




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省泉州市晋江市2024年中考适应性考试数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,矩形ABCD中,AB=8,BC=1.点E在边AB上,点F在边CD上,点G、H在对角线AC上.若四边形EGFH是菱形,则AE的长是()A.2 B.3 C.5 D.62.如图,钓鱼竿AC长6m,露在水面上的鱼线BC长m,某钓者想看看鱼钓上的情况,把鱼竿AC转动到AC'的位置,此时露在水面上的鱼线B′C′为m,则鱼竿转过的角度是()A.60° B.45° C.15° D.90°3.下列运算错误的是()A.(m2)3=m6B.a10÷a9=aC.x3•x5=x8D.a4+a3=a74.计算4×(–9)的结果等于A.32 B.–32 C.36 D.–365.如图,在正三角形ABC中,D,E,F分别是BC,AC,AB上的点,DE⊥AC,EF⊥AB,FD⊥BC,则△DEF的面积与△ABC的面积之比等于()A.1∶3 B.2∶3 C.∶2 D.∶36.函数y=中自变量x的取值范围是A.x≥0 B.x≥4 C.x≤4 D.x>47.如图,二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(﹣1,0).下列结论:①ab<0,②b2>4a,③0<a+b+c<2,④0<b<1,⑤当x>﹣1时,y>0,其中正确结论的个数是A.5个 B.4个 C.3个 D.2个8.一个多边形的每个内角都等于120°,则这个多边形的边数为()A.4 B.5 C.6 D.79.为弘扬传统文化,某校初二年级举办传统文化进校园朗诵大赛,小明同学根据比赛中九位评委所给的某位参赛选手的分数,制作了一个表格,如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是()中位数众数平均数方差9.29.39.10.3A.中位数 B.众数 C.平均数 D.方差10.如图,将△ABC沿着DE剪成一个小三角形ADE和一个四边形D'E'CB,若DE∥BC,四边形D'E'CB各边的长度如图所示,则剪出的小三角形ADE应是()A. B. C. D.二、填空题(共7小题,每小题3分,满分21分)11.已知二次函数中,函数y与x的部分对应值如下:...-10123......105212...则当时,x的取值范围是_________.12.如图,在边长相同的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB与CD相交于点P,则tan∠APD的值为______.13.因式分解:=___.14.将一个底面半径为2,高为4的圆柱形纸筒沿一条母线剪开,所得到的侧面展开图形面积为_____.15.如图,将三角形AOC绕点O顺时针旋转120°得三角形BOD,已知OA=4,OC=1,那么图中阴影部分的面积为_____.(结果保留π)16.分解因式:4a2﹣1=_____.17.如图,在△ABC中,∠C=120°,AB=4cm,两等圆⊙A与⊙B外切,则图中两个扇形的面积之和(即阴影部分)为cm2(结果保留π).三、解答题(共7小题,满分69分)18.(10分)解不等式组:2x+119.(5分)如图,网格的每个小正方形边长均为1,每个小正方形的顶点称为格点.已知和的顶点都在格点上,线段的中点为.(1)以点为旋转中心,分别画出把顺时针旋转,后的,;(2)利用(1)变换后所形成的图案,解答下列问题:①直接写出四边形,四边形的形状;②直接写出的值;③设的三边,,,请证明勾股定理.20.(8分)规定:不相交的两个函数图象在竖直方向上的最短距离为这两个函数的“亲近距离”(1)求抛物线y=x2﹣2x+3与x轴的“亲近距离”;(2)在探究问题:求抛物线y=x2﹣2x+3与直线y=x﹣1的“亲近距离”的过程中,有人提出:过抛物线的顶点向x轴作垂线与直线相交,则该问题的“亲近距离”一定是抛物线顶点与交点之间的距离,你同意他的看法吗?请说明理由.(3)若抛物线y=x2﹣2x+3与抛物线y=+c的“亲近距离”为,求c的值.21.(10分)阅读下列材料:数学课上老师布置一道作图题:已知:直线l和l外一点P.求作:过点P的直线m,使得m∥l.小东的作法如下:作法:如图2,(1)在直线l上任取点A,连接PA;(2)以点A为圓心,适当长为半径作弧,分别交线段PA于点B,直线l于点C;(3)以点P为圆心,AB长为半径作弧DQ,交线段PA于点D;(4)以点D为圆心,BC长为半径作弧,交弧DQ于点E,作直线PE.所以直线PE就是所求作的直线m.老师说:“小东的作法是正确的.”请回答:小东的作图依据是________.22.(10分)解分式方程:=123.(12分)某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.该项绿化工程原计划每天完成多少米2?该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?24.(14分)如图,在平面直角坐标xOy中,正比例函数y=kx的图象与反比例函数y=的图象都经过点A(2,﹣2).(1)分别求这两个函数的表达式;(2)将直线OA向上平移3个单位长度后与y轴交于点B,与反比例函数图象在第四象限内的交点为C,连接AB,AC,求点C的坐标及△ABC的面积.
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】试题分析:连接EF交AC于点M,由四边形EGFH为菱形可得FM=EM,EF⊥AC;利用”AAS或ASA”易证△FMC≌△EMA,根据全等三角形的性质可得AM=MC;在Rt△ABC中,由勾股定理求得AC=,且tan∠BAC=;在Rt△AME中,AM=AC=,tan∠BAC=可得EM=;在Rt△AME中,由勾股定理求得AE=2.故答案选C.考点:菱形的性质;矩形的性质;勾股定理;锐角三角函数.2、C【解析】试题解析:∵sin∠CAB=∴∠CAB=45°.∵,∴∠C′AB′=60°.∴∠CAC′=60°-45°=15°,鱼竿转过的角度是15°.故选C.考点:解直角三角形的应用.3、D【解析】【分析】利用合并同类项法则,单项式乘以单项式法则,同底数幂的乘法、除法的运算法则逐项进行计算即可得.【详解】A、(m2)3=m6,正确;B、a10÷a9=a,正确;C、x3•x5=x8,正确;D、a4+a3=a4+a3,错误,故选D.【点睛】本题考查了合并同类项、单项式乘以单项式、同底数幂的乘除法,熟练掌握各运算的运算法则是解题的关键.4、D【解析】
根据有理数的乘法法则进行计算即可.【详解】故选:D.【点睛】考查有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.5、A【解析】∵DE⊥AC,EF⊥AB,FD⊥BC,∴∠C+∠EDC=90°,∠FDE+∠EDC=90°,∴∠C=∠FDE,同理可得:∠B=∠DFE,∠A=DEF,∴△DEF∽△CAB,∴△DEF与△ABC的面积之比=,又∵△ABC为正三角形,∴∠B=∠C=∠A=60°∴△EFD是等边三角形,∴EF=DE=DF,又∵DE⊥AC,EF⊥AB,FD⊥BC,∴△AEF≌△CDE≌△BFD,∴BF=AE=CD,AF=BD=EC,在Rt△DEC中,DE=DC×sin∠C=DC,EC=cos∠C×DC=DC,又∵DC+BD=BC=AC=DC,∴,∴△DEF与△ABC的面积之比等于:故选A.点晴:本题主要通过证出两个三角形是相似三角形,再利用相似三角形的性质:相似三角形的面积之比等于对应边之比的平方,进而将求面积比的问题转化为求边之比的问题,并通过含30度角的直角三角形三边间的关系(锐角三角形函数)即可得出对应边之比,进而得到面积比.6、B【解析】
根据二次根式的性质,被开方数大于等于0,列不等式求解.【详解】根据题意得:x﹣1≥0,解得x≥1,则自变量x的取值范围是x≥1.故选B.【点睛】本题主要考查函数自变量的取值范围的知识点,注意:二次根式的被开方数是非负数.7、B【解析】
解:∵二次函数y=ax3+bx+c(a≠3)过点(3,3)和(﹣3,3),∴c=3,a﹣b+c=3.①∵抛物线的对称轴在y轴右侧,∴,x>3.∴a与b异号.∴ab<3,正确.②∵抛物线与x轴有两个不同的交点,∴b3﹣4ac>3.∵c=3,∴b3﹣4a>3,即b3>4a.正确.④∵抛物线开口向下,∴a<3.∵ab<3,∴b>3.∵a﹣b+c=3,c=3,∴a=b﹣3.∴b﹣3<3,即b<3.∴3<b<3,正确.③∵a﹣b+c=3,∴a+c=b.∴a+b+c=3b>3.∵b<3,c=3,a<3,∴a+b+c=a+b+3<a+3+3=a+3<3+3=3.∴3<a+b+c<3,正确.⑤抛物线y=ax3+bx+c与x轴的一个交点为(﹣3,3),设另一个交点为(x3,3),则x3>3,由图可知,当﹣3<x<x3时,y>3;当x>x3时,y<3.∴当x>﹣3时,y>3的结论错误.综上所述,正确的结论有①②③④.故选B.8、C【解析】试题解析:∵多边形的每一个内角都等于120°,∴多边形的每一个外角都等于180°-120°=10°,∴边数n=310°÷10°=1.故选C.考点:多边形内角与外角.9、A【解析】
根据中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数可得答案.【详解】如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是中位数.故选A.点睛:本题主要考查了中位数,关键是掌握中位数定义.10、C【解析】
利用相似三角形的性质即可判断.【详解】设AD=x,AE=y,∵DE∥BC,∴△ADE∽△ABC,∴,∴,∴x=9,y=12,故选:C.【点睛】考查平行线的性质,相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.二、填空题(共7小题,每小题3分,满分21分)11、0<x<4【解析】
根据二次函数的对称性及已知数据可知该二次函数的对称轴为x=2,结合表格中所给数据可得出答案.【详解】由表可知,二次函数的对称轴为直线x=2,所以,x=4时,y=5,所以,y<5时,x的取值范围为0<x<4.故答案为0<x<4.【点睛】此题主要考查了二次函数的性质,利用图表得出二次函数的图象即可得出函数值得取值范围,同学们应熟练掌握.12、1【解析】
首先连接BE,由题意易得BF=CF,△ACP∽△BDP,然后由相似三角形的对应边成比例,易得DP:CP=1:3,即可得PF:CF=PF:BF=1:1,在Rt△PBF中,即可求得tan∠BPF的值,继而求得答案.【详解】如图:,连接BE,∵四边形BCED是正方形,∴DF=CF=12CD,BF=1∴BF=CF,根据题意得:AC∥BD,∴△ACP∽△BDP,∴DP:CP=BD:AC=1:3,∴DP:DF=1:1,∴DP=PF=12CF=1在Rt△PBF中,tan∠BPF=BFPF∵∠APD=∠BPF,∴tan∠APD=1.
故答案为:1【点睛】此题考查了相似三角形的判定与性质,三角函数的定义.此题难度适中,解题的关键是准确作出辅助线,注意转化思想与数形结合思想的应用.13、【解析】分析:先提公因式,再利用平方差公式因式分解即可.详解:a2(a-b)-4(a-b)=(a-b)(a2-4)=(a-b)(a-2)(a+2),故答案为:(a-b)(a-2)(a+2).点睛:本题考查的是因式分解,掌握提公因式法、平方差公式进行因式分解是解题的关键.14、【解析】试题分析:先根据勾股定理求得圆锥的母线长,再根据圆锥的侧面积公式求解即可.由题意得圆锥的母线长则所得到的侧面展开图形面积.考点:勾股定理,圆锥的侧面积公式点评:解题的关键是熟记圆锥的侧面积公式:圆锥的侧面积底面半径母线.15、5π【解析】
根据旋转的性质可以得到阴影部分的面积=扇形OAB的面积﹣扇形OCD的面积,利用扇形的面积公式计算即可求解.【详解】∵△AOC≌△BOD,∴阴影部分的面积=扇形OAB的面积﹣扇形OCD的面积5π.故答案为:5π.【点睛】本题考查了旋转的性质以及扇形的面积公式,正确理解:阴影部分的面积=扇形OAB的面积﹣扇形OCD的面积是解题的关键.16、(2a+1)(2a﹣1)【解析】
有两项,都能写成完全平方数的形式,并且符号相反,可用平方差公式展开.【详解】4a2﹣1=(2a+1)(2a﹣1).故答案为:(2a+1)(2a-1).【点睛】此题考查多项式因式分解,根据多项式的特点选择适合的分解方法是解题的关键.17、.【解析】
图中阴影部分的面积就是两个扇形的面积,圆A,B的半径为2cm,则根据扇形面积公式可得阴影面积.【详解】(cm2).故答案为.考点:1、扇形的面积公式;2、两圆相外切的性质.三、解答题(共7小题,满分69分)18、x<2.【解析】试题分析:由不等式性质分别求出每一个不等式的解集,找出它们的公共部分即可.试题解析:2x+1由①得:x<3,由②得:x<2,∴不等式组的解集为:x<2.19、(1)见解析;(2)①正方形;②;③见解析.【解析】
(1)根据旋转作图的方法进行作图即可;(2)①根据旋转的性质可证AC=BC1=B1C2=B2C3,从而证出四边形CC1C2C3是菱形,再根据有一个角是直角的菱形是正方形即可作出判断,同理可判断四边形ABB1B2是正方形;②根据相似图形的面积之比等相似比的平方即可得到结果;③用两种不同的方法计算大正方形的面积化简即可得到勾股定理.【详解】(1)如图,(2)①四边形CC1C2C3和四边形ABB1B2是正方形.理由如下:∵△ABC≌△BB1C1,∴AC=BC1,BC==B1C1,AB=BB1.再根据旋转的性质可得:BC1=B1C2=B2C3,B2C1=B2C2=AC3,BB1=B1B2=AB2.∴CC1=C1C2=C2C3=CC3AB=BB1=B1B2=AB2∴四边形CC1C2C3和四边形ABB1B2是菱形.∵∠C=∠ABB1=90°,∴四边形CC1C2C3和四边形ABB1B2是正方形.②∵四边形CC1C2C3和四边形ABB1B2是正方形,∴四边形CC1C2C3∽四边形ABB1B2.∴=∵AB=,CC1=,∴==.③四边形CC1C2C3的面积==,四边形CC1C2C3的面积=4△ABC的面积+四边形ABB1B2的面积=4+=∴=,化简得:=.【点睛】本题考查了旋转作图和旋转的性质,正方形的判定和性质,勾股定理,掌握相关知识是解题的关键.20、(1)2;(2)不同意他的看法,理由详见解析;(3)c=1.【解析】
(1)把y=x2﹣2x+3配成顶点式得到抛物线上的点到x轴的最短距离,然后根据题意解决问题;(2)如图,P点为抛物线y=x2﹣2x+3任意一点,作PQ∥y轴交直线y=x﹣1于Q,设P(t,t2﹣2t+3),则Q(t,t﹣1),则PQ=t2﹣2t+3﹣(t﹣1),然后利用二次函数的性质得到抛物线y=x2﹣2x+3与直线y=x﹣1的“亲近距离”,然后对他的看法进行判断;(3)M点为抛物线y=x2﹣2x+3任意一点,作MN∥y轴交抛物线于N,设M(t,t2﹣2t+3),则N(t,t2+c),与(2)方法一样得到MN的最小值为﹣c,从而得到抛物线y=x2﹣2x+3与抛物线的“亲近距离”,所以,然后解方程即可.【详解】(1)∵y=x2﹣2x+3=(x﹣1)2+2,∴抛物线上的点到x轴的最短距离为2,∴抛物线y=x2﹣2x+3与x轴的“亲近距离”为:2;(2)不同意他的看法.理由如下:如图,P点为抛物线y=x2﹣2x+3任意一点,作PQ∥y轴交直线y=x﹣1于Q,设P(t,t2﹣2t+3),则Q(t,t﹣1),∴PQ=t2﹣2t+3﹣(t﹣1)=t2﹣3t+4=(t﹣)2+,当t=时,PQ有最小值,最小值为,∴抛物线y=x2﹣2x+3与直线y=x﹣1的“亲近距离”为,而过抛物线的顶点向x轴作垂线与直线相交,抛物线顶点与交点之间的距离为2,∴不同意他的看法;(3)M点为抛物线y=x2﹣2x+3任意一点,作MN∥y轴交抛物线于N,设M(t,t2﹣2t+3),则N(t,t2+c),∴MN=t2﹣2t+3﹣(t2+c)=t2﹣2t+3﹣c=(t﹣)2+﹣c,当t=时,MN有最小值,最小值为﹣c,∴抛物线y=x2﹣2x+3与抛物线的“亲近距离”为﹣c,∴,∴c=1.【点睛】本题是二次函数的综合题,考查了二次函数图象上点的坐标特征
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 接发列车客观练习试题及答案
- 汽车维修技术实操及故障诊断试题
- 行政组织中的绩效管理框架探析试题及答案
- 生物科技与人类健康知识应用测试题
- 计算机三级数据库考试提分策略及试题及答案
- 机械工程制造工艺学阅读题集及答案解析
- 保健品合作合同协议书
- 旅游管理酒店管理专业知识梳理与试题解析
- 农村特色农产品开发产销一体化合同书
- 公路工程的监管体系构建试题及答案
- 农场转让合同协议书模板
- 2025-2030中国共享单车服务行业市场现状供需分析及投资评估规划分析研究报告
- 2025年法律职业资格(客观题)重点考点大全
- 舜宇校招面试题目及答案
- 2024年直播电商高质量发展报告
- 【MOOC答案】《大学篮球(四)》(华中科技大学)章节作业期末慕课答案
- 2025年FRM金融风险管理师考试专业试卷(真题)预测与解析
- 浙江专升本免试题目及答案
- 图像分割与目标检测结合的医学影像分析框架-洞察阐释
- 中等职业学校英语课程标准
- 烟台汽车工程职业学院《药理学实验方法学》2023-2024学年第一学期期末试卷
评论
0/150
提交评论