版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省重点中学2023-2024学年高一下数学期末检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.将函数的图象向右平移个单位长度后得到函数的图象,若当时,的图象与直线恰有两个公共点,则的取值范围为()A. B. C. D.2.在中,若,且,则的形状为()A.直角三角形 B.等腰直角三角形C.正三角形或直角三角形 D.正三角形3.设,则有()A. B. C. D.4.下列命题中正确的是()A. B.C. D.5.若两个正实数,满足,且不等式有解,则实数的取值范围是()A. B. C. D.6.根据下面茎叶图提供了甲、乙两组数据,可以求出甲、乙的中位数分别为()A.24和29 B.26和29 C.26和32 D.31和297.某船从处向东偏北方向航行千米后到达处,然后朝西偏南的方向航行6千米到达处,则处与处之间的距离为()A.千米 B.千米 C.3千米 D.6千米8.执行下图所示的程序框图,若输出的,则输入的x为()A.0 B.1 C.0或1 D.0或e9.已知一组数据1,3,2,5,4,那么这组数据的方差为()A.2 B.3 C.2 D.310.已知圆的圆心与点关于直线对称,直线与圆相交于,两点,且,则圆的半径长为()A. B. C.3 D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知等比数列{an}为递增数列,且,则数列{an}的通项公式an=______________.12.已知函数fx=cosx+2cosx,13.在公比为q的正项等比数列{an}中,a3=9,则当3a2+a4取得最小值时,=_____.14.如图,海岸线上有相距海里的两座灯塔A,B,灯塔B位于灯塔A的正南方向.海上停泊着两艘轮船,甲船位于灯塔A的北偏西,与A相距海里的D处;乙船位于灯塔B的北偏西方向,与B相距海里的C处,此时乙船与灯塔A之间的距离为海里,两艘轮船之间的距离为海里.15.已知函数在时取得最小值,则________.16.化简:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知圆经过,,三点.(1)求圆的标准方程;(2)若过点N的直线被圆截得的弦AB的长为,求直线的倾斜角.18.已知动点到定点的距离与到定点的距离之比为.(1)求动点的轨迹的方程;(2)过点作轨迹的切线,求该切线的方程.19.某种植园在芒果临近成熟时,随机从一些芒果树上摘下100个芒果,其质量分别在,,,,,(单位:克)中,经统计得频率分布直方图如图所示.(1)经计算估计这组数据的中位数;(2)现按分层抽样从质量为,的芒果中随机抽取6个,再从这6个中随机抽取3个,求这3个芒果中恰有1个在内的概率.(3)某经销商来收购芒果,以各组数据的中间数代表这组数据的平均值,用样本估计总体,该种植园中还未摘下的芒果大约还有10000个,经销商提出如下两种收购方案:A:所有芒果以10元/千克收购;B:对质量低于250克的芒果以2元/个收购,高于或等于250克的以3元/个收购,通过计算确定种植园选择哪种方案获利更多?20.做一个体积为,高为2m的长方体容器,问底面的长和宽分别为多少时,所用的材料表面积最少?并求出其最小值.21.已知,是第四象限角,求和的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
根据二倍角和辅助角公式化简可得,根据平移变换原则可得;当时,;利用正弦函数的图象可知若的图象与直线恰有两个公共点可得,解不等式求得结果.【详解】由题意得:由图象平移可知:当时,,,,,又的图象与直线恰有两个公共点,解得:本题正确选项:【点睛】本题考查根据交点个数求解角的范围的问题,涉及到利用二倍角和辅助角公式化简三角函数、三角函数图象平移变换原则的应用等知识;关键是能够利用正弦函数的图象,采用数形结合的方式确定角所处的范围.2、D【解析】
由两角和的正切公式求得,从而得,由二倍角公式求得,再求得,注意检验符合题意,可判断三角形形状.【详解】,∴,∴,由,即.∴或.当时,,无意义.当时,,此时为正三角形.故选:D.【点睛】本题考查三角形形状的判断,考查两角和的正切公式和二倍角公式,根据三角公式求出角是解题的基本方法.3、A【解析】
根据题意,利用辅助角公式得,对于,根据同角三角函数的基本关系和二倍角公式对进行处理,即可得到;对于,利用二倍角公式对变形处理可以得到,再根据正弦函数的单调性即可比较大小.【详解】由题意得因为正弦函数在上为增函数,所以,选A.【点睛】本题是一道关于三角函数值大小比较的题目,解答本题的关键是掌握三角函数公式;二倍角公式、辅助角公式、同角三角函数的基本关系等.属于中等题.4、D【解析】
根据向量的加减法的几何意义以及向量数乘的定义即可判断.【详解】,,,,故选D.【点睛】本题主要考查向量的加减法的几何意义以及向量数乘的定义的应用.5、D【解析】
利用基本不等式求得的最小值,根据不等式存在性问题,解一元二次不等式求得的取值范围.【详解】由于,而不等式有解,所以,即,解得或.故选:D【点睛】本小题主要考查利用基本不等式求最小值,考查不等式存在性问题的求解,考查一元二次不等式的解法,属于中档题.6、B【解析】
根据茎叶图,将两组数据按大小顺序排列,因为是12个数,所以中位数即为中间两数的平均数.【详解】从茎叶图知都有12个数,所以中位数为中间两个数的平均数甲中间两个数为25,27,所以中位数是26乙中间两个数为28,30,所以中位数是29故选:B【点睛】本题主要考查了茎叶图和中位数,平均数,还考查了数据处理的能力,属于基础题.7、B【解析】
通过余弦定理可得答案.【详解】设处与处之间的距离为千米,由余弦定理可得,则.【点睛】本题主要考查余弦定理的实际应用,难度不大.8、C【解析】
根据程序框图,分两种情况讨论,即可求得对应的的值.【详解】当输出结果为时.当,则,解得当,则,解得综上可知,输入的或故选:C【点睛】本题考查了程序框图的简单应用,指数方程与对数方程的解法,属于基础题.9、C【解析】
先由平均数的计算公式计算出平均数,再根据方差的公式计算即可。【详解】由题可得x=所以这组数据的方差S2故答案选C【点睛】本题考查方差的定义:一般地设n个数据:x1,x2,10、A【解析】
根据题干画出简图,在直角中,通过弦心距和半径关系通过勾股定理求解即可。【详解】圆的圆心与点关于直线对称,所以,,设圆的半径为,如下图,圆心到直线的距离为:,,【点睛】直线和圆相交问题一般两种方法:第一,通过弦心距d和半径r的关系,通过勾股定理求解即可。第二,直线方程和圆的方程联立,则。两种思路,此题属于中档题型。二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】设数列的首项为,公比为q,则,所以,由得解得,因为数列为递增数列,所以,,所以考点定位:本题考查等比数列,意在考查考生对等比数列的通项公式的应用能力12、(0,1)【解析】
画出函数f(x)在x∈0,2【详解】解:画出函数y=cosx+2|cosx|=3cos以及直线y=k的图象,如图所示;由f(x)的图象与直线y=k有且仅有四个不同的交点,可得0<k<1.故答案为:(0,1).【点睛】本题主要考查利用分段函数及三角函数的性质求参数,数形结合是解题的关键.13、【解析】
利用等比数列的性质,结合基本不等式等号成立的条件,求得公比,由此求得的值.【详解】∵在公比为q的正项等比数列{an}中,a3=9,根据等比数列的性质和基本不等式得,当且仅当,即,即q时,3a2+a4取得最小值,∴log3q=log3.故答案为:【点睛】本小题主要考查等比数列的性质,考查基本不等式的运用,属于基础题.14、5,【解析】
为等边三角形,所以算出,,再在中根据余弦定理易得CD的长.【详解】因为为等边三角形,所以.在中根据余弦定理解得.【点睛】此题考查余弦定理的实际应用,关键点通过已知条件转换为数学模型再通过余弦定理求解即可,属于较易题目.15、【解析】试题分析:因为,所以,当且仅当即,由题意,解得考点:基本不等式16、0【解析】原式=+=-sinα+sinα=0.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)30°或90°.【解析】
(1)解法一:将圆的方程设为一般式,将题干三个点代入圆的方程,解出相应的参数值,即可得出圆的一般方程,再化为标准方程;解法二:求出线段和的中垂线方程,将两中垂线方程联立求出交点坐标,即为圆心坐标,然后计算为圆的半径,即可写出圆的标准方程;(2)先利用勾股定理计算出圆心到直线的距离为,并对直线的斜率是否存在进行分类讨论:一是直线的斜率不存在,得出直线的方程为,验算圆心到该直线的距离为;二是当直线的斜率存在时,设直线的方程为,并表示为一般式,利用圆心到直线的距离为得出关于的方程,求出的值.结合前面两种情况求出直线的倾斜角.【详解】(1)解法一:设圆的方程为,则∴即圆为,∴圆的标准方程为;解法二:则中垂线为,中垂线为,∴圆心满足∴,半径,∴圆的标准方程为.(2)①当斜率不存在时,即直线到圆心的距离为1,也满足题意,此时直线的倾斜角为90°,②当斜率存在时,设直线的方程为,由弦长为4,可得圆心到直线的距离为,,∴,此时直线的倾斜角为30°,综上所述,直线的倾斜角为30°或90°.【点睛】本题考查圆的方程以及直线截圆所得弦长的计算,在求直线与圆所得弦长的计算中,问题的核心要转化为弦心距的计算,弦心距的计算主要有以下两种方式:一是利用勾股定理计算,二是利用点到直线的距离公式计算圆心到直线的距离.18、(1),(2)或【解析】
(1)首先根据题意列出等式,再化简即可得到轨迹方程.(2)首先根据题意设出切线方程,再利用圆心到切线的距离等于半径即可求出切线方程.【详解】(1)设,有题知,,所以点的轨迹的方程:.(2)当切线斜率不存在时,切线为圆心到的距离,舍去.当切线斜率存在时,设切线方程为.圆心到切线的距离,解得:或.即切线方程为:或.【点睛】本题第一问考查了圆的轨迹方程,第二问考查了直线与圆的位置关系中的切线问题,属于中档题.19、(1)中位数为268.75;(2);(3)选B方案【解析】
(1)根据中位数左右两边的频率均为0.5求解即可.(2)利用枚举法求出所以可能的情况,再利用古典概型方法求解概率即可.(3)分别计算两种方案的获利再比较大小即可.【详解】(1)由频率分布直方图可得,前3组的频率和为,前4组的频率和为,所以中位数在内,设中位数为,则有,解得.故中位数为268.75.(2)设质量在内的4个芒果分别为,,,,质量在内的2个芒果分别为,.从这6个芒果中选出3个的情况共有,,,,,,,,,,,,,,,,,,,,共计20种,其中恰有一个在内的情况有,,,,,,,,,,,,共计12种,因此概率.(3)方案A:元.方案B:由题意得低于250克:元;高于或等于250克元.故总计元,由于,故B方案获利更多,应选B方案.【点睛】本题主要考查了频率分布直方图的用法以及古典概型的方法,同时也考查了根据样本估计总体的方法等.属于中等题型.20、长和宽均为4m时,最小值为64【解析】
利用体积求得ab=16,只需表示出表面积,结合高为2m,利用基本不等式求出最值即可.【详解】设底面的长和宽分别为,因为体积为32,高为c=2m,所以底面积为16,即ab=16所用材料的面积S=2ab+2bc+2ca=32+4(a+b),当且仅当a=b=4时取
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高中语文教学创新实践案例库建设与教师教学画像研究教学研究课题报告
- 教师教学画像构建中的可视化叙事研究-数字化教学视角下的教学反思教学研究课题报告
- 跨学科教学与AI技术融合的创新教育策略研究教学研究课题报告
- 工业自动化升级新篇章:2025年智能生产线改造项目可行性深度剖析
- 人工智能在教育个性化学习中的应用:智能辅导系统的开发与评估教学研究课题报告
- 边双连通分量拓扑特性分析-洞察及研究
- 跨境支付系统对国际存款业务的影响研究-洞察及研究
- 酚酞类化合物的电子结构分析-洞察及研究
- 航空货运竞争环境下定价策略分析-洞察及研究
- 黄酒市场规范化监管策略-洞察及研究
- 《电磁发射灭火炮技术规范》
- 风机攀爬安全培训课件
- 设计交付:10kV及以下配网工程的标准与实践
- 陕西西安远东二中学2026届九年级数学第一学期期末考试模拟试题含解析
- 以人工智能赋能新质生产力发展
- 2025年中考英语复习必背1600课标词汇(30天记背)
- 资产管理部2025年工作总结与2025年工作计划
- 公建工程交付指南(第四册)
- 2025年贵州省法院书记员招聘笔试题库附答案
- 过氧化氢气体低温等离子灭菌测试题(附答案)
- 溶出度概况及注意事项很全面的一套资料2讲课文档
评论
0/150
提交评论