14.2.3-用边边边判定三角形全等_第1页
14.2.3-用边边边判定三角形全等_第2页
14.2.3-用边边边判定三角形全等_第3页
14.2.3-用边边边判定三角形全等_第4页
14.2.3-用边边边判定三角形全等_第5页
已阅读5页,还剩31页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第14章

全等三角形第2节三角形全等的判定第3课时用边边边判定三角形全等课堂讲解课时流程12判定两三角形全等的基本事实:“边边边”全等三角形判定“边边边”的简单应用三角形的稳定性逐点导讲练课堂小结课后作业1知识点判定两三角形全等的基本事实:边边边知1-导已知:△ABC[如图(1)].求作:△A′B′C′,使A′B′=

AB,B′C′=BC,C′A′=

CA.

知1-导作法:(1)作线段B′C′=BC;(2)分别以点B′,C′为圆心,BA,CA的长为半径画弧,

两弧相交于点A′;(3)连接A′B′,A′C′.则△A′B′C′[如图(2)]就是所求作的三角形.知1-导归

纳(来自教材)判定两个三角形全等的第3种方法是如下的基本事实.三边分别相等的两个三角形全等.简记为“边边边”或“SSS”.知1-导问

题△ABC与△A′B′C′全等吗?知1-讲判定两三角形全等的基本事实——边边边:1.判定方法三:三边分别相等的两个三角形全等(简记为“边边边”或“SSS”).知1-讲2.证明书写格式:在△ABC和△A′B′C′中,∵∴△ABC≌△A′B′C′.知1-讲要点精析:(1)全等的元素:三边.(2)在判定两三角形全等的书写过程中,等号左边是全等号左边三角形的三边,等号右边是全等号右边三角形的三边,即前后顺序要保持一致.(3)书写过程中的边及三角形的顶点前后顺序要对应.知1-讲例1如图,已知点A,D,B,F在一条直线上,AC=FE,BC=DE,AD=FB.求证:△ABC≌△FDE.知1-讲导引:欲证△ABC≌△FDE,已知AC=FE,BC=DE,需证AB=FD,然后根据“SSS”证得结论.由AD=FB,利用等式的性质可得AB=FD,进而得证.(来自《点拨》)知1-讲证明:∵AD=FB,∴AD+DB=FB+DB,即AB=FD.在△ABC与△FDE中,∴△ABC≌△FDE(SSS).(来自《点拨》)知1-讲总

结本例的导引采用的是分析法.分析法(逆推证法或执果索因法)是从证明的结论出发,逐步寻求使它成立的充分条件,直到把要证明的结论归结为判定一个明显成立的条件(已知、定理、定义、公理等).知1-讲总

结分析法一般叙述方式(如本例):要证△ABC≌△FDE,(三角形全等的三个条件),由于BD是公共部分,只需证AD=FB(已知条件),因此原结论成立.(来自《点拨》)知1-讲例2已知:如图,AB=AC,AD=AE,BD=CE.求证:∠BAC=∠DAE.知1-讲(来自《点拨》)导引:要证∠BAC=∠DAE,而这两个角所在三角形显然不全等,我们可以利用等式的性质将它转化为证∠BAD=∠CAE;由已知的三组相等线段可证明△ABD≌△ACE,根据全等三角形的性质可得∠BAD=∠CAE.知1-讲(来自《点拨》)证明:在△ABD和△ACE中,∴△ABD≌△ACE(SSS).∴∠BAD=∠CAE.∴∠BAD+∠DAC=∠CAE+∠DAC,即∠BAC=∠DAE.知1-讲总

结综合法:利用某些已经证明过的结论和性质及已知条件,推导出所要证明的结论成立的方法叫综合法.其思维特点是:由因索果,即从已知条件出发,利用已知的数学定理、性质和公式,推出结论.本书的证明基本上都是用综合法.知1-讲总

结本题运用了综合法,根据条件用“SSS”可得到全等的三角形,从全等三角形出发可找到与结论有关的相等的角.注意:分析法一般用来寻找证明或解题思路,而证明或解题过程一般都采用综合法来完成.简言之:用分析法寻找解题思路,用综合法完成解题过程.知1-练1如图,下列三角形中,与△ABC全等的是(

)(来自《典中点》)C知1-练2如图,已知AC=FE,BC=DE,点A,D,B,F

在一条直线上,要利用“SSS”证明△ABC≌△FDE,需添加的一个条件可以是(

)A.AD=FBB.DE=BDC.BF=DBD.以上都不对(来自《典中点》)A2知识点全等三角形判定“边边边”的简单应用知2-讲例3已知:如图,点B,E,C,F在同一直线上,AB=DE,AC=DF,BE=CF.求证:AB∥DE,AC∥DF.知2-讲证明:∵BE=CF,(已知)∴BE+EC=CF+EC,(等式的性质)

即BC=EF.

在△ABC和△DEF中,

∵知2-讲(来自教材)∴△ABC≌△DEF.(SSS).∴∠B=∠DEF,∠ACB=∠F.(全等三角形的对应角相等)∴

AB∥DE,AC∥DF.(同位角相等,两直线平行)知2-讲例4

〈湖北十堰〉如图,在四边形ABCD中,AB=AD,CB=CD.求证:∠B=∠D.导引:在图中没有三角形,只有连接AC,将∠B和∠D分别放在两个三角形中,通过证明两个

三角形全等来证明∠B和∠D相等.知2-讲证明:如图,连接AC,

在△ABC和△ADC中,∵AB=AD,CB=CD,AC=AC,∴△ABC≌△ADC(SSS).∴∠B=∠D.(来自《点拨》)总

结(来自《点拨》)当两个三角形有两条边相等,而第三条边是公共边时,可利用“SSS”证明这两个三角形全等.知2-讲知2-练1如图,AB=DE,AC=DF,BC=EF,则∠D等于(

)A.30°B.50°C.60°D.100°(来自《典中点》)D知2-讲2如图,已知AE=AD,AB=AC,EC=DB,下列结论:①∠C=∠B;②∠D=∠E;③∠EAD=∠BAC;④∠B=∠E.其中错误的是(

)A.①②B.②③

C.③④D.只有④D(来自《典中点》)3知识点三角形的稳定性知3-讲只要三角形三边的长度确定了,这个三角形的形状和大小就完全确定,这个性质叫做三角形的稳定性.知3-讲例5〈四川绵阳〉王师傅用4根木条钉成一个四边形木架,如图.要使这个木架不变形,他至少还要再钉上(

)根木条.A.0 B.1

C.2 D.3(来自《点拨》)B知3-讲总

结本题应用定义法.根据三角形的稳定性确定再钉木条的根数.(来自《点拨》)知3-练1

(中考·宜昌)下列图形具有稳定性的是(

)A.正方形B.矩形C.平行四边形D.直角三角形(来自《典中点》)D2下列图形中,不具有稳定性的是(

)(来自《典中点》)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论