期望与方差公式,可加快解题速度.正态分布技巧总结1.正态曲线及其性质(1)正态曲线:函数,,其中实数μ,σ(σ>0)为参数,我们称φμ,σ(x)的图象为正态分布密度曲线,简称正态曲线.(2)正态曲线的性质:①曲线位于x轴上方,与x轴不相交;②曲线是单峰的,它关于直线x=μ对称;③曲线在x=μ处达到峰值eq\f(1,\r(2πσ));④曲线与x轴之间的面积为1;⑤当σ一定时,曲线的位置由μ确定,曲线随着μ的变化而沿x轴平移,如图甲所示;⑥当μ一定时,曲线的形状由σ确定,σ越大,曲线越“矮胖”,总体分布越分散;σ越小.曲线越“瘦高”.总体分布越集中,如图乙所示:甲乙2.正态分布一般地,如果对于任何实数a,b(a<b),随机变量X满足P(a<X≤b)=,则称随机变量X服从正态分布(normaldistribution).正态分布完全由参数μ和σ确定,因此正态分布常记作N(μ,σ2).如果随机变量X服从正态分布,则记为X~N(μ,σ2).3.正态总体三个特殊区间内取值的概率值①P(μ-σ<X≤μ+σ)=0.6826;②P(μ-2σ<X≤μ+2σ)=0.9544;③P(μ-3σ<X≤μ+3σ)=0.9974.4.3σ原则通常服从正态分布N(μ,σ2)的随机变量X只取(μ-3σ,μ+3σ)之间的值.【规律方法】1.求正态曲线的两个方法(1)图解法:明确顶点坐标即可,横坐标为样本的均值μ,纵坐标为eq\f(1,\r(2π)σ).(2)待定系数法:求出μ,σ便可.2.正态分布下2类常见的概率计算(1)利用正态分布密度曲线的对称性研究相关概率问题,涉及的知识主要是正态曲线关于直线x=μ对称,曲线与x轴之间的面积为1.(2)利用3σ原则求概率问题时,要注意把给出的区间或范围与正态变量的μ,σ进行对比联系,确定它们属于(μ-σ,μ+σ),(μ-2σ,μ+2σ),(μ-3σ,μ+3σ)中的哪一个.3.正态总体在某个区间内取值概率的求解策略(1)充分利用正态曲线对称性和曲线与x轴之间面积为1.(2)熟记P(μ-σ<X≤μ+σ),P(μ-2σ<X≤μ+2σ),P(μ-3σ<X≤μ+3σ)的值.(3)注意概率值的求解转化:①P(X<a)=1-P(X≥a);②P(X<μ-a)=P(X≥μ+a);③若b<μ,则P(X<b)=eq\f(1-Pμ-b<X<μ+b,2).特别提醒:正态曲线,并非都关于y轴对称,只有标准正态分布曲线才关于y轴对称.简单随机抽样技巧总结Ⅰ:简单随机抽样:系统抽样、分层抽样、每个个体被抽中的概率都相同Ⅱ:频率分布直方图:①组距:相邻横坐标之间的差值②概率:概率=纵×组距(面积)③中位数:取,前半图形面积为④众数:图形中最高的中值.⑤平均数:⑥方差:⑦极差:最大--最小Ⅲ:茎叶图①中位数:去头去尾取中间②众数:出现次数最多的数③平均数:④评价:技巧总结1.相关关系与回归分析回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法;判断相关性的常用统计图是:散点图;统计量有相关系数与相关指数.回归分析(线性回归)在散点图中,点散布在从左下角到右上角的区域,对于两个变量的这种相关关系,我们将它称为正相关;在散点图中,点散布在从左上角到右下角的区域,两个变量的这种相关关系称为负相关;如果散点图中点的分布从整体上看大致在一条直线附近,称两个变量具有线性相关关系.2.线性回归方程:(1)最小二乘法:使得样本数据的点到回归直线的距离的平方和最小的方法叫做最小二乘法.(2)回归方程:两个具有线性相关关系的变量的一组数据:,其回归方程为,则注意:线性回归直线经过定点.(3)相关系数:.【技能方法】(1)利用散点图判断两个变量是否有相关关系是比较直观简便的方法.如果所有的样本点都落在某一函数的曲线附近,变量之间就有相关关系.如果所有的样本点都落在某一直线附近,变量之间就有线性相关关系.若点散布在从左下角到右上角的区域,则正相关.(2)利用相关系数判定,当越趋近于1相关性越强.当残差平方和越小,相关指数越大,相关性越强.(3)在分析实际中两个变量的相关关系时,可根据样本数据作出散点图来确定两个变量之间是否具有相关关系,也可计算相关系数进行判断.若具有线性相关关系,则可通过线性回归方程估计和预测变量的值.(4)正确运用计算的公式和准确的计算,是求线性回归方程的关键.并充分利用回归直线过样本点的中心进行求值.2×2列联表及独立性检验技巧总结Ⅰ:分类变量有一种变量,这种变量所取不同的“值”表示的是个体所属不同类别,称这种变量为分类变量。Ⅱ:2×2列联表1.列联表用表格列出的分类变量的频数表,叫做列联表。2.2×2列联表对于两个事件A,B,列出两个事件在两种状态下的数据,如下表所示:事件B事件合计事件Aaba+b事件cdc+d合计a+cb+da+b+c+d这样的表格称为2×2列联表。Ⅲ:卡方统计量公式为了研究分类变量X与Y的关系,经调查得到一张2×2列联表,如下表所示Y1Y2合计X1aba+bX2cdc+d合计a+cb+dn=a+b+c+d统计中有一个有用的(读做“卡方”)统计量,它的表达式是:(为样本容量)。Ⅳ:独立性检验独立性检验通过2×2列联表,再通过卡方统计量公式计算的值,利用随机变量来确定在多大程度上可以认为“两个分类变量有关系”的方法称为两个分类变量的独立性检验。变量独立性的判断通过对统计量分布的研究,已经得到两个临界值:3.841和6.635。当数据量较大时,在统计中,用以下结果对变量的独立性进行判断:①如果≤3.841时,认为事件A与B是无关的。②如果>3.841时,有95%的把握说事件A与事件B有关;③如果>6.635时,有99%的把握说事件A与事件B有关;Ⅴ:独立性检验的基本步骤及简单应用独立性检验的步骤:要推断“A与B是否有关”,可按下面步骤进行:(1)提出统计假设H0:事件A与B无关(相互独立);(2)抽取样本(样本容量不要太小,每个数据都要大于5);(3)列出2×2列联表;(4)根据2×2列联表,利用公式:,计算出的值;(5)统计推断:当>3.841时,有95%的把握说事件A与B有关;当>6.635时,有99%的把握说事件A与B有关;当>10.828时,有99.9%的把握说事件A与B有关;当≤3.841时,认为事件A与B是无关的.备注:临界值表P(K2≥k)0.500.400.250.150.100.050.0250.0100.0050.001k0.4550.7081.3232.0722.7063.8415.0246.6357.87910.828典例1【2023新高考1卷】甲、乙两人投篮,每次由其中一人投篮,规则如下:若命中则此人继续投篮,若末命中则换为对方投篮.无论之前投篮情况如何,甲每次投篮的命中率均为0.6,乙每次投篮的命中率均为0.8.由抽签确定第1次投篮的人选,第1次投篮的人是甲、乙的概率各为0.5.(1)求第2次投篮的人是乙的概率;(2)求第次投篮的人是甲的概率;(3)已知:若随机变量服从两点分布,且,则.记前次(即从第1次到第次投篮)中甲投篮的次数为,求.【答案】(1)(2)(3)【解析】【小问1详解】记“第次投篮的人是甲”为事件,“第次投篮的人是乙”为事件,所以,.【小问2详解】设,依题可知,,则,即,构造等比数列,设,解得,则,又,所以是首项为,公比为的等比数列,即.【小问3详解】因为,,所以当时,,故.典例2【2023新高考全国Ⅱ卷】某研究小组经过研究发现某种疾病的患病者与未患病者的某项医学指标有明显差异,经过大量调查,得到如下的患病者和未患病者该指标的频率分布直方图:利用该指标制定一个检测标准,需要确定临界值c,将该指标大于c的人判定为阳性,小于或等于c的人判定为阴性.此检测标准的漏诊率是将患病者判定为阴性的概率,记为;误诊率是将未患病者判定为阳性的概率,记为.假设数据在组内均匀分布,以事件发生的频率作为相应事件发生的概率.(1)当漏诊率%时,求临界值c和误诊率;(2)设函数,当时,求的解析式,并求在区间的最小值.【答案】(1),;(2),最小值为.【解析】【1详解】依题可知,左边图形第一个小矩形的面积为,所以,所以,解得:,.【2详解】当时,;当时,,故,所以在区间的最小值为.典例3【2022新高考全国Ⅰ卷】一医疗团队为研究某地的一种地方性疾病与当地居民的卫生习惯(卫生习惯分为良好和不够良好两类)的关系,在已患该疾病的病例中随机调查了100例(称为病例组),同时在未患该疾病的人群中随机调查了100人(称为对照组),得到如下数据:不够良好良好病例组4060对照组1090(1)能否有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异?(2)从该地的人群中任选一人,A表示事件“选到的人卫生习惯不够良好”,B表示事件“选到的人患有该疾病”.与的比值是卫生习惯不够良好对患该疾病风险程度的一项度量指标,记该指标为R.(ⅰ)证明:;(ⅱ)利用该调查数据,给出的估计值,并利用(ⅰ)的结果给出R的估计值.附,0.0500.0100.001k3.8416.63510.828【答案】或或【解析】【1详解】由已知,又,,所以有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异.【2详解】(i)因为,所以所以,(ii)由已知,,又,,所以典例4【2022新高考全国Ⅱ卷】在某地区进行流行病学调查,随机调查了100位某种疾病患者的年龄,得到如下的样本数据的频率分布直方图:(1)估计该地区这种疾病患者的平均年龄(同一组中的数据用该组区间的中点值为代表);(2)估计该地区一位这种疾病患者的年龄位于区间的概率;(3)已知该地区这种疾病的患病率为,该地区年龄位于区间的人口占该地区总人口的.从该地区中任选一人,若此人的年龄位于区间,求此人患这种疾病的概率.(以样本数据中患者的年龄位于各区间的频率作为患者的年龄位于该区间的概率,精确到0.0001).【答案】(1)岁;(2);(3).【解析】【小问1详解】平均年龄(岁).【小问2详解】设{一人患这种疾病的年龄在区间},所以.【小问3详解】设“任选一人年龄位于区间[40,50)”,“从该地区中任选一人患这种疾病”,则由已知得:,则由条件概率公式可得从该地区中任选一人,若此人的年龄位于区间,此人患这种疾病的概率为.典例5【2021新高考全国Ⅰ卷】某学校组织“一带一路”知识竞赛,有A,B两类问题,每位参加比赛的同学先在两类问题中选择一类并从中随机抽取一个问题回答,若回答错误则该同学比赛结束;若回答正确则从另一类问题中再随机抽取一个问题回答,无论回答正确与否,该同学比赛结束.A类问题中的每个问题回答正确得20分,否则得0分;B类问题中的每个问题回答正确得80分,否则得0分,已知小明能正确回答A类问题的概率为0.8,能正确回答B类问题的概率为0.6,且能正确回答问题的概率与回答次序无关.(1)若小明先回答A类问题,记为小明的累计得分,求的分布列;(2)为使累计得分的期望最大,小明应选择先回答哪类问题?并说明理由.【答案】(1)见解析;(2)类【解析】(1)由题可知,的所有可能取值为,,.;;.所以的分布列为(2)由(1)知,.若小明先回答问题,记为小明的累计得分,则的所有可能取值为,,.;;.所以.因为,所以小明应选择先回答类问题.预测1(2024·重庆·模拟预测)函数.(1)讨论的单调性;(2)若函数有两个极值点,曲线上两点,连线斜率记为k,求证:;(3)盒子中有编号为1~100的100个小球(除编号外无区别),有放回的随机抽取20个小球,记抽取的20个小球编号各不相同的概率为p,求证:.预测2(2024·重庆·模拟预测)如图,一个质点在随机外力的作用下,从数轴点出发,每隔1秒向左或向右移动一个单位,设每次质点向右移动的概率为,经过秒后质点最终到达的位置的数字记为X.

(1)若,,求;(2)当时,随机变量X的期望,求p的取值范围.预测3(2024·广东韶关·模拟预测)小明参加社区组织的射击比赛活动,已知小明射击一次、击中区域甲的概率是,击中区域乙的概率是,击中区域丙的概率是,区域甲,乙、丙均没有重复的部分.这次射击比赛获奖规则是:若击中区域甲则获一等奖;若击中区域乙则有一半的机会获得二等奖,有一半的机会获得三等奖;若击中区域丙则获得三等奖;若击中上述三个区域以外的区域则不获奖.获得一等奖和二等奖的选手被评为“优秀射击手”称号.(1)求小明射击1次获得“优秀射击手”称号的概率;(2)小明在比赛中射击4次,每次射击的结果相互独立,设获三等奖的次数为X,求X分布列和数学期望.预测4(2024·陕西安康·模拟预测)2024年3月,某校语文教师对学生提出“3月读一本书”的要求,每位学生都选择且只能选择《红楼梦》和《三国演义》中的一本,现随机调查该校男、女生各100人,发现选择《红楼梦》的有90人,其中女生占.(1)补充完整下述列联表,并判断能否有的把握认为学生选择《红楼梦》还是《三国演义》与性别有关;《红楼梦》《三国演义》男生女生(2)已知学生选择哪本书是相互独立的,用频率代替概率,从该校选择《红楼梦》的学生中随机抽取3人,抽到的女生人数设为,求的分布列和数学期望.参考公式:,其中.参考数据:0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.828预测5(2024·陕西西安·模拟预测)某高校为调查学生喜欢“应用统计”课程是否与性别有关,随机抽取了选修课程的55名学生,得到数据如下表:喜欢“应用统计”课程不喜欢“应用统计”课程总计男生20525女生102030总计302555(1)判断能否在犯错误的概率不超过0.005的前提下认为喜欢“应用统计”课程与性别有关?(公式和对照表见题后)(2)用分层抽样的方法从喜欢统计课程的学生中抽取6名学生做进一步调查,将这6名学生作为一个样本,从中任选2人,求恰有1个男生和1个女生的概率.附:,0.0100.0056.6357.879押题1:已知质量均匀的正面体,个面分别标以数字1到.(1)抛掷一个这样的正面体,随机变量表示它与地面接触的面上的数字.若求n;(2)在(1)的情况下,抛掷两个这样的正n面体,随机变量表示这两个正面体与地面接触的面上的数字和的情况,我们规定:数字和小于7,等于7,大于7,分别取值0,1,2,求的分布列及期望.押题2:某景区的索道共有三种购票类型,分别为单程上山票、单程下山票、双程上下山票.为提高服务水平,现对当日购票的120人征集意见,当日购买单程上山票、单程下山票和双程票的人数分别为36、60和24.(1)若按购票类型采用分层随机抽样的方法从这120人中随机抽取10人,再从这10人中随机抽取4人,求随机抽取的4人中恰有2人购买单程上山票的概率.(2)记单程下山票和双程票为回程票,若在征集意见时要求把购买单程上山票的2人和购买回程票的m(且)人组成一组,负责人从某组中任选2人进行询问,若选出的2人的购票类型相同,则该组标为A,否则该组标为B,记询问的某组被标为B的概率为p.(i)试用含m的代数式表示p;(ii)若一共询问了5组,用表示恰有3组被标为B的概率,试求的最大值及此时m的值.押题3:甲、乙、丙三人进行传球游戏,每次投掷一枚质地均匀的正方体骰子决定传球的方式:当球在甲手中时,若骰子点数大于3,则甲将球传给乙,若点数不大于3,则甲将球保留;当球在乙手中时,若骰子点数大于4,则乙将球传给甲,若点数不大于4,则乙将球传给丙;当球在丙手中时,若骰子点数大于3,则丙将球传给甲,若骰子点数不大于3,则丙将球传给乙.初始时,球在甲手中.(1)求投掷3次骰子后球在乙手中的概率;(2)设前三次投掷骰子后,球在甲手中的次数为,求随机变量的分布列和数学期望.押题4:某公司计划在员工团建活动中设置一个抽奖环节.工作人员在仓库中随机抽取了20个规格相同的礼盒,各礼盒中均有1个质地相同的小球,礼盒和小球的颜色为红色或黑色,且颜色分布如下表所示.小球颜色礼盒颜色合计红色黑色红色mn黑色268合计20已知从上述礼盒中随机选取2个礼盒,红色与黑色礼盒恰好各1个的概率为.(1)求的值.(2)为提高活动的趣味性,设抽奖过程及中奖规则如下:①将20个礼盒放在1个箱子中,每人有放回地分两次抽取,每次抽取1个礼盒,并记录礼盒和该礼盒中的小球的颜色.②两次抽取后的结果分四种情况:礼盒与礼盒中的小球的颜色两次均相同;2个礼盒的颜色相同,但2个小球的颜色不同;2个礼盒的颜色不同,但2个小球的颜色相同;礼盒与礼盒中的小球的颜色两次均不相同.③按②抽取后的结果的可能性大小,设概率越小,对应奖项的奖金越高.④活动奖励分四个等级,奖金额分别为一等奖800元,二等奖400元,三等奖200元,四等奖100元.若预计有60名员工参与抽奖活动(每人抽奖1次),求抽奖活动的奖金总额的数学期望.押题5:某地区工会利用“健步行APP”开展健步走活动.为了解会员的健步走情况,工会在某天从系统中抽取了100名会员,统计了当天他们的步数(千步为单位),并将样本数据分为,,,…,,九组,整理得到如图所示的频率分布直方图.(1)根据频率分布直方图,估计样本数据的70%分位数;(2)据统计,在样本数据,,的会员中体检为“健康”的比例分别为,,,以频率作为概率,估计在该地区工会会员中任取一人,体检为“健康”的概率.名校预测预测1:答案见解析【详解】(1)定义域为,,对于方程,,当,即时,,,在上单增,当,即或时,方程有两不等根,,,而,,所以当时,,在上恒成立,在上单增;当时,,或时,,时,,所以在和上单增,在上单减,综上,当时,在上单增;当时,在和上单增,在上单减;(2),所以要证,即证,即证,也即证(*)成立.设,函数,由(1)知在上单增,且,所以时,,所以(*)成立,原不等式得证;(3)由题可得,因为,,…,,所以,又由(2)知,,取,有,即,即,所以.预测2:答案(1)(2)【详解】(1)4秒后质点移动到点1,则质点需向右移动3次,向左移动1次,故.(2)由题意,X可能的取值为,则,,,,所以,解得,又因为,所以.预测3:答案(1)(2)分布列见解析;【详解】(1)记“射击一次获得‘优秀射击手’称号”为事件;射击一次获得一等奖为事件;射击一次获得一等奖为事件,所以有,所以,,所以.(2)获得三等奖的次数为,的可能取值为,,,,;记“获得三等奖”为事件,所以,所以,,,,,所以显然,.预测4:答案(1)有的把握认为学生选择《红楼梦》还是《三国演义》与性别有关;(2)见解析【详解】(1)男、女生各100人,选择《红楼梦》的有90人,其中女生有.补全二联表:《红楼梦》《三国演义》合计男生3070100女生6040100合计90110200所以,故有的把握认为学生选择《红楼梦》还是《三国演义》与性别有关;(2)依题意.,,,.的分布列为:0123.预测5:答案(1)有关(2)【详解】(1)由表中数据,可得,所以能在犯错误的概率不超过0.005的前提下认为喜欢“应用统计”课程与性别有关.(2)设所抽样本中有m个男生,则=,得,所以样本中有4个男生,2个女生,分别记作,,,,,,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论