版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届上海宝山同洲模范学校高一数学第二学期期末达标检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.将函数的图象上各点沿轴向右平移个单位长度,所得函数图象的一个对称中心为()A. B. C. D.2.数列{an}的通项公式an=,若{an}前n项和为24,则n为().A.25 B.576 C.624 D.6253.“”是“直线(m+1)x+3my+2=0与直线(m-2)x+(m+1)y-1=0相互垂直”的()A.充分必要条件 B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件4.若直线的倾斜角为,则的值为()A. B. C. D.5.在中,角A、B、C的对边分别为a、b、c,若,则角()A. B. C. D.6.在中,已知,.若最长边为,则最短边长为()A. B. C. D.7.函数的最大值为()A. B. C. D.8.设函数是定义为R的偶函数,且对任意的,都有且当时,,若在区间内关于的方程恰好有3个不同的实数根,则的取值范围是()A. B. C. D.9.等差数列的首项为.公差不为,若成等比数列,则数列的前项和为()A. B. C. D.10.实数满足,则的取值范围为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知变量x,y线性相关,其一组数据如下表所示.若根据这组数据求得y关于x的线性回归方程为,则______.x1245y5.49.610.614.412.设函数,则的值为__________.13.设等比数列的前项和为,若,,则的值为______.14.数列中,若,,则______;15.已知函数在时取得最小值,则________.16.当时,不等式成立,则实数k的取值范围是______________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某生产企业研发了一种新产品,该产品在试销一个阶段后得到销售单价(单位:元)和销售量(单位:万件)之间的一组数据,如下表所示:销售单价/元销售量/万件(1)根据表中数据,建立关于的线性回归方程;(2)从反馈的信息来看,消费者对该产品的心理价(单位:元/件)在内,已知该产品的成本是元,那么在消费者对该产品的心理价的范围内,销售单价定为多少时,企业才能获得最大利润?(注:利润=销售收入-成本)参考数据:参考公式:18.已知两点,.(1)求直线AB的方程;(2)直线l经过,且倾斜角为,求直线l与AB的交点坐标.19.已知函数.(1)求的最小正周期;(2)求在区间上的最大值和最小值.20.如图,已知点P在圆柱OO1的底面⊙O上,分别为⊙O、⊙O1的直径,且平面.(1)求证:;(2)若圆柱的体积,①求三棱锥A1﹣APB的体积.②在线段AP上是否存在一点M,使异面直线OM与所成角的余弦值为?若存在,请指出M的位置,并证明;若不存在,请说明理由.21.某种汽车的购车费用是10万元,每年使用的保险费、养路费、汽油费约为万元,年维修费用第一年是万元,第二年是万元,第三年是万元,…,以后逐年递增万元汽车的购车费用、每年使用的保险费、养路费、汽油费、维修费用的和平均摊到每一年的费用叫做年平均费用.设这种汽车使用年的维修费用的和为,年平均费用为.(1)求出函数,的解析式;(2)这种汽车使用多少年时,它的年平均费用最小?最小值是多少?
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
先求得图象变换后的解析式,再根据正弦函数对称中心,求出正确选项.【详解】向右平移的单位长度,得到,由解得,当时,对称中心为,故选A.【点睛】本小题主要考查三角函数图象变换,考查三角函数对称中心的求法,属于基础题.2、C【解析】an==-(),前n项和Sn=-[(1-)+(-)]+…+()]=-1=24,故n=624.故选C.3、B【解析】试题分析:当时,直线为和直线,斜率之积等于,所以垂直;当两直线垂直时,,解得:或,根据充分条件必要条件概念知,“”是“直线(m+1)x+3my+2=0与直线(m-2)x+(m+1)y-1=0相互垂直”的充分不必要条件,故选B.考点:1、充分条件、必要条件;2、两条直线垂直的关系.4、B【解析】
根据题意可得:,所求式子利用二倍角的正弦函数公式化简,再利用同角三角函数间的基本关系弦化切后,将代入计算即可求出值.【详解】由于直线的倾斜角为,所以,则故答案选B【点睛】本题考查二倍角的正弦函数公式,同角三角函数间的基本关系,以及直线倾斜角与斜率之间的关系,熟练掌握公式是解本题的关键.5、C【解析】
利用余弦定理求三角形的一个内角的余弦值,可得的值,得到答案.【详解】在中,因为,即,利用余弦定理可得,又由,所以,故选C.【点睛】本题主要考查了余弦定理的应用,其中解答中根据题设条件,合理利用余弦定理求解是解答的关键,着重考查了推理与运算能力,属于基础题.6、A【解析】试题分析:由,,解得,同理,由,,解得,在三角形中,,由此可得,为最长边,为最短边,由正弦定理:,解得.考点:正弦定理.7、D【解析】
函数可以化为,设,由,则,即转化为求二次函数在上的最大值.【详解】由设,由,则.即求二次函数在上的最大值所以当,即时,函数取得最大值.故选:D【点睛】本题考查的二次型函数的最值,属于中档题.8、D【解析】∵对于任意的x∈R,都有f(x−2)=f(2+x),∴函数f(x)是一个周期函数,且T=4.又∵当x∈[−2,0]时,f(x)=−1,且函数f(x)是定义在R上的偶函数,若在区间(−2,6]内关于x的方程恰有3个不同的实数解,则函数y=f(x)与y=在区间(−2,6]上有三个不同的交点,如下图所示:又f(−2)=f(2)=3,则对于函数y=,由题意可得,当x=2时的函数值小于3,当x=6时的函数值大于3,即<3,且>3,由此解得:<a<2,故答案为(,2).点睛:方程根的问题转化为函数的交点,利用周期性,奇偶性画出所研究区间的图像限制关键点处的大小很容易得解9、A【解析】
根据等比中项定义可得;利用和表示出等式,可构造方程求得;利用等差数列求和公式求得结果.【详解】由题意得:设等差数列公差为,则即:,解得:本题正确选项:【点睛】本题考查等差数列基本量的计算,涉及到等比中项、等差数列前项和公式的应用;关键是能够构造方程求出公差,属于常考题型.10、A【解析】
画出可行域,平移基准直线到可行域边界的位置,由此求得目标函数的取值范围.【详解】画出可行域如下图所示,平移基准直线到可行域边界的位置,由图可知目标函数分别在出取的最小值和最大值,最小值为,最大值为,故的取值范围是,故选A.【点睛】本小题主要考查线性规划求最大值和最小值,考查数形结合的数学思想方法,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、4.3【解析】
由所给数据求出,根据回归直线过中心点可求解.【详解】由表格得到,,将样本中心代入线性回归方程得.故答案为:4.3【点睛】本题考查线性回归直线方程,掌握回归直线的性质是解题关键,即回归直线必过中心点.12、【解析】
根据反正切函数的值域,结合条件得出的值.【详解】,且,因此,,故答案为:.【点睛】本题考查反正切值的求解,解题时要结合反正切函数的值域以及特殊角的正切值来求解,考查计算能力,属于基础题.13、16【解析】
利用及可计算,从而可计算的值.【详解】因为,故,因为,故,故,故填16.【点睛】等差数列或等比数列的处理有两类基本方法:(1)利用基本量即把数学问题转化为关于基本量的方程或方程组,再运用基本量解决与数列相关的问题;(2)利用数列的性质求解即通过观察下标的特征和数列和式的特征选择合适的数列性质处理数学问题.14、【解析】
先分组求和得,再根据极限定义得结果.【详解】因为,,……,,所以则.【点睛】本题考查分组求和法、等比数列求和、以及数列极限,考查基本求解能力.15、【解析】试题分析:因为,所以,当且仅当即,由题意,解得考点:基本不等式16、k∈(﹣∞,1]【解析】
此题先把常数k分离出来,再构造成再利用导数求函数的最小值,使其最小值大于等于k即可.【详解】由题意知:∵当0≤x≤1时(1)当x=0时,不等式恒成立k∈R(2)当0<x≤1时,不等式可化为要使不等式恒成立,则k成立令f(x)x∈(0,1]即f'(x)再令g(x)g'(x)∵当0<x≤1时,g'(x)<0∴g(x)为单调递减函数∴g(x)<g(0)=0∴f'(x)<0即函数f(x)为单调递减函数所以f(x)min=f(1)=1即k≤1综上所述,由(1)(2)得k≤1故答案为:k∈(﹣∞,1].【点睛】本题主要考查利用导数求函数的最值,属于中档题型.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)8.75元.【解析】
(1)根据最小二乘法求线性回归方程;(2)利用线性回归方程建立利润的函数,再求此函数的最大值.【详解】(1)关于的回归方程为.(2)利润该函数的对称轴方程是,故销售单价定为元时,企业才能获得最大利润.【点睛】本题考查线性回归方程和求利润的最值,属于基础题.18、(1);(2).【解析】
(1)根据、两点的坐标,得到斜率,再由点斜式得到直线方程;(2)根据的倾斜角和过点,得到的方程,再与直线联立,得到交点坐标.【详解】(1)因为点,,所以,所以方程为,整理得;(2)因为直线l经过,且倾斜角为,所以直线的斜率为,所以的方程为,整理得,所以直线与直线的交点为,解得,所以交点坐标为.【点睛】本题考查点斜式求直线方程,求直线的交点坐标,属于简单题.19、(1)(2)最大值为2,最小值为【解析】
(1)先将函数化简为,根据公式求最小正周期.
(2)由,则,可求出函数的最值.【详解】(1)所以的最小正周期为:.(2)由(1)有,则则当,即时,有最小值.当即,时,有最大值2.所以在区间上的最大值为2,最小值为.【点睛】本题考查三角函数化简、求最小正周期和函数在闭区间上的最值,属于中档题.20、(1)见解析;(2)①,②见解析【解析】
(1)根据,得出平面,故而;(2)①根据圆柱的体积计算,根据计算,,代入体积公式计算棱锥的体积;②先证明就是异面直线与所成的角,然后根据可得,故为的中点.【详解】(1)证明:∵P在⊙O上,AB是⊙O的直径,平面又,平面,又平面,故.(2)①由题意,解得,由,得,,∴三棱锥的体积.②在AP上存在一点M,当M为AP的中点时,使异面直线OM与所成角的余弦值为.证明:∵O、M分别为的中点,则,就是异面直线OM与所成的角,又,在中,.∴在AP上存在一点M,当M为AP的中点时,使异面直线OM与所成角的余弦值为.【点睛】本题主要考查了线面垂直的判定与性质,棱锥的体积计算以及异面直线所成的角,属于中档题.21、(1),;(2)时,年平均费用最小,最小值为3万元.【解析】试题分析:根据题意可知,汽车使用年的维修费用的和为,而第一年的维修费用是万元,以后逐年递增万元,每一年的维修费用形成以为首项,为公差的等差数列,根据等差数列的前项和即可求出的解析式;将购车费、每年使用的保险费、
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年河南艺术职业学院单招职业技能测试题库附答案详解
- 2026年重庆工信职业学院单招职业适应性考试题库及参考答案详解1套
- 2026年内蒙古伊克昭盟单招职业适应性测试题库及完整答案详解1套
- 2026年湖南工艺美术职业学院单招职业倾向性测试题库含答案详解
- 2026年江西外语外贸职业学院单招职业倾向性测试题库及参考答案详解
- 2026年内蒙古北方职业技术学院单招综合素质考试题库及参考答案详解一套
- 护士长竞争上岗面试题及答案
- 药学公招面试题及答案
- 暑假工劳动合同协议书范本
- 公司风险报告模板
- 夫妻调解和好协议书
- 大国兵器(中北大学)学习通网课章节测试答案
- 2025年中邮资产管理公司招聘笔试备考题库(带答案详解)
- 引流管置管的健康宣教
- 常用保护继电器课件
- 《华为员工绩效考核管理办法》
- 扑克俱乐部商业计划书
- 我的家乡湖北孝感介绍
- 库存物品报废申请表
- 医院新院区介绍湘雅医院新医疗区介绍
- 新团员团课学习课件
评论
0/150
提交评论