2023-2024学年江西省吉安市遂川中学高一下数学期末学业质量监测模拟试题含解析_第1页
2023-2024学年江西省吉安市遂川中学高一下数学期末学业质量监测模拟试题含解析_第2页
2023-2024学年江西省吉安市遂川中学高一下数学期末学业质量监测模拟试题含解析_第3页
2023-2024学年江西省吉安市遂川中学高一下数学期末学业质量监测模拟试题含解析_第4页
2023-2024学年江西省吉安市遂川中学高一下数学期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年江西省吉安市遂川中学高一下数学期末学业质量监测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,正方体中,异面直线与所成角的正弦值等于A. B. C. D.12.与圆关于直线对称的圆的方程为()A. B.C. D.3.圆x-12+y-3A.1 B.2 C.2 D.34.中国数学家刘微在《九章算术注》中提出“割圆”之说:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体,而无所失矣.”意思是“圆内接正多边形的边数无限增加的时候,它的周长的极限是圆的周长,它的面积的极限是圆的面积”.如图,若在圆内任取一点,则此点取自其内接正六边形的边界及其内部的概率为()A. B. C. D.5.《九章算术》卷第五《商功》中,有问题“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈.问积几何?”,意思是:“今有底面为矩形的屋脊状的楔体,下底面宽丈,长丈;上棱长丈,无宽,高丈(如图).问它的体积是多少?”这个问题的答案是()A.立方丈 B.立方丈C.立方丈 D.立方丈6.若,且,则下列不等式一定成立的是()A. B.C. D.7.已知平面向量,,且,则实数的值为()A. B. C. D.8.已知a,b,c为△ABC的三个内角A,B,C的对边,向量=,=(cosA,sinA),若与夹角为,则acosB+bcosA=csinC,则角B等于()A. B. C. D.9.等比数列中,,则A.20 B.16 C.15 D.1010.已知等差数列的前项之和为,前项和为,则它的前项的和为()A.B.C.D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知圆C:,点M的坐标为(2,4),过点N(4,0)作直线交圆C于A,B两点,则的最小值为________12.命题“数列的前项和”成立的充要条件是________.(填一组符合题意的充要条件即可,所填答案中不得含有字母)13.角的终边经过点,则___________________.14.已知,,若,则____15.设,,则______.16.在《九章算术·商功》中将四个面均为直角三角形的三棱锥称为鳖臑(biēnào),在如下图所示的鳖臑中,,,,则的直角顶点为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某网站推出了关于扫黑除恶情况的调查,调查数据表明,扫黑除恶仍是百姓最为关心的热点,参与调查者中关注此问题的约占.现从参与关注扫黑除恶的人群中随机选出人,并将这人按年龄分组:第组,第组,第组,第组,第组,得到的频率分布直方图如图所示.(1)求出的值;(2)求这人年龄的样本平均数(同一组数据用该区间的中点值作代表)和中位数(精确到小数点后一位).18.如图为函数f(x)=Asin(Ⅰ)求函数f(x)=Asin(Ⅱ)若x∈0,π2时,函数y=19.设O为坐标原点,动点M在椭圆C上,过M作x轴的垂线,垂足为N,点P满足.(1)求点P的轨迹方程;(2)设点在直线上,且.证明:过点P且垂直于OQ的直线过C的左焦点F.20.数列中,,(为常数,1,2,3,…),且.(1)求c的值;(2)求证:①;②;(3)比较++…+与的大小,并加以证明.21.已知函数,.(1)求函数的最小正周期;(2)求函数的最小值和取得最小值时的取值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

由线面垂直的判定定理得:,又,所以面,由线面垂直的性质定理得:,即可求解.【详解】解:连接,因为四边形为正方形,所以,又,所以面,所以,所以异面直线与所成角的正弦值等于1,故选D.【点睛】本题考查了线面垂直的判定定理及性质定理,属中档题.2、A【解析】

设所求圆的圆心坐标为,列出方程组,求得圆心关于的对称点,即可求解所求圆的方程.【详解】由题意,圆的圆心坐标,设所求圆的圆心坐标为,则圆心关于的对称点,满足,解得,即所求圆的圆心坐标为,且半径与圆相等,所以所求圆的方程为,故选A.【点睛】本题主要考查了圆的方程的求解,其中解答中熟记圆的方程,以及准确求解点关于直线的对称点的坐标是解答的关键,着重考查了推理与运算能力,属于基础题.3、C【解析】

先计算圆心到y轴的距离,再利用勾股定理得到弦长.【详解】x-12+y-32=2圆心到y轴的距离d=1弦长l=2r故答案选C【点睛】本题考查了圆的弦长公式,意在考查学生的计算能力.4、C【解析】

设出圆的半径,表示出圆的面积和圆内接正六边形的面积,即可由几何概型概率计算公式得解.【详解】设圆的半径为则圆的面积为圆内接正六边形的面积为由几何概型概率可知,在圆内任取一点,则此点取自其内接正六边形的边界及其内部的概率为故选:C【点睛】本题考查了圆的面积及圆内接正六边形的面积求法,几何概型概率的计算公式,属于基础题.5、A【解析】过点分别作平面和平面垂直于底面,所以几何体的体积分为三部分中间是直三棱柱,两边是两个一样的四棱锥,所以立方丈,故选A.6、B【解析】

根据不等式性质确定选项.【详解】当时,不成立;因为,所以;当时,不成立;当时,不成立;所以选B.【点睛】本题考查不等式性质,考查基本分析判断能力,属基础题.7、B【解析】

先求出的坐标,再由向量共线,列出方程,即可得出结果.【详解】因为向量,,所以,又,所以,解得.故选B【点睛】本题主要考查由向量共线求参数的问题,熟记向量的坐标运算即可,属于常考题型.8、B【解析】

根据向量夹角求得角的度数,再利用正弦定理求得即得解.【详解】由已知得:所以所以由正弦定理得:所以又因为所以因为所以所以故选B.【点睛】本题考查向量的数量积和正弦定理,属于中档题.9、B【解析】试题分析:由等比中项的性质可得:,故选择B考点:等比中项的性质10、C【解析】试题分析:由于等差数列中也成等差数列,即成等差数列,所以,故选C.考点:等差数列前项和的性质.二、填空题:本大题共6小题,每小题5分,共30分。11、8【解析】

先将所求化为M到AB中点的距离的最小值问题,再求得AB中点的轨迹为圆,利用点M到圆心的距离减去半径求得结果.【详解】设A、B中点为Q,连接QC,则QC,所以Q的轨迹是以NC为直径的圆,圆心为P(5,0),半径为1,又,即求点M到P的距离减去半径,又,所以,故答案为8【点睛】本题考查了向量的加法运算,考查了求圆中弦中点轨迹的几何方法,考查了点点距公式,考查了分析解决问题的能力,属于中档题.12、数列为等差数列且,.【解析】

根据题意,设该数列为,由数列的前项和公式分析可得数列为等差数列且,,反之验证可得成立,综合即可得答案.【详解】根据题意,设该数列为,若数列的前项和,则当时,,当时,,当时,符合,故有数列为等差数列且,,反之当数列为等差数列且,时,,;故数列的前项和”成立的充要条件是数列为等差数列且,,故答案为:数列为等差数列且,.【点睛】本题考查充分必要条件的判定,关键是掌握充分必要条件的定义,属于基础题.13、【解析】

先求出到原点的距离,再利用正弦函数定义求解.【详解】因为,所以到原点距离,故.故答案为:.【点睛】设始边为的非负半轴,终边经过任意一点,则:14、【解析】

由,,得的坐标,根据得,由向量数量积的坐标表示即可得结果.【详解】∵,,∴又∵,∴,即,所以,解得,故答案为.【点睛】本题主要考查了向量的坐标运算,两向量垂直与数量积的关系,属于基础题.15、【解析】

由,根据两角差的正切公式可解得.【详解】,故答案为【点睛】本题主要考查了两角差的正切公式的应用,属于基础知识的考查.16、【解析】

根据,可得平面,进而可得,再由,证明平面,即可得出,是的直角顶点.【详解】在三棱锥中,,,且,∴平面,又平面,∴,又∵,且,∴平面,又平面,∴,∴的直角顶点为.故答案为:.【点睛】本题考查了直线与直线以及直线与平面垂直的应用问题,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)0.035(2)平均数为:41.5岁中位数为:42.1岁【解析】

(1)根据频率之和为1,结合题中条件,直接列出式子计算,即可得出结果;(2)根据每组的中间值乘该组的频率再求和,即可得出平均数;根据中位数两边的频率之和相等,即可求出中位数.【详解】(1)由题意可得:,解得;(2)由题中数据可得:岁,设中位数为,则,∴岁.【点睛】本题主要考查完善频率分布直方图,以及由频率分布直方图求平均数,中位数等,熟记频率的性质,以及平均数与中位数的计算方法即可,属于常考题型.18、(Ⅰ)f(x)=23【解析】

(Ⅰ)根据三角函数的图像,得到周期,求出ω=2,再由函数零点,得到2×π6+φ=2kπ,k∈Z(Ⅱ)先由题意得到f(x)∈-1,233,再将函数【详解】(Ⅰ)由图象知,T∴T=π,ω=2∵2×π6+φ=2kπ,k∈Z,及而f(0)=Asin(-π3故f(x)=2(Ⅱ)∵x∈∴2x-π3∈又函数y=f(x)2-2f(x)-m∵f(x)∈∴f(x)-1因此,实数m的取值范围是-1,3.【点睛】本题主要考查由三角函数的部分图像求解析式的问题,以及由函数的零点求参数的问题,熟记三角函数的图像与性质即可,属于常考题型.19、(1);(2)见解析.【解析】

试题分析:(1)转移法求轨迹:设所求动点坐标及相应已知动点坐标,利用条件列两种坐标关系,最后代入已知动点轨迹方程,化简可得所求轨迹方程;(2)证明直线过定点问题,一般方法是以算代证:即证,先设P(m,n),则需证,即根据条件可得,而,代入即得.试题解析:解:(1)设P(x,y),M(),则N(),由得.因为M()在C上,所以.因此点P的轨迹为.由题意知F(-1,0),设Q(-3,t),P(m,n),则,.由得-3m-+tn-=1,又由(1)知,故3+3m-tn=0.所以,即.又过点P存在唯一直线垂直于OQ,所以过点P且垂直于OQ的直线l过C的左焦点F.点睛:定点、定值问题通常是通过设参数或取特殊值来确定“定点”是什么、“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒成立的.定点、定值问题同证明问题类似,在求定点、定值之前已知该值的结果,因此求解时应设参数,运用推理,到最后必定参数统消,定点、定值显现.20、(1);(2)①见证明;②见证明;(3)++…+,证明见解析【解析】

(1)将代入,结合可求出的值;(2)可知,,即可证明结论;(3)由题意可得,从而可得到,求和可得,然后作差,通过讨论可比较二者大小.【详解】(1)由题意:,.而,得,即,解得或,因为,所以满足题意.(2)因为,所以.则.,因为,,所以,所以.(3)由,可得,从而,所以.因为,所以,所以.,,,,当n=1时,,故;当n=2时,,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论