《物联网专业英语教程》课件第9章_第1页
《物联网专业英语教程》课件第9章_第2页
《物联网专业英语教程》课件第9章_第3页
《物联网专业英语教程》课件第9章_第4页
《物联网专业英语教程》课件第9章_第5页
已阅读5页,还剩68页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Unit9Network[156]

TextA

IEEE802.15.4[167]

TextB

ZigBee[173]参考译文IEEE802.15.4

IEEE802.15.4isastandardwhichspecifiesthephysicallayerandmediaaccesscontrolforlow-ratewirelesspersonalareanetworks(LR-WPANs).ItismaintainedbytheIEEE802.15workinggroup.ItisthebasisfortheZigBee,IEEE802.15.4ISA100.11a,WirelessHART,andMiWispecifications,eachofwhichfurtherextendsthestandardbydevelopingtheupperlayerswhicharenotdefinedby802.15.4.Alternatively,itcanbeusedwith6LoWPANandstandardInternetprotocolstobuildaWirelessEmbeddedInternet.(SeeFigure9.1)Figure9.1IEEE802.15.4protocolstack

1.Overview

IEEEstandard802.15.4intendstoofferthefundamentallowernetworklayersofatypeofWirelessPersonalAreaNetwork(WPAN)whichfocusesonlow-cost,low-speedubiquitouscommunicationbetweendevices(incontrastwithother,moreend-userorientedapproaches,suchasWiFi).Theemphasisisonverylowcostcommunicationofnearbydeviceswithlittletonounderlyinginfrastructure,intendingtoexploitthistolowerpowerconsumptionevenmore.

Thebasicframeworkconceivesa10-metercommunicationsrangewithatransferrateof250kbit/s.Tradeoffsarepossibletofavormoreradicallyembeddeddeviceswithevenlowerpowerrequirements,throughthedefinitionofnotone,butseveralphysicallayers.Lowertransferratesof20and40kbit/swereinitiallydefined,withthe100kbit/sratebeingaddedinthecurrentrevision.

Evenlowerratescanbeconsideredwiththeresultingeffectonpowerconsumption.Asalreadymentioned,themainidentifyingfeatureof802.15.4amongWPAN'sistheimportanceofachievingextremelylowmanufacturingandoperationcostsandtechnologicalsimplicity,withoutsacrificingflexibilityorgenerality.

Importantfeaturesincludereal-timesuitabilitybyreservationofguaranteedtimeslots,collisionavoidancethroughCSMA/CAandintegratedsupportforsecurecommunications.Devicesalsoincludepowermanagementfunctionssuchaslinkqualityandenergydetection.

802.15.4-conformantdevicesmayuseoneofthreepossiblefrequencybandsforoperation.

2.Protocolarchitecture

Devicesareconceivedtointeractwitheachotheroveraconceptuallysimplewirelessnetwork.ThedefinitionofthenetworklayersisbasedontheOSImodel;althoughonlythelowerlayersaredefinedinthestandard,interactionwithupperlayersisintended,possiblyusingaIEEE802.2logicallinkcontrolsublayeraccessingtheMACthroughaconvergencesublayer.Implementationsmayrelyonexternaldevicesorbepurelyembedded,self-functioningdevices.

2.1ThePhysicalLayer

ThePhysical

Layer(PHY)ultimatelyprovidesthedatatransmissionservice,aswellastheinterfacetothephysicallayermanagemententity,whichoffersaccesstoeverylayermanagementfunctionandmaintainsadatabaseofinformationonrelatedpersonalareanetworks.Thus,thePHYmanagesthephysicalRFtransceiverandperformschannelselectionandenergyandsignalmanagementfunctions.Itoperatesononeofthreepossibleunlicensedfrequencybands:

·868.0-868.6MHz:Europe,allowsonecommunicationchannel(2003,2006);

·902-928MHz:NorthAmerica,uptotenchannels(2003),extendedtothirty(2006);

·2400-2483.5MHz:worldwideuse,uptosixteenchannels(2003,2006).

Theoriginal2003versionofthestandardspecifiestwophysicallayersbasedonDirectSequenceSpreadSpectrum(DSSS)techniques:oneworkinginthe868/915MHzbandswithtransferratesof20and40kbit/s,andoneinthe2450MHzbandwitharateof250kbit/s.

The2006revisionimprovesthemaximumdataratesofthe868/915MHzbands,bringingthemuptosupport100and250kbit/saswell.Moreover,itgoesontodefinefourphysicallayersdependingonthemodulationmethodused.ThreeofthempreservetheDSSSapproach:inthe868/915MHzbands,usingeitherbinaryoroffsetquadraturephaseshiftkeying(thesecondofwhichisoptional);inthe2450MHzband,usingthelatter.Analternative,optional868/915MHzlayerisdefinedusingacombinationofbinarykeyingandamplitudeshiftkeying(thusbasedonParallel,notSequentialSpreadSpectrum,PSSS).Dynamicswitchingbetweensupported868/915MHzPHYsispossible.

Beyondthesethreebands,theIEEE802.15.4cstudygroupisconsideringthenewlyopened314-316MHz,430-434MHz,and779-787MHzbandsinChina,whiletheIEEE802.15TaskGroup4disdefininganamendmenttotheexistingstandard802.15.4-2006tosupportthenew950MHz-956MHzbandinJapan.FirststandardamendmentsbythesegroupswerereleasedinApril2009.

InAugust2007,IEEE802.15.4awasreleasedexpandingthefourPHYsavailableintheearlier2006versiontosix,includingonePHYusingDirectSequenceUltra-WideBand(UWB)andanotherusingChirpSpreadSpectrum(CSS).TheUWBPHYisallocatedfrequenciesinthreeranges:below1GHz,between3and5GHz,andbetween6and10GHz.TheCSSPHYisallocatedspectruminthe2450MHzband.

InApril2009,IEEE802.15.4candIEEE802.15.4dwerereleasedexpandingtheavailablePHYswithseveraladditionalPHYs:onefor780MHzbandusingO-QPSKorMPSK,anotherfor950MHzusingGFSKorBPSK.

2.2TheMAClayer

TheMediumAccessControl(MAC)enablesthetransmissionofMACframesthroughtheuseofthephysicalchannel.Besidesthedataservice,itoffersamanagementinterfaceanditselfmanagesaccesstothephysicalchannelandnetworkbeaconing.Italsocontrolsframevalidation,guaranteestimeslotsandhandlesnodeassociations.Finally,itoffershookpointsforsecureservices.

2.3Higherlayers

Otherhigher-levellayersandinteroperabilitysublayersarenotdefinedinthestandard.Thereexistspecifications,suchasZigBee,whichbuildonthisstandardtoproposeintegralsolutions.

3.Networkmodel

3.1Nodetypes

Thestandarddefinestwotypesofnetworknode.

ThefirstoneistheFull-FunctionDevice(FFD).Itcanserveasthecoordinatorofapersonalareanetworkjustasitmayfunctionasacommonnode.Itimplementsageneralmodelofcommunicationwhichallowsittotalktoanyotherdevice:itmayalsorelaymessages,inwhichcaseitisdubbedacoordinator.

OntheotherhandthereareReduced-FunctionDevices(RFD).Thesearemeanttobeextremelysimpledeviceswithverymodestresourceandcommunicationrequirements;duetothis,theycanonlycommunicatewithFFD'sandcanneveractascoordinators.

3.2Topologies

NetworkscanbebuiltaseitherPeer-to-Peerorstarnetworks(SeeFigure9.2).However,everynetworkneedsatleastoneFFDtoworkasthecoordinatorofthenetwork.Networksarethusformedbygroupsofdevicesseparatedbysuitabledistances.Eachdevicehasaunique64-bitidentifier,andifsomeconditionsaremetshort16-bitidentifierscanbeusedwithinarestrictedenvironment.Namely,withineachPANdomain,communicationswillprobablyuseshortidentifiers.

Figure9.2IEEE802.15.4starandPeer-to-Peer

Peer-to-Peer(orPoint-to-Point)networkscanformarbitrarypatternsofconnections,andtheirextensionisonlylimitedbythedistancebetweeneachpairofnodes.Theyaremeanttoserveasthebasisforadhocnetworkscapableofperformingself-managementandorganization.Sincethestandarddoesnotdefineanetworklayer,routingisnotdirectlysupported,butsuchanadditionallayercanaddsupportformultihopcommunications.Furthertopologicalrestrictionsmaybeadded;thestandardmentionstheclustertree(SeeFigure9.3)asastructurewhichexploitsthefactthatanRFDmayonlybeassociatedwithoneFFDatatimetoformanetworkwhereRFD'sareexclusivelyleavesofatree,andmostofthenodesareFFD's.Thestructurecanbeextendedasagenericmeshnetworkwhosenodesareclustertreenetworkswithalocalcoordinatorforeachcluster,inadditiontotheglobalcoordinator.

Amorestructuredstarpatternisalsosupported,wherethecoordinatorofthenetworkwillnecessarilybethecentralnode.SuchanetworkcanoriginatewhenanFFDdecidestocreateitsownPANanddeclareitselfitscoordinator,afterchoosingauniquePANidentifier.Afterthat,otherdevicescanjointhenetwork,whichisfullyindependentfromallotherstarnetworks.

Figure9.3IEEE802.15.4clustertree

4.Datatransportarchitecture

Framesarethebasicunitofdatatransport,ofwhichtherearefourfundamentaltypes(data,acknowledgment,beaconandMACcommandframes),whichprovideareasonabletradeoffbetweensimplicityandrobustness.Additionally,asuperframestructure,definedbythecoordinator,maybeused,inwhichcasetwobeaconsactasitslimitsandprovidesynchronizationtootherdevicesaswellasconfigurationinformation.Asuperframeconsistsofsixteenequal-lengthslots,whichcanbefurtherdividedintoanactivepartandaninactivepart,duringwhichthecoordinatormayenterpowersavingmode,notneedingtocontrolitsnetwork.

Withinsuperframescontentionoccursbetweentheirlimits,andisresolvedbyCSMA/CA.Everytransmissionmustendbeforethearrivalofthesecondbeacon.Asmentionedbefore,applicationswithwell-definedbandwidthneedscanuseuptosevendomainsofoneormorecontentionlessguaranteedtimeslots,trailingattheendofthesuperframe.Thefirstpartofthesuperframemustbesufficienttogiveservicetothenetworkstructureanditsdevices.Superframesaretypicallyutilizedwithinthecontextoflow-latencydevices,whoseassociationsmustbekeptevenifinactiveforlongperiodsoftime.

Datatransferstothecoordinatorrequireabeaconsynchronizationphase,ifapplicable,followedbyCSMA/CAtransmission(bymeansofslotsifsuperframesareinuse);acknowledgmentisoptional.Datatransfersfromthecoordinatorusuallyfollowdevicerequests:ifbeaconsareinuse,theseareusedtosignalrequests;thecoordinatoracknowledgestherequestandthensendsthedatainpacketswhichareacknowledgedbythedevice.Thesameisdonewhensuperframesarenotinuse,onlyinthiscasetherearenobeaconstokeeptrackofpendingmessages.

Point-to-PointnetworksmayeitheruseunslottedCSMA/CAorsynchronizationmechanisms;inthiscase,communicationbetweenanytwodevicesispossible,whereasin"structured"modesoneofthedevicesmustbethenetworkcoordinator.

Ingeneral,allimplementedproceduresfollowatypicalrequest-confirm/indication-responseclassification.

5.Reliabilityandsecurity

ThephysicalmediumisaccessedthroughaCSMA/CAprotocol.Networkswhicharenotusingbeaconingmechanismsutilizeanunslottedvariationwhichisbasedonthelisteningofthemedium,leveragedbyarandomexponentialbackoffalgorithm;acknowledgmentsdonotadheretothisdiscipline.Commondatatransmissionutilizesunallocatedslotswhenbeaconingisinuse;again,confirmationsdonotfollowthesameprocess.

Confirmationmessagesmaybeoptionalundercertaincircumstances.Whateverthecase,ifadeviceisunabletoprocessaframeatagiventime,itsimplydoesnotconfirmitsreception:timeout-basedretransmissioncanbeperformedanumberoftimes,followingafterthatadecisionofwhethertoabortorkeeptrying.

Becausethepredictedenvironmentofthesedevicesdemandsmaximizationofbatterylife,theprotocolstendtofavorthemethodswhichleadtoit,implementingperiodicchecksforpendingmessages,thefrequencyofwhichdependsonapplicationneeds.

Regardingsecurecommunications,theMACsublayeroffersfacilitieswhichcanbeharnessedbyupperlayerstoachievethedesiredlevelofsecurity.Higher-layerprocessesmayspecifykeystoperformsymmetriccryptographytoprotectthepayloadandrestrictittoagroupofdevicesorjustaPoint-to-Pointlink;thesegroupsofdevicescanbespecifiedinaccesscontrollists.Furthermore,MACcomputesfreshnesschecksbetweensuccessivereceptionstoensurethatpresumablyoldframes,ordatawhichisnolongerconsideredvalid,doesnottranscendtohigherlayers.

Inadditiontothissecuremode,thereisanother,insecureMACmode,whichallowsaccesscontrollistsmerelyasameanstodecideontheacceptanceofframesaccordingtotheir(presumed)source.

ZigBeeisaspecificationforasuiteofhighlevelcommunicationprotocolsusingsmall,low-powerdigitalradiosbasedonanIEEE802standardforpersonalareanetworks.Applicationsincludewirelesslightswitches,electricalmeterswithin-home-displays,ZigBeeandotherconsumerandindustrialequipmentthatrequiresshort-rangewirelesstransferofdataatrelativelylowrates.ThetechnologydefinedbytheZigBeespecificationisintendedtobesimplerandlessexpensivethanotherWPANs,suchasBluetooth.ZigBeeistargetedatRadio-Frequency(RF)applicationsthatrequirealowdatarate,longbatterylife,andsecurenetworking.ZigBeehasadefinedrateof250kbpsbestsuitedforperiodicorintermittentdataorasinglesignaltransmissionfromasensororinputdevice.(SeeFigure9.4)

Thenamereferstothewaggledanceofhoneybeesaftertheirreturntothebeehive.

The€

1coin,shownforsizereference,

isabout23mm(0.9inch)indiameter.Firgure9.4ZigBeemodule.

1.Technicaloverview

ZigBeeisalow-cost,low-power,wirelessmeshnetworkstandard.Thelowcostallowsthetechnologytobewidelydeployedinwirelesscontrolandmonitoringapplications.Lowpower-usageallowslongerlifewithsmallerbatteries.Meshnetworkingprovideshighreliabilityandmoreextensiverange.ThetechnologyisintendedtobesimplerandlessexpensivethanotherWPANssuchasBluetooth.ZigBeechipvendorstypicallysellintegratedradiosandmicrocontrollerswithbetween60KBand256KBflashmemory.

ZigBeeoperatesintheIndustrial,ScientificandMedical(ISM)radiobands;868MHzinEurope,915MHzintheUSAandAustralia,and2.4GHzinmostjurisdictionsworldwide.Datatransmissionratesvaryfrom20to250kilobits/second.

TheZigBeenetworklayernativelysupportsbothstarandtreetypicalnetworks,andgenericmeshnetworks.Everynetworkmusthaveonecoordinatordevice,taskedwithitscreation,thecontrolofitsparametersandbasicmaintenance.Withinstarnetworks,thecoordinatormustbethecentralnode.BothtreesandmeshesallowstheuseofZigBeerouterstoextendcommunicationatthenetworklevel.

ZigBeebuildsuponthephysicallayerandmediumaccesscontroldefinedinIEEEstandard802.15.4(2003version)forlow-rateWPAN's.Thespecificationgoesontocompletethestandardbyaddingfourmaincomponents:networklayer,applicationlayer,ZigBeeDeviceObjects(ZDO's)andmanufacturer-definedapplicationobjectswhichallowforcustomizationandfavortotalintegration.(SeeFigure9.5)

Besidesaddingtwohigh-levelnetworklayerstotheunderlyingstructure,themostsignificantimprovementistheintroductionofZDO's.Theseareresponsibleforanumberoftasks,whichincludekeepingofdeviceroles,managementofrequeststojoinanetwork,devicediscoveryandsecurity.

Figure9.5ZigBeeprotocolstack

ZigBeeisnotintendedtosupportpowerlinenetworkingbuttointerfacewithitatleastforsmartmeteringandsmartappliancepurposes.

BecauseZigBeenodescangofromsleeptoactivemodein30msecorless,thelatencycanbelowanddevicescanberesponsive,particularlycomparedtoBluetoothwake-updelays,whicharetypicallyaroundthreeseconds.BecauseZigBeenodescansleepmostofthetime,averagepowerconsumptioncanbelow,resultinginlongbatterylife.

2.Uses

ZigBeeprotocolsareintendedforembeddedapplicationsrequiringlowdataratesandlowpowerconsumption.Theresultingnetworkwilluseverysmallamountsofpower—individualdevicesmusthaveabatterylifeofatleasttwoyearstopassZigBeecertification.

Typicalapplicationareasinclude:

·HomeEntertainmentandControl—Homeautomation,smartlighting,advancedtemperaturecontrol,safetyandsecurity,moviesandmusic;

·WirelessSensorNetworks'—StartingwithindividualsensorslikeTelosb/TmoteandIrisfromMemsic;

·Industrialcontrol;

·Embeddedsensing;

·Medicaldatacollection;

·Smokeandintruderwarning;

·Buildingautomation.

3.Devicetypes

TherearethreedifferenttypesofZigBeedevices:

·ZigBeeCoordinator(ZC):Themostcapabledevice,thecoordinatorformstherootofthenetworktreeandmightbridgetoothernetworks.ThereisexactlyoneZigBeeCoordinatorineachnetworksinceitisthedevicethatstartedthenetworkoriginally.Itisabletostoreinformationaboutthenetwork,includingactingastheTrustCenter&repositoryforsecuritykeys.

·ZigBeeRouter(ZR):Aswellasrunninganapplicationfunction,aroutercanactasanintermediaterouter,passingondatafromotherdevices.

·ZigBeeEndDevice(ZED):Containsjustenoughfunctionalitytotalktotheparentnode(eitherthecoordinatororarouter);itcannotrelaydatafromotherdevices.Thisrelationshipallowsthenodetobeasleepasignificantamountofthetimetherebygivinglongbatterylife.AZEDrequirestheleastamountofmemory,andthereforecanbelessexpensivetomanufacturethanaZRorZC.

4.Protocols

Theprotocolsbuildonrecentalgorithmicresearch(Ad-hocOn-demandDistanceVector,neuRFon)toautomaticallyconstructalow-speedad-hocnetworkofnodes.Inmostlargenetworkinstances,thenetworkwillbeaclusterofclusters.Itcanalsoformameshorasinglecluster.ThecurrentZigBeeprotocolssupportbeaconandnon-beaconenablednetworks.

Innon-beacon-enablednetworks,anunslottedCSMA/CAchannelaccessmechanismisused.Inthistypeofnetwork,ZigBeeRouterstypicallyhavetheirreceiverscontinuouslyactive,requiringamorerobustpowersupply.However,thisallowsforheterogeneousnetworksinwhichsomedevicesreceivecontinuously,whileothersonlytransmitwhenanexternalstimulusisdetected.Thetypicalexampleofaheterogeneousnetworkisawirelesslightswitch:TheZigBeenodeatthelampmayreceiveconstantly,sinceitisconnectedtothemainssupply,whileabattery-poweredlightswitchwouldremainasleepuntiltheswitchisthrown.Theswitchthenwakesup,sendsacommandtothelamp,receivesanacknowledgment,andreturnstosleep.InsuchanetworkthelampnodewillbeatleastaZigBeeRouter,ifnottheZigBeeCoordinator;theswitchnodeistypicallyaZigBeeEndDevice.

Inbeacon-enablednetworks,thespecialnetworknodescalledZigBeeRouterstransmitperiodicbeaconstoconfirmtheirpresencetoothernetworknodes.Nodesmaysleepbetweenbeacons,thusloweringtheirdutycycleandextendingtheirbatterylife.Beaconintervalsdependondatarate;theymayrangefrom15.36millisecondsto251.65824secondsat250kbit/s,from24millisecondsto393.216secondsat40kbit/sandfrom48millisecondsto786.432secondsat20kbit/s.However,lowdutycycleoperationwithlongbeaconintervalsrequiresprecisetiming,whichcanconflictwiththeneedforlowproductcost.

Ingeneral,theZigBeeprotocolsminimizethetimetheradioison,soastoreducepoweruse.Inbeaconingnetworks,nodesonlyneedtobeactivewhileabeaconisbeingtransmitted.Innon-beacon-enablednetworks,powerconsumptionisdecidedlyasymmetrical:somedevicesarealwaysactive,whileothersspendmostoftheirtimesleeping.

ExceptfortheSmartEnergyProfile2.0,ZigBeedevicesarerequiredtoconformtotheIEEE802.15.4-2003Low-RateWirelessPersonalAreaNetwork(LR-WPAN)standard.Thestandardspecifiesthelowerprotocollayers—thePhysicalLayer(PHY),andtheMediaAccessControlportionoftheDataLinkLayer(DLL).Thebasicchannelaccessmodeis"CarrierSense,MultipleAccess/CollisionAvoidance"(CSMA/CA).Thatis,thenodestalkinthesamewaythatpeopleconverse;theybrieflychecktoseethatnooneistalkingbeforetheystart.TherearethreenotableexceptionstotheuseofCSMA.Beaconsaresentonafixedtimingschedule,anddonotuseCSMA.MessageacknowledgmentsalsodonotuseCSMA.Finally,devicesinBeaconOrientednetworksthathavelowlatencyreal-timerequirementsmayalsouseGuaranteedTimeSlots(GTS),whichbydefinitiondonotuseCSMA.

IEEE802.15.4是一个标准,它为低速率无线个人局域网(LR-WPANs)中物理层和介质访问控制提供规范,它由IEEE802.15工作组维护。它是ZigBee、ISA100.11a、WirelessHART以及MiWi规范的基础,这些规范都进一步扩展了该标准,方法是开发802.15.4没有定义的上层。另外一个选择是将IEEE802.15.4和6LoWPAN以及标准的因特网协议一起使用,建立一个无线嵌入式因特网。IEEE802.15.4

1.概论

IEEE802.15.4标准打算为无线个人局域网(WPAN)提供基础较低的网络层。WPAN着重在低成本、低速设备之间广泛通讯(与之相对的是其他更面向终端用户的方法,如WiFi),重点是近距离的、有很少或无底层基础设施的设备之间的低成本通讯,且打算用它来降低功耗。

基本框架设想在10米的通信范围内,传输率为250kbit/s,也可以折衷传输率来支持更多功耗更低的嵌入设备,方法是定义多个而不是一个物理层。初期定义的传输率更低,在20kbit/s到40kbit/s之间,最近的修订版中的传输率已经增加了100kbit/s。使用低传输率主要是为了降低功耗。如上所述,WPAN中802.15.4的主要标志性特点在于制造和运行成本低,而且技术简单,不会牺牲灵活性和通用性。

实时适应性也是IEEE802.15.4的主要特色,方法是保留确定的时隙、通过CSMS/CA避免冲突并完全支持安全通信。802.15.4设备也包括电源管理功能,如链接质量和电能检查。

802.15.4兼容设备使用三种频段中的一种来运行。

2.协议体系

802.15.4设备可以通过概念简单的无线网络实现相互结合。网络层的定义基于OSI模型;虽然在该标准中只定义了低层,但如果打算与高层交互的话,则可使用IEEE802.2逻辑链路控制子层并通过汇聚子层来访问MAC。此访问可依赖外部设备或者纯嵌入的、自运行设备来实现。

2.1物理层

物理层(PHY)总的来说可提供数据传输服务,也可以作为物理层管理实体的接口,管理每层并维护相关个人局域网的信息库。因此,PHY管理物理RF收发器并选择通道、管理能源和信号。它运行在下面三个可能未经许可的波段之一:

868.0MHz~868.6MHz:欧洲,允许一个信道(2003,2006);

902MHz~928MHz:北美,高达10个通道(2003),已扩展到30个(2006);

2400MHz~2483.5MHz:全球使用,高达60通道(2003,2006)。

该标准的2003年版本原来指定了基于直接序列扩频(DSSS)技术的两个物理层:一个工作在传输率为20kbit/s~40kbit/s的868/915MHz波段,另一个工作在传输率为250kbit/s的2450MHz波段。

2006年版本增大了868/915MHz波段的数据传输率,上调到支持100kbit/s和250kbit/s的传输率。更重要的是,它进一步定义了基于所使用的调制模式的四个物理层。其中三个层继续使用DSSS方法:在868/915MHz波段,使用二相或偏移四相移相键控(其中第二个是一个备选项);在2450MHz波段,使用偏移四项移相键控。另外的选择是,用二相键控和幅移键控组合定义868/915MHz层(因此这就基于平行,而不是序列扩展频谱,PSSS)。在支持的868/915MHzPHY之间动态切换是可能的。

除了这三个波段外,IEEE802.15.4c研究组正在考虑使用最新在中国开放的314MHz~316MHz、430MHz~434MHz以及779MHz~787MHz波段,而IEEE802.15TaskGroup4d正在改进现有的802.15.4-2006标准以便支持日本新的950MHz~956MHz

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论