浙江省舟山市普陀区2024届中考数学最后冲刺模拟试卷含解析_第1页
浙江省舟山市普陀区2024届中考数学最后冲刺模拟试卷含解析_第2页
浙江省舟山市普陀区2024届中考数学最后冲刺模拟试卷含解析_第3页
浙江省舟山市普陀区2024届中考数学最后冲刺模拟试卷含解析_第4页
浙江省舟山市普陀区2024届中考数学最后冲刺模拟试卷含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省舟山市普陀区2024届中考数学最后冲刺模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,已知MN∥AB,MC=6,NC=,则四边形MABN的面积是()A. B. C. D.2.如图,△ABC为钝角三角形,将△ABC绕点A按逆时针方向旋转120°得到△AB′C′,连接BB′,若AC′∥BB′,则∠CAB′的度数为()A.45° B.60° C.70° D.90°3.若点P(﹣3,y1)和点Q(﹣1,y2)在正比例函数y=﹣k2x(k≠0)图象上,则y1与y2的大小关系为()A.y1>y2B.y1≥y2C.y1<y2D.y1≤y24.如图,为的直径,为上两点,若,则的大小为().A.60° B.50° C.40° D.20°5.已知二次函数(为常数),当时,函数的最小值为5,则的值为()A.-1或5 B.-1或3 C.1或5 D.1或36.若,则()A. B. C. D.7.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=-1,x2=3;③3a+c>0;④当y>0时,x的取值范围是-1≤x<3;⑤当x<0时,y随x增大而增大.其中结论正确的个数是()A.4个 B.3个 C.2个 D.1个8.直线y=x+4与x轴、y轴分别交于点A和点B,点C,D分别为线段AB,OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为()A.(-3,0) B.(-6,0) C.(-,0) D.(-,0)9.已知二次函数y=x2+bx﹣9图象上A、B两点关于原点对称,若经过A点的反比例函数的解析式是y=,则该二次函数的对称轴是直线()A.x=1 B.x= C.x=﹣1 D.x=﹣10.下列各式中,互为相反数的是()A.和 B.和 C.和 D.和二、填空题(共7小题,每小题3分,满分21分)11.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图,已知EF=CD=80cm,则截面圆的半径为cm.12.已知⊙O的半径为5,由直径AB的端点B作⊙O的切线,从圆周上一点P引该切线的垂线PM,M为垂足,连接PA,设PA=x,则AP+2PM的函数表达式为______,此函数的最大值是____,最小值是______.13.如图,O是坐标原点,菱形OABC的顶点A的坐标为(﹣3,4),顶点C在x轴的负半轴上,函数y=(x<0)的图象经过顶点B,则k的值为_____.14.分式与的最简公分母是_____.15.数据﹣2,0,﹣1,2,5的平均数是_____,中位数是_____.16.小华到商场购买贺卡,他身上带的钱恰好能买5张3D立体贺卡或20张普通贺卡若小华先买了3张3D立体贺卡,则剩下的钱恰好还能买______张普通贺卡.17.让我们轻松一下,做一个数字游戏:第一步:取一个自然数,计算得;第二步:算出的各位数字之和得,计算得;第三步:算出的各位数字之和得,再计算得;依此类推,则____________三、解答题(共7小题,满分69分)18.(10分)一个口袋中有1个大小相同的小球,球面上分别写有数字1、2、1.从袋中随机地摸出一个小球,记录下数字后放回,再随机地摸出一个小球.(1)请用树形图或列表法中的一种,列举出两次摸出的球上数字的所有可能结果;(2)求两次摸出的球上的数字和为偶数的概率.19.(5分)计算:|-2|+2﹣1﹣cos61°﹣(1﹣)1.20.(8分)我市正在创建“全国文明城市”,某校拟举办“创文知识”抢答赛,欲购买A、B两种奖品以鼓励抢答者.如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元.A、B两种奖品每件各多少元?现要购买A、B两种奖品共100件,总费用不超过900元,那么A种奖品最多购买多少件?21.(10分)化简分式,并从0、1、2、3这四个数中取一个合适的数作为x的值代入求值.22.(10分)已知平行四边形.尺规作图:作的平分线交直线于点,交延长线于点(要求:尺规作图,保留作图痕迹,不写作法);在(1)的条件下,求证:.23.(12分)程大位是珠算发明家,他的名著《直指算法统宗》详述了传统的珠算规则,确立了算盘用书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人?24.(14分)如图,在平面直角坐标系中,一次函数y=kx+b与反比例函数y=(m≠0)的图象交于点A(3,1),且过点B(0,﹣2).(1)求反比例函数和一次函数的表达式;(2)如果点P是x轴上一点,且△ABP的面积是3,求点P的坐标.

参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】连接CD,交MN于E,∵将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,∴MN⊥CD,且CE=DE.∴CD=2CE.∵MN∥AB,∴CD⊥AB.∴△CMN∽△CAB.∴.∵在△CMN中,∠C=90°,MC=6,NC=,∴∴.∴.故选C.2、D【解析】已知△ABC绕点A按逆时针方向旋转l20°得到△AB′C′,根据旋转的性质可得∠BAB′=∠CAC′=120°,AB=AB′,根据等腰三角形的性质和三角形的内角和定理可得∠AB′B=(180°-120°)=30°,再由AC′∥BB′,可得∠C′AB′=∠AB′B=30°,所以∠CAB′=∠CAC′-∠C′AB′=120°-30°=90°.故选D.3、A【解析】

分别将点P(﹣3,y1)和点Q(﹣1,y2)代入正比例函数y=﹣k2x,求出y1与y2的值比较大小即可.【详解】∵点P(﹣3,y1)和点Q(﹣1,y2)在正比例函数y=﹣k2x(k≠0)图象上,∴y1=﹣k2×(-3)=3k2,y2=﹣k2×(-1)=k2,∵k≠0,∴y1>y2.故答案选A.【点睛】本题考查了正比例函数,解题的关键是熟练的掌握正比例函数的知识点.4、B【解析】

根据题意连接AD,再根据同弧的圆周角相等,即可计算的的大小.【详解】解:连接,∵为的直径,∴.∵,∴,∴.故选:B.【点睛】本题主要考查圆弧的性质,同弧的圆周角相等,这是考试的重点,应当熟练掌握.5、A【解析】

由解析式可知该函数在x=h时取得最小值1,x>h时,y随x的增大而增大;当x<h时,y随x的增大而减小;根据1≤x≤3时,函数的最小值为5可分如下两种情况:①若h<1,可得x=1时,y取得最小值5;②若h>3,可得当x=3时,y取得最小值5,分别列出关于h的方程求解即可.【详解】解:∵x>h时,y随x的增大而增大,当x<h时,y随x的增大而减小,∴①若h<1,当时,y随x的增大而增大,∴当x=1时,y取得最小值5,可得:,解得:h=−1或h=3(舍),∴h=−1;②若h>3,当时,y随x的增大而减小,当x=3时,y取得最小值5,可得:,解得:h=5或h=1(舍),∴h=5,③若1≤h≤3时,当x=h时,y取得最小值为1,不是5,∴此种情况不符合题意,舍去.综上所述,h的值为−1或5,故选:A.【点睛】本题主要考查二次函数的性质和最值,根据二次函数的性质和最值进行分类讨论是解题的关键.6、D【解析】

等式左边为非负数,说明右边,由此可得b的取值范围.【详解】解:,

,解得故选D.【点睛】本题考查了二次根式的性质:,.7、B【解析】

解:∵抛物线与x轴有2个交点,∴b2﹣4ac>0,所以①正确;∵抛物线的对称轴为直线x=1,而点(﹣1,0)关于直线x=1的对称点的坐标为(3,0),∴方程ax2+bx+c=0的两个根是x1=﹣1,x2=3,所以②正确;∵x=﹣=1,即b=﹣2a,而x=﹣1时,y=0,即a﹣b+c=0,∴a+2a+c=0,所以③错误;∵抛物线与x轴的两点坐标为(﹣1,0),(3,0),∴当﹣1<x<3时,y>0,所以④错误;∵抛物线的对称轴为直线x=1,∴当x<1时,y随x增大而增大,所以⑤正确.故选:B.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.8、C【解析】

作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,如图所示.直线y=x+4与x轴、y轴的交点坐标为A(﹣6,0)和点B(0,4),因点C、D分别为线段AB、OB的中点,可得点C(﹣3,1),点D(0,1).再由点D′和点D关于x轴对称,可知点D′的坐标为(0,﹣1).设直线CD′的解析式为y=kx+b,直线CD′过点C(﹣3,1),D′(0,﹣1),所以,解得:,即可得直线CD′的解析式为y=﹣x﹣1.令y=﹣x﹣1中y=0,则0=﹣x﹣1,解得:x=﹣,所以点P的坐标为(﹣,0).故答案选C.考点:一次函数图象上点的坐标特征;轴对称-最短路线问题.9、D【解析】

设A点坐标为(a,),则可求得B点坐标,把两点坐标代入抛物线的解析式可得到关于a和b的方程组,可求得b的值,则可求得二次函数的对称轴.【详解】解:∵A在反比例函数图象上,∴可设A点坐标为(a,).∵A、B两点关于原点对称,∴B点坐标为(﹣a,﹣).又∵A、B两点在二次函数图象上,∴代入二次函数解析式可得:,解得:或,∴二次函数对称轴为直线x=﹣.故选D.【点睛】本题主要考查二次函数的性质,待定系数法求二次函数解析式,根据条件先求得b的值是解题的关键,注意掌握关于原点对称的两点的坐标的关系.10、A【解析】

根据乘方的法则进行计算,然后根据只有符号不同的两个数互为相反数,可得答案.【详解】解:A.=9,=-9,故和互为相反数,故正确;B.=9,=9,故和不是互为相反数,故错误;C.=-8,=-8,故和不是互为相反数,故错误;D.=8,=8故和不是互为相反数,故错误.故选A.【点睛】本题考查了有理数的乘方和相反数的定义,关键是掌握有理数乘方的运算法则.二、填空题(共7小题,每小题3分,满分21分)11、1【解析】

过点O作OM⊥EF于点M,反向延长OM交BC于点N,连接OF,设OF=r,则OM=80-r,MF=40,然后在Rt△MOF中利用勾股定理求得OF的长即可.【详解】过点O作OM⊥EF于点M,反向延长OM交BC于点N,连接OF,设OF=x,则OM=80﹣r,MF=40,在Rt△OMF中,∵OM2+MF2=OF2,即(80﹣r)2+402=r2,解得:r=1cm.故答案为1.12、x2+x+20(0<x<10)不存在.【解析】

先连接BP,AB是直径,BP⊥BM,所以有,∠BMP=∠APB=90°,又∠PBM=∠BAP,那么有△PMB∽△PAB,于是PM:PB=PB:AB,可求从而有(0<x<10),再根据二次函数的性质,可求函数的最大值.【详解】如图所示,连接PB,∵∠PBM=∠BAP,∠BMP=∠APB=90°,∴△PMB∽△PAB,∴PM:PB=PB:AB,∴∴(0<x<10),∵∴AP+2PM有最大值,没有最小值,∴y最大值=故答案为(0<x<10),,不存在.【点睛】考查相似三角形的判定与性质,二次函数的最值等,综合性比较强,需要熟练掌握.13、﹣1【解析】

根据点C的坐标以及菱形的性质求出点B的坐标,然后利用待定系数法求出k的值即可.【详解】解:∵A(﹣3,4),∴OC==5,∴CB=OC=5,则点B的横坐标为﹣3﹣5=﹣8,故B的坐标为:(﹣8,4),将点B的坐标代入y=得,4=,解得:k=﹣1.故答案为:﹣1.14、3a2b【解析】

利用取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母求解即可.【详解】分式与的最简公分母是3a2b.故答案为3a2b.【点睛】本题考查最简公分母,解题的关键是掌握求最简公分母的方法.15、0.80【解析】

根据中位数的定义和平均数的求法计算即可,中位数是将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.【详解】平均数=(−2+0−1+2+5)÷5=0.8;把这组数据按从大到小的顺序排列是:5,2,0,-1,-2,故这组数据的中位数是:0.故答案为0.8;0.【点睛】本题考查了平均数与中位数的定义,解题的关键是熟练的掌握平均数与中位数的定义.16、1【解析】

根据已知他身上带的钱恰好能买5张3D立体贺卡或20张普通贺卡得:1张3D立体贺卡的单价是1张普通贺卡单价的4倍,所以设1张3D立体贺卡x元,剩下的钱恰好还能买y张普通贺卡,根据3张3D立体贺卡张普通贺卡张3D立体贺卡,可得结论.【详解】解:设1张3D立体贺卡x元,剩下的钱恰好还能买y张普通贺卡.

则1张普通贺卡为:元,

由题意得:,

答:剩下的钱恰好还能买1张普通贺卡.

故答案为:1.【点睛】本题考查了一元一次方程的应用以及列代数式,解题的关键是:根据总价单价数量列式计算.17、1【解析】

根据题意可以分别求得a1,a2,a3,a4,从而可以发现这组数据的特点,三个一循环,从而可以求得a2019的值.【详解】解:由题意可得,a1=52+1=26,a2=(2+6)2+1=65,a3=(6+5)2+1=1,a4=(1+2+2)2+1=26,…∴2019÷3=673,∴a2019=a3=1,故答案为:1.【点睛】本题考查数字变化类规律探索,解题的关键是明确题意,求出前几个数,观察数的变化特点,求出a2019的值.三、解答题(共7小题,满分69分)18、(1)画树状图得:则共有9种等可能的结果;(2)两次摸出的球上的数字和为偶数的概率为:.【解析】试题分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)可求得两次摸出的球上的数字和为偶数的有5种情况,再利用概率公式即可求得答案.试题解析:(1)画树状图得:则共有9种等可能的结果;(2)由(1)得:两次摸出的球上的数字和为偶数的有5种情况,∴两次摸出的球上的数字和为偶数的概率为:59考点:列表法与树状图法.19、1-【解析】

利用零指数幂和绝对值的性质、特殊角的三角函数值、负指数次幂的性质进行计算即可.【详解】解:原式=.【点睛】本题考查了零指数幂和绝对值的性质、特殊角的三角函数值、负指数次幂的性质,熟练掌握性质及定义是解题的关键.20、(1)A种奖品每件16元,B种奖品每件4元.(2)A种奖品最多购买41件.【解析】【分析】(1)设A种奖品每件x元,B种奖品每件y元,根据“如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设A种奖品购买a件,则B种奖品购买(100﹣a)件,根据总价=单价×购买数量结合总费用不超过900元,即可得出关于a的一元一次不等式,解之取其中最大的整数即可得出结论.【详解】(1)设A种奖品每件x元,B种奖品每件y元,根据题意得:,解得:,答:A种奖品每件16元,B种奖品每件4元;(2)设A种奖品购买a件,则B种奖品购买(100﹣a)件,根据题意得:16a+4(100﹣a)≤900,解得:a≤,∵a为整数,∴a≤41,答:A种奖品最多购买41件.【点睛】本题考查了一元一次不等式的应用以及二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据不等关系,正确列出不等式.21、x取0时,为1或x取1时,为2【解析】试题分析:利用分式的运算,先对分式化简单,再选择使分式有意义的数代入求值即可.试题解析:解:原式=[]===x+1,∵x1-4≠0,x-2≠0,∴x≠1且x≠-1且x≠2,当x=0时,原式=1.或当x=1时,原式=2.22、(1)见解析;(2)见解析.【解析】试题分析:(1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论